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Abstract—We propose EnclaveDB, a database engine that
guarantees confidentiality, integrity, and freshness for data and
queries. EnclaveDB guarantees these properties even when the
database administrator is malicious, when an attacker has
compromised the operating system or the hypervisor, and when
the database runs in an untrusted host in the cloud. EnclaveDB
achieves this by placing sensitive data (tables, indexes and other
metadata) in enclaves protected by trusted hardware (such as
Intel SGX). EnclaveDB has a small trusted computing base,
which includes an in-memory storage and query engine, a
transaction manager and pre-compiled stored procedures. A key
component of EnclaveDB is an efficient protocol for checking
integrity and freshness of the database log. The protocol supports
concurrent, asynchronous appends and truncation, and requires
minimal synchronization between threads. Our experiments using
standard database benchmarks and a performance model that
simulates large enclaves show that EnclaveDB achieves strong
security with low overhead (up to 40% for TPC-C) compared to
an industry strength in-memory database engine.

I. INTRODUCTION

Modern data processing services hosted in cloud environ-
ments are under constant attack from malicious entities such
as database administrators, server administrators, hackers who
exploit bugs in the operating system or hypervisor, and even
nation states. This results in frequent data breaches that reduce
trust in online services. Semantically secure encryption can
provide strong and efficient protection for data at rest and
in transit, but this is not sufficient because data process-
ing systems decrypt sensitive data in memory during query
processing. Systems such as CryptDB [1], Monomi [2] and
Seabed [3] use property-preserving encryption to allow query
processing on encrypted data. This approach has been adopted
in several products [4], [5], but suffers from limited querying
capabilities and is prone to information leakage [6], [7], [8].

Another approach to enable secure query processing is
to use trusted execution environments or enclaves. Enclaves
(e.g., Intel Software Guard Extensions (SGX) [9]) can protect
sensitive data and code, even from powerful attackers that
control or have compromised the operating system and the
hypervisor on a host machine. While enclaves can mitigate
several attacks, using them requires careful refactoring of
applications into trusted and untrusted components to achieve
desired security and privacy goals. Furthermore, ensuring high
level security properties such as confidentiality, integrity, and
freshness requires additional logic to protect secrets when
they leave the enclave and verify their integrity when they
are read. This task is relatively simple in applications such
as password checkers, key management systems and simpler

Fig. 1: Overview of EnclaveDB’s architecture. EnclaveDB
hosts sensitive data along with natively compiled queries and
a query engine in an enclave.

data processing frameworks. For example, researchers have
proposed the use of enclaves for building secure versions of
streaming and batch processing frameworks in Opaque [10]
and VC3 [11]. However, redesigning more complex systems
such as databases to use enclaves and offer strong security
properties remains an open problem. Previous work that places
small pieces of the query engine in trusted hardware, such
as Cipherbase [12] and TrustedDB [13], does not provide
confidentiality for queries or integrity and freshness for data.
Alternatively, hosting the whole database service inside an
enclave [14] results in a large trusted computing base (TCB)
and increased performance overheads, and does not provide
protection from the database administrator.

In this paper, we propose EnclaveDB, a database that
ensures confidentiality, integrity, and freshness for queries
and data. EnclaveDB has a programming model similar to
conventional relational databases – authorized users can create
tables and indexes, and query the tables using stored pro-
cedures expressed in SQL. However, unlike a conventional
database, EnclaveDB provides security from hackers, mali-
cious server administrators and database administrators. As
shown in Figure 1, EnclaveDB protects database state by
hosting all sensitive data (tables, indexes, queries and other
intermediate state) in enclave memory. This design choice
is feasible due to rapidly decreasing DRAM costs and the
expected availability of systems which support large enclaves
(of the order of several hundred gigabytes).

Unlike a conventional database, EnclaveDB compiles
queries on sensitive data to native code using an ahead-of-time
compiler on a trusted client machine. Pre-compiled queries are



signed, encrypted and deployed to an enclave on the untrusted
database server. Decoupling compilation from execution al-
lows components such as the query parser, compiler and opti-
mizer to be hosted in a trusted environment, thereby reducing
the attack surface available to the adversary. EnclaveDB clients
execute pre-compiled queries by establishing a secure channel
with the enclave and sending requests with encrypted parame-
ters. The enclave authenticates requests, decrypts parameters,
executes the pre-compiled query, encrypts query results, and
sends the results back to the client.

In addition to confidentiality of data and queries, EnclaveDB
also guarantees integrity and freshness of data. Integrity and
freshness are critical properties for many applications such as
banking, auctions, voting and control systems. The integrity
of in-memory tables and indexes is guaranteed by the enclave
hardware. The integrity of queries is ensured by hosting
queries and a transaction manager within the enclave. In
addition, EnclaveDB employs a number of checks to detect
and prevent integrity violations during query processing and
database recovery. This includes checks to detect invalid API
usage and Iago attacks [15] caused by a malicious database
server/operating system that violates its specification. A key
component of EnclaveDB is an efficient protocol for ensuring
confidentiality, integrity and freshness of the database log. The
protocol supports concurrent appends and truncation of the log
and requires minimal synchronization between threads.

We have built a prototype of EnclaveDB using Hekaton,
SQL Server’s in-memory database engine. Our prototype has
a small TCB (over 100X smaller than a conventional database
server). We evaluate the performance of EnclaveDB using
industry-standard database benchmarks and a performance
model that accounts for the overheads of enclaves. Our eval-
uation shows that EnclaveDB delivers high performance (up
to 31,000 tps for TPC-C) and has low overheads (up to 40%
lower throughput compared to an insecure baseline).

This paper makes the following contributions.
• We propose EnclaveDB, an in-memory database that uses

enclaves to provide strong security properties.
• EnclaveDB guarantees confidentiality, integrity and fresh-

ness using a combination of encryption, native compila-
tion and a scalable protocol for checking integrity and
freshness of the database log.

• EnclaveDB has a small TCB - over 100X smaller than a
conventional database server.

• We evaluate EnclaveDB using standard benchmarks and
a performance model that simulates enclave overheads.
The evaluation shows that EnclaveDB delivers security
with high performance.

The rest of this paper is organized as follows. We start
with an overview of enclaves and the Hekaton engine in
Section II. In Section III, we discuss our threat model. Sec-
tion IV explores EnclaveDB’s architecture. We then describe
the protocol for checking integrity of checkpoints and the
log in Section V. Section VI describes several optimizations
and Section VII discusses multi-party support, followed by
a detailed evaluation of EnclaveDB in Section VIII. Finally,

we present related work in Section IX and conclude with
Section X.

II. BACKGROUND

A. Enclaves

Trusted execution environments or enclaves such as Intel
SGX protect code and data from all other software in a system.
With OS support, an untrusted hosting application can create
an enclave in its virtual address space. Once an enclave has
been initialized, code and data within the enclave is isolated
from the rest of the system, including privileged software.
Application threads can however switch into enclave mode at
pre-defined entry points and execute user-mode instructions.

Intel SGX enforces isolation by storing enclave code and
data in a data structure called the Enclave Page Cache (EPC),
which resides in a preconfigured portion of DRAM called the
Processor Reserved Memory (PRM). The processor ensures
that any software outside the enclave cannot access the PRM.
However, code hosted inside an enclave can access both non-
PRM memory and PRM memory that belongs to the enclave.
SGX includes a memory encryption engine which encrypts
and authenticates enclave data evicted to memory, and ensures
integrity and freshness using a merkle-tree structure over
the EPC. SGX also protects enclaves against a variety of
hardware/software attacks including attempts to access enclave
memory via DMA or by reusing cached TLB translations.

In addition to isolation, enclaves also support sealing and
remote attestation. Sealing allows an enclave to securely
persist and retrieve secrets on the local host. Sealing keys
can be bound to a specific enclave identity or a signing
authority, e.g. the enclave owner. Sealed data is confidentiality-
and integrity-protected, but sealing does not provide freshness
guarantees. Remote attestation allows a remote challenger
to establish trust in an enclave. In Intel SGX, code hosted
in an enclave can request for a quote, which contains a
number of enclave attributes including a measurement of the
enclave’s initial state. The quote is signed by a processor-
specific attestation key. A remote challenger can use Intel’s
attestation verification service to verify that a given quote has
been signed by a valid attestation key. The challenger can also
verify that the enclave has been initialized in an expected state.
Once an enclave has been verified, the challenger can set up a
secure channel with the enclave (using a secure key exchange
protocol) and provision secrets such as encrypted code or data
encryption keys to the enclave.

B. Hekaton

Hekaton [16] is a database engine in SQL Server optimized
for OLTP workloads where data fits in memory. The engine’s
design is based on the observation that memory prices are
dropping and machines with over 1TB of memory are already
commonplace. As a result, datasets for many OLTP workloads
can fit entirely in memory.

Hekaton allows users to host selected tables in memory
and create one or more memory-resident indexes on the
table. Hekaton tables are durable - the Hekaton engine logs



transactions on memory resident tables to a persistent log
shared with SQL Server. Periodically, Hekaton checkpoints
the log by compressing log records into a more compact
representation on disk. On failure, the database state can be
recovered using checkpoints and the tail of the log. To further
optimize performance, Hekaton supports a mode of execution
where table definitions and SQL queries over in-memory tables
are compiled to efficient machine code. Native compilation is
restricted to queries where decisions typically made by the
query interpreter at runtime can be made at compile time, e.g.,
queries where the data types of all columns and variables are
known at compile time. These restrictions allow the Hekaton
compiler to generate efficient code with optimized control flow
and no runtime type checks.

In this paper, we show that the principles behind the
design of a high performance database engine are aligned with
security. Specifically, in-memory tables and indexes are ideal
data structures for securely hosting and querying sensitive data
in enclaves. In-memory tables eliminate the need for expensive
software encryption and integrity checking otherwise required
for disk-based tables. Query processing on in-memory data
minimizes the leakage of sensitive information and the number
of transitions between the enclave and the host. Finally,
native compilation allows query compilation and optimization
to be decoupled from query execution, enabling a mode of
compilation where queries are compiled on a trusted database
and deployed to an enclave on an untrusted server, significantly
reducing the attack surface available to an adversary.

III. THREAT MODEL

We consider a strong adversary that controls the entire
software stack on the database server, except the code inside
enclaves. This represents threats from an untrusted server
administrator, the database administrator, and attackers who
may compromise the operating system, the hypervisor or the
database server. The adversary can access and tamper with any
server-side state in memory, on disk and over the network. This
includes attacks that tamper with database files such as logs
and checkpoints e.g. overwriting, dropping, duplicating and/or
reordering log records. The adversary can mount replay attacks
by arbitrarily shutting down the database and attempting to
recover from a stale state. The adversary can attempt to
fork the database e.g. by running multiple replicas of the
database instance on the same or different machines and
sending requests from different clients to different instances.
The adversary can also observe and arbitrarily change control
flow e.g. make an arbitrary sequence of calls to any of the pre-
defined entry points in the enclave. However, denial of service
and side channels attacks (e.g., access patterns and timing) are
outside the scope of this paper. Side channels are a serious
concern with trusted hardware [17], [18], [19], [20], and
building efficient side channel protection for high performance
systems like EnclaveDB remains an open problem.

We trust the processor and assume the adversary cannot
physically open the processor package and extract secrets
or corrupt state inside the processor. We assume that the

code placed inside the enclave is correct and does not leak
secrets intentionally. Recent research has shown that it is
possible to automatically enforce and verify confidentiality for
reasonably sized applications at low runtime overheads [21].
We also assume that all client-side components such as SQL
clients and the key management service are trusted. This is a
common assumption in cloud-based systems and often realized
by hosting the client in a trusted on-premises environment (e.g.
behind firewalls controlled by the user) or in enclaves.

For encryption, we rely on a scheme that provides authen-
ticated encryption with associated data (AEAD). We write
Enc[k]{ad}(text) to represent the encryption of text using
key k and authentication data ad and assume that the result
contains the authenticated data. We write Dec[k](enc) to
represent authentication and decryption of ciphertext contain-
ing authentication data. We assume that our scheme is both
IND-CPA and IND-CTXT. Our implementation uses AES-
GCM [22], a high-performance AEAD scheme.

Even under this threat model, we wish to guarantee
both confidentiality and linearizability [23]. In a linearizable
database, transactions appear to execute sequentially in an
order consistent with real time. Therefore, clients do not have
to reason about concurrency or failures. In our context, a
linearizable database frees the clients from having to reason
about an active attacker. In addition to linearizability, we
would also like to ensure liveness i.e. the database should
always be able to recover from unexpected shutdowns at any
time. Note that liveness does not imply availability; an attacker
can always prevent progress e.g. by not allocating resources.

IV. ARCHITECTURE

An EnclaveDB service consists of an untrusted database
server that hosts public data and an enclave that contains
sensitive data. Figure 2 shows the server-side components
in EnclaveDB. The enclave hosts a modified Hekaton query
processing engine, natively compiled stored procedures, and
a trusted kernel which provides a runtime environment for
the database engine and security primitives such as attestation
and sealing. The untrusted host process runs all other compo-
nents of the database server, including a query compiler and
processor for public data, and the log and storage managers.
The untrusted server supports database administration tasks –
the database administrator may login to the database and per-
form maintenance operations (e.g., backups, troubleshooting
of server problems, configuration of storage options), but does
not get access to sensitive data. This is critically important,
since database administration is often outsourced (e.g., to a
cloud provider or third parties).

The query processor on the untrusted database server sup-
ports generic queries on public data; in cases where such data
exists, it can be kept out of the enclave, e.g., as a performance
optimization. The query processor is also responsible for
receiving requests to execute stored procedures on secret data
and handing them over to the Hekaton engine. EnclaveDB
currently does not support queries that operate over both public
and secret data; guaranteeing security in the presence of such



Fig. 2: Server-side components of EnclaveDB

queries is a challenging problem and left for future work. We
now describe these components in detail.

A. Trusted kernel

Conventional databases rely on OS services such as thread-
ing, memory management and storage. However, this layering
is not secure under a threat model where the OS may be
compromised. One way of protecting applications is to use
a library OS that runs within the enclave [14], [24]. However,
this introduces a large amount of trusted code in the software
stack. In EnclaveDB, we adopt the principle of least privilege –
we introduce a thin layer called the trusted kernel that provides
the Hekaton engine with the minimal set of services it requires.
The trusted kernel implements some enclave-specific services
such as management of enclave memory and enclave threads
(described below), and delegates other services such as storage
to the host operating system with additional logic for ensuring
confidentiality and integrity. We now describe services that
have implications for EnclaveDB.

Threading: SGX supports a mechanism for protecting
the state of threads from the host when in enclave mode.
Developers can reserve a part of enclave memory for an
array of thread control structures (TCS). SGX uses a TCS
to save and restore the host thread’s context when the thread
enters or exits the enclave. As required by SGX, the trusted
kernel allocates a stack for each thread in enclave memory
when a thread enters the enclave, and then transfers control to
the application. This ensures that the host cannot observe or
tamper with the thread’s state.

From an application’s perspective, this threading model is
best viewed as a pool of enclave threads. When the host calls
into the enclave, the trusted kernel effectively ’suspends’ the
host thread and switches to an unused enclave thread. When
the call completes (or an exception occurs), the trusted kernel
reclaims the enclave thread and execution resumes on the
host thread. Therefore, the size of the thread pool, which is
fixed on enclave creation, determines the maximum degree of
concurrency available to the application.

Thread-local storage: The trusted kernel supports thread-
local storage (TLS), which is used extensively by the Heka-
ton engine for efficient access to performance-critical data
structures such as transaction read/write sets. However, the
threading model described above leads to a subtle change in

Tx∗ TxAlloc()
bool TxExecute(Tx∗ tx, BYTE∗ name,

BYTE∗∗ params, BYTE∗∗ ret)
bool TxPrepare(Tx∗ tx, TxPrepareCallback prepareCb)
void TxCommit(Tx∗ tx)
void TxAbort(Tx∗ tx)

Table 1: Hekaton’s transaction processing API

the semantics of TLS. The trusted kernel does not guarantee
that TLS is preserved across multiple calls into the enclave
from the same host thread. Preserving TLS across calls would
require the kernel to trust a host assigned thread identifier,
thereby introducing a new attack vector. This change in
semantics did not mandate a code change in Hekaton since the
engine already re-establishes TLS from the heap on every entry
into the engine, except in the case of re-entrancy i.e. nested
calls into the engine. As described in Section V, Hekaton
components such as the log use re-entrancy (via callbacks)
and assume that TLS is preserved on re-entrant calls. Since the
trusted kernel does not guarantee these semantics, we modified
the Hekaton engine to save TLS on the heap before enclave
exits and restore TLS state on re-entrant calls.

B. Query compilation and loading

In a conventional database, the database server compiles,
optimizes and executes queries. Therefore, the entire query
processing pipeline is part of the attack surface. EnclaveDB re-
duces the attack surface by relying on client-side, native query
compilation. The client packages all pre-compiled queries
(expressed as stored procedures) along with the query engine
and the trusted kernel, and deploys the package into an
enclave. This design offers strong security because the queries
are part of enclave measurement. However, the design also
implies that any change in schema e.g., adding or removing
queries, requires taking the database offline and redeploying
the package. Online schema changes can be supported using
a trusted loader; we leave this extension for future work.

C. Transaction processing

Hekaton uses a two-phase protocol for transaction process-
ing (Table 1, see Figure 3 for the complete protocol). When
the host receives a request to execute a stored procedure, it
first creates a new transaction using TxAlloc and assigns a
logical start timestamp to the transaction using a monotoni-
cally increasing counter stored in memory. It then executes the
stored procedure in the context of the transaction by calling
TxExecute along with the name of the stored procedure,
buffers containing parameter values, and buffers for storing
return values. TxExecute loads the natively compiled binary
corresponding to the stored procedure and transfers control to
a well-defined function within the binary. The binary calls into
the Hekaton engine to perform operations on Hekaton tables
and update transaction state (e.g., read and write sets, start
timestamps).

After executing the stored procedure, the host prepares
the transaction for committing by calling TxPrepare. The



prepare phase validates the transaction by checking for con-
flicts, assigns a logical end timestamp to the transaction,
waits for transactions it depends on to commit, and logs
the transaction’s write set. Since logging involves expensive
I/O operations, TxPrepare is asynchronous - it registers
a callback and returns after initiating the log I/O. Once the
I/O has completed, the host calls TxCommit to commit the
transaction, which releases any resources associated with the
transaction, unblocks all dependent transactions, and writes
return values to be sent to the client. However, if the prepare
phase fails (e.g., due to conflicts), the host calls TxAbort.

This protocol is vulnerable to a number of attacks from
a malicious host even if the Hekaton engine is hosted in
an enclave. The host can pass arbitrary transaction handles
(Tx*), tamper with the incoming request (e.g., by changing
parameter or return values), and invoke the protocol methods
out of order. We make the following client-side modifications
to ensure integrity of client-server interactions.
• We extend the query compiler to embed metadata such

as the stored procedure name and the position and type
of parameters in a dedicated section in the native binary.
This metadata is used to validate requests.

• EnclaveDB clients connect to EnclaveDB by creating
a secure channel with the enclave and establishing a
shared session key SK. During session creation, clients
authenticate the enclave using a quote that contains the
enclave’s measurement. The enclave can authenticate
clients using certificates or tokens issued by a trusted
authority; our implementation uses certificates embedded
in the EnclaveDB engine binary.

• EnclaveDB clients encrypt parameter values using SK.
Each parameter value is encrypted using authenticated
encryption with the parameter position, type and a nonce
as authentication data to prevent replay attacks.

We also make the following server-side modifications.
• The transaction processing APIs verify that transaction

objects passed as a parameter are allocated in enclave
memory, and procedure names, parameters and return
values are buffers in untrusted memory.

• TxExecute authenticates all incoming requests. If au-
thentication succeeds, EnclaveDB loads the native binary
and checks if the procedure name, parameter positions
and types are consistent with metadata stored in the
binary. If validation succeeds, EnclaveDB decrypts pa-
rameters, allocates buffers in enclave memory for return
values, and forwards the request to the Hekaton engine.

• After a stored procedure has executed, EnclaveDB en-
crypts return values (or error messages as described
below) and writes them to buffers allocated by the host.

• The engine maintains additional state to ensure that the
host does not attempt to commit a transaction if the
prepare phase failed.

Observe that once a request has been validated, the stored
procedure executes entirely within the enclave on tables hosted
in the enclave. This prevents the host from tampering with

query processing and reduces information leakage. We now
discuss cases where sensitive information is generated during
query processing.

Errors: Error conditions that occur during query process-
ing can be classified as secret dependent and secret indepen-
dent. Secret dependent errors directly or indirectly depend on
sensitive values e.g. values stored in the tables or passed as
parameters. This includes violations of database integrity con-
straints such as uniqueness, invalid cast/conversion, and invalid
arithmetic operations. Clearly, revealing these errors to the host
leaks information. However, this information is required by
SQL Server since the occurrence of an error (or lack thereof)
drives execution along different code paths e.g. the code path
where no results are sent to the client. EnclaveDB addresses
this problem by translating secret dependent errors into a
generic error, and packaging the actual error code and message
into a single message which is encrypted and delivered to the
client. The client extracts the message and relays the error
code to the application. In this process, the adversary learns
that some error occurred during query processing but does
not learn the cause of the error. This leakage can easily be
prevented by always relaying an error code (SUCCESS if no
error) and the result set (containing garbage on error) back to
the client. However, this requires changes to the SQL client-
server protocol and is outside the scope of this work.

Statistics: During execution, EnclaveDB collects a num-
ber of statistics that are useful for profiling and optimizing
performance. For example, EnclaveDB collects frequency and
execution time of each query, which can help identify slow
running queries. The optimizer utilizes cardinalities of val-
ues in columns to determine efficient query plans. Some of
these statistics are sensitive because they reveal properties of
sensitive data. Therefore, EnclaveDB maintains all profiling
information in enclave memory. EnclaveDB exposes an API to
export this information (in encrypted form) and import it into
a trusted client database, where it can be decrypted, analyzed,
and used during native compilation.

D. Key management

EnclaveDB supports a much simpler model for key man-
agement compared to existing systems [1], [12] which requires
users to associate and manage encryption keys for each column
containing sensitive data. In EnclaveDB, sensitive columns
are hosted in enclave memory, and data in these columns is
encrypted and integrity protected by the memory encryption
engine when it is evicted from the processor cache. Users
only need to create and manage a single database encryption
key DK, which is used to encrypt all persistent database
state. Users provision the key to a trusted key management
service (KMS), along with a policy that specifies the enclave
(identified using the enclave’s measurement) that the key can
be provisioned to. When an EnclaveDB instance starts or
resumes from a failure, it remotely attests with the KMS and
receives DK.



Algorithm 1 Specification of the logging interface exposed
by the host to Hekaton

1: L← ∅
2: procedure LogAppend(tx, size, serializeCb, commitCb)
3: buf← alloc(size)
4: serializeCb(tx, buf)
5: L← L ∪ buf
6: startLogIO(tx, buf, commitCb)

7: procedure LogTruncate(buf)
8: L← L \ {b ∈ L | b < buf}
9: procedure GetLogIterator(start, end)

10: return {b ∈ L | b ≥ start ∧ b ≤ end}

Fig. 3: Transaction commit protocol in EnclaveDB

V. LOGGING AND RECOVERY

The Hekaton engine makes in-memory tables durable by
writing transactions on secret data to a persistent log managed
by the host (i.e. SQL Server). Since the host cannot be trusted,
EnclaveDB must ensure that a malicious host cannot observe
or tamper with the contents of the log. In this section, we
present a high-level specification of the logging and check-
pointing APIs and then describe protocols to ensure integrity.

As shown in Algorithm 1, the log can be abstracted as
a stream of bytes and a set L that contains indexes in the
stream where individual log records begin. The log supports
operations for appending log records, truncating the log, and
iterating over the log. The append operation allocates space
in the stream for the log record and returns an index buf in
the stream, which also serves as the address of the buffer
used for reading or writing the log record. The append op-
eration invokes a callback serializeCb, which writes the log
record in the allocated buffer, and schedules another callback
commitCb, which is invoked when the log record has been
flushed to disk. The truncation operation deallocates all buffers
preceding the given index. The iterator returns the indexes of
all log records between any two indexes start and end.

The Hekaton engine uses the log as follows (Figure 3).
After a transaction has been validated (in TxPrepare), the
engine serializes the transaction’s write set into a log record

Algorithm 2 Hekaton operations for creating checkpoints and
restoring the database after a failure

1: sys← ∅
2: procedure CreateCheckpoint(start, end)
3: {datafile, deltafile} ← SerializeLog(start, end)
4: sys← sys ∪ {datafile, deltafile}
5: WriteF ile(ROOT FILE, sys)
6: LogTruncate(end)

7: procedure RestoreDatabase(start, end)
8: sys← ReadF ile(ROOT FILE)
9: for {data, delta} ∈ sys do

10: RestoreCheckpoint(data, delta)

11: ReplayLog(start, end)

by calling LogAppend. Each log record includes the start
and end timestamp of the transaction. The host writes the
log record to disk and then invokes the commit callback. At
this point, the transaction enters the commit state. During
TxCommit, Hekaton unblocks dependent transactions and
notifies the client submitting the transaction. Hekaton is de-
signed to write multiple log records concurrently to avoid
scaling bottlenecks with the tail of the log. This is possible
because the serialization order of transactions is determined
solely by end timestamps and not by the ordering in the log.
Also note that failures can occur at any point e.g. after a
log record has been flushed to disk but before the client is
notified or dependent transactions are unblocked. We refer to
transactions for which Hekaton may have unblocked dependent
transactions or notified the client as visible transactions, and
transactions whose dependent transactions remain blocked and
no notifications have been generated as invisible transactions.

To avoid unbounded growth of the log, Hekaton periodically
creates checkpoints and then truncates the log (Figure 2). Each
checkpoint is a pair of append-only files, a data file and a delta
file. The data file contains all records that have been inserted or
updated since the last checkpoint and the delta file contains all
deleted records. Checkpoints are created using an in-memory
cache of log records, which is updated during commit. The
names of data and delta files are saved in a special table
called the system table (sys), which is persisted in a file called
the root file. To avoid data loss, Hekaton truncates the log at
a carefully selected index called the truncation index, which
satisfies the invariant that all transactions committing after the
truncation operation will be allocated indexes higher than the
truncation index. During recovery (see RestoreDatabase in
Algorithm 2), Hekaton retrieves the truncation index from the
database master file and the list of checkpoint file pairs from
the root file. It restores tables and indexes from checkpoints,
and replays the tail of the log from the truncation index.

A. Log Integrity

One way of ensuring integrity of the log and checkpoints
is to use an encrypted file system [14]. An encrypted file
system encrypts files with a key stored in enclave memory
and checks integrity using a merkle tree [25]. However,
maintaining a merkle tree for highly concurrent and write-
intensive workloads such as a database log can be expensive.



A merkle tree introduces contention because the log is an
append-only structure with a large number of threads writing
close to the tail of the file. These threads will update roughly
the same set of nodes in the merkle tree, and contend for
locks protecting these nodes [26], [27]. The merkle tree also
introduces contention for any monotonic counter(s) used to
protect the tree against replay attacks. Finally, the size of
a merkle tree is proportional to the size of the log, which
can grow to several 100 GBs. If (a part of) the merkle tree
is maintained in enclave memory, it reduces the amount of
enclave memory available to the database. On the other hand,
if the merkle tree is maintained on disk, a single log append
can translate into multiple updates on disk.

In this paper, we propose a new and efficient protocol
(Algorithm 3) for checking integrity and freshness of the log.
The protocol is based on the following observations.

• Correctness of database recovery does not depend on the
order of log records in the log. Instead, the ordering of
transactions is determined by start and end timestamps
embedded in the log records. Therefore, the log can be
viewed as a set of log records instead of a raw file.

• Hekaton can ensure state continuity as long as all check-
points, and log records of all visible transactions that have
not been truncated are read during recovery.

Our protocol uses monotonic counters (Section V-C)
to track sets of log records and identify log records
that must exist in the log on recovery. We assume
a monotonic counter service that exposes an API with
functions CreateCounter, GetCounter, IncCounter, and
SetCounter. CreateCounter creates counters bound to the
TCB of the enclave and the platform, IncCounter atomically
increments the counter and returns the previous value of the
counter, and SetCounter sets a counter to a given value if it
is higher than the counter’s current value or fails otherwise.
The protocol uses three counters: W tracks log records that
have been written to the log, V tracks log records generated
by visible transactions, and R tracks truncated log records. To
ensure that the protocol does not introduce new synchroniza-
tion bottlenecks, we track these sets separately for each thread
using per-thread monotonic counters. In other words, W, V,
and R are k-dimensional vectors, where k is the number of
enclave threads, which is fixed on enclave creation.

The counters are updated as follows. Each thread t process-
ing a transaction increments the counter Wt after transaction
validation but before sending the log record to the host
(Line 17). All log records are encrypted with DK using authen-
ticated encryption, with authentication data consisting of the
thread identifier t, the counter value Wt and the log record’s
index in the log (Line 18); the authentication data is stored in
the log record’s header. This ensures that each log record can
be uniquely identified by the pair of attributes (t, w) embedded
in the log record. The counter Vt is incremented during the
commit callback for a log record generated by thread t before
unblocking dependent transactions and notifying the client
(Line 25). At any point in time, the difference between pairs

Fig. 4: Serialization points during transaction processing.

of counters Wt and Vt represents log records of transactions
that are not yet visible.

Tracking truncated log records is more challenging because
at any given point, there are multiple log records being written
to the log at indexes assigned by the host, and a malicious
host can mount attacks by assigning indexes arbitrarily e.g. in
portions of the log that have already been truncated. In order
to detect malicious behavior, we establish a contract between
EnclaveDB and the host based on the notion of serialization
points. A serialization point is defined as follows.

Definition 5.1: Let t be a transaction and l be an index in
the log. Let log(t) represent the first index in the log where a
log record for transaction t has been written. A serialization
point is a pair (t, l) such that all transactions committing after
t should be written to the log after the index l. Formally, let ≤
represent the happens before relationship between transactions.

serialization point(t, l)⇒ ∀t′ | t ≤ t′, log(t′) > l

It also follows that given a serialization point (t, l), the log
can be safely truncated at l once all transactions that have
committed before t have been written to a checkpoint. From
the perspective of integrity checking, serialization points have
the following implications.
• Given a serialization point (t, l), it follows that once

transaction t commits, a correct log implementation never
returns an index l′ such that l′ ≤ l in any subsequent calls
to LogAppend. A violation of this property indicates an
attack.

• Once a serialization point (t, l) is established, we can
safely compute the expected number of log records that
have written before the index l because no more log
records should be written at any index l′ ≤ l.

There are many ways of establishing serialization points.
For example, Hekaton establishes serialization points by
grouping transactions based on end timestamps and waiting
for all transactions in group gn−1 to commit (and hence be
written to the log) before committing any transactions in gn+1.
Figure 4 illustrates this mechanism using a sample execution.
Transactions are color-coded according to groups. (T5, L1) is
a valid serialization point because all transactions committing
after T5 are written to the log after L1. Our protocol is inde-



Algorithm 3 Protocol for checking integrity of the log
1: Monotonic counters
2: ∀t ∈ Threads,Wt ← 0, Vt ← 0, Rt ← 0
3: E ← 0
4: Volatile enclave state
5: ∀t ∈ Threads, lt ← ∅, s0t ← 0
6: b0 ← 0, p← 1
7:
8: procedure EnclaveLogAppend(tx, size)
9: size← size+HEADER SZ

10: LogAppend(tx, size, enclaveSerializeCb, enclaveCommitCb)

11:
12: procedure enclaveSerializeCb(tx, buf, size)
13: t← GetCurrentThreadId()
14: assert(buf > bp)
15: tmp← malloc(size−HEADER SZ)
16: serializeCb(tx, tmp)
17: w ← IncCounter(Wt)
18: buf← Enc[DK]{GetCounter(E), t, w}(tmp)
19: lt ← lt ∪ buf
20: free(tmp)

21:
22: procedure enclaveCommitCb(tx, enc)
23: {e, t, c}, buf ← Dec[DK](enc)
24: assert(e == GetCounter(E) ∧ c == GetCounter(Vt))
25: IncCounter(Vt)
26: commitCb(tx, buf)
27:
28: procedure OnSerializationPoint(buf)
29: ∀t, spt ← sp−1

t + | {b ∈ lt | b < buf} |
30: ∀t, lt ← lt \ {b ∈ lt | b < buf}
31: bp ← buf
32: p← p+ 1

33:
Require: (∃ i | i ≤ p ∧ bi == buf)
34: procedure EnclaveLogTruncate(buf)
35: j ← (i | i ≤ p ∧ bi == buf)
36: ∀t, SetCounter(Rt, s

j
t )

37: LogTruncate(buf)
38:
39: procedure ReplayLog(start, end)
40: ∀t, ct ← GetCounter(Rt)
41: ∀t, spt ← GetCounter(Rt)
42: I = GetLogIterator(start, end)
43: for enc ∈ I do
44: {e, t, c}, buf← Dec[DK](enc)
45: assert(e == GetCounter(E))
46: if GetCounter(Rt) ≤ c ≤ GetCounter(Vt) then
47: assert (c == ct + 1)
48: ct ← ct + 1
49: lt ← lt ∪ buf
50: ApplyLogRecord(buf)
51: ∀t, assert(ct == GetCounter(Vt))
52: if ∃t | ct 6= GetCounter(Wt) then
53: OnSerializationPoint(end)
54: CreateCheckpoint(start, end)
55: IncCounter(E)

56: ∀t, SetCounter(Vt, GetCounter(Wt))

pendent of the way and the frequency with which serialization
points are established; it only requires that the client of the log
(i.e. Hekaton) periodically establish serialization points, and
notify the protocol when a serialization point is established.

Our protocol uses serialization points for tracking truncated
log records as follows. We maintain (in volatile enclave
memory) the sequence of serialization points b, a per-thread
list of indexes lt at which thread t has written log records

since the most recent serialization point, and a sequence s
of sets, one for each serialization point, where each element
spt is a number of log records written by thread t before the
serialization point p. When a new log record is created, we
add its index to the list lt after checking that the host does not
violate the serialization point contract (line 14). We introduce
a new operation OnSerializationPoint which is invoked by
Hekaton when it establishes a serialization point. For each
thread t, this operation computes a summary spt and removes
all indexes preceding the serialization point from lt.

We also modified Hekaton to invoke EnclaveLogTruncate
after creating a checkpoint, passing in a truncation index,
which must be a previously declared serialization point. This
operation updates the vector clock R (line 36) to reflect the set
of truncated log records using a previously computed summary
before calling out to truncate the log.

During recovery (ReplayLog), EnclaveDB reads the coun-
ters R and scans the tail of the log. While scanning, we check
that log records have not been tampered with and that the
log records generated by each thread appear in order of their
counter value with no gaps (Line 47). After scanning the tail,
we check if all visible log records (tracked by V) have been
read (Line 51), and report a freshness violation otherwise.

Note that the recovery protocol excludes log records gen-
erated by invisible transactions i.e. log records with counter
values greater than Vt. Excluding these log records is safe
because unlike Hekaton, the increment of the counter Vt

(line 25) is the commit point in EnclaveDB - clients and
dependent transactions are notified only after the increment.
However, simply excluding these log records allows the ad-
versary to mount a ’replay’ attack by withholding log records
belonging to invisible transactions and adding them to the
log in a later execution, thereby creating non-linearizable
executions. We prevent these attacks by invalidating all such
log records using an additional monotonic epoch counter E.
This counter is included in each log record’s authentication
data, and incremented (line 55) when log records belonging
to invisible transactions are detected in the log (line 52).
The increment, coupled with the additional check that all log
records read during recovery must belong to the current epoch
(line 45) invalidates all invisible log records that the adversary
may have withheld. We create a checkpoint and truncate the
whole log before incrementing the epoch counter to ensure that
visible transactions are not lost. We also update the counters
V, setting them equal to W before resuming execution.

B. Checkpoint Integrity

As discussed, EnclaveDB periodically truncates the log after
creating checkpoints. To avoid data loss, EnclaveDB must
ensure that before log records are truncated from the log, they
have been included in checkpoint files that are guaranteed to
be read during recovery. Furthermore, EnclaveDB must also
ensure that any tampering with the checkpoint files is detected.

EnclaveDB achieves these properties as follows. First, En-
claveDB maintains a cryptographic hash for each data and
delta file. The hash is updated as blocks are added to the



Algorithm 4 Protocol for checking integrity and freshness of
checkpoints.

1: S ← 0 //Monotonic counter
2: procedure EnclaveWriteF ile(name, data)
3: WriteF ile(name,Enc[DK]{GetCounter(S) + 1}(data))
4: IncCounter(S)

5:
6: procedure EnclaveReadF ile(name)
7: enc← ReadF ile(name,GetCounter(S))
8: s, data← Dec[DK](enc)
9: assert(s == GetCounter(S))

10: WriteF ile(name,Enc[DK]{GetCounter(S) + 1}(data))
11: IncCounter(S)
12: WriteF ile(name,Enc[DK]{GetCounter(S) + 1}(data))
13: IncCounter(S)
14: return data

file. Once all writes to a checkpoint file have completed, the
hash is saved in the system table along with the file name.
EnclaveDB checks the integrity of all checkpoint file pairs
read during recovery by comparing the hash of their contents
with the hash in the root file.

Next, EnclaveDB uses a state-continuity protocol based on
Ariadne [28] to save and restore the system table within the
root file while guaranteeing integrity, freshness and liveness.
The protocol (shown in Algorithm 4) uses a monotonic counter
S to track versions of the root file. The protocol binds the
contents of each file with the counter value (by adding the
counter value to the file and generating a keyed MAC). Then
the file is written to disk and the counter is incremented. The
protocol allows the adversary to obtain a file with a counter
value one more than the current counter (by introducing a
failure after the file has been written but before the increment).
However, all such versions are invalidated by writing two
versions of the current root file (i.e. with enclosed counter
value matching S) with counter values S+1 and S+2 before
using the root file to reconstruct the system table. Refer to [28]
for a proof of correctness.

C. Monotonic Counters

The protocol described above relies on monotonic counters
to ensure state continuity. There are many ways of imple-
menting monotonic counters. For instance, SGX uses wear-
limited NVRAM available in the management engine [9].
Our experiments confirmed prior results [28] which show that
accessing these counters is slow (~100ms per counter update),
and not sufficient for the latency and throughput requirements
of EnclaveDB. In EnclaveDB, we use a dedicated monotonic
counter service implemented using replicated enclaves [29].
The service stores counters in enclaves replicated across
different fault domains and uses a consensus protocol to order
operations on counters. This approach is more flexible and
efficient than SGX counters, and can tolerate failures as long
as a quorum of replicas is available.

D. Forking attacks

The protocol described above ensures that any database
enclave recovers to the latest state. However, it permits the

adversary to launch forking attacks by creating multiple en-
claves with the same package on one or more servers, and
directing different clients to different enclaves. EnclaveDB
prevents forking attacks by ensuring that at any point in
time, only one enclave (and therefore one database instance)
is ’active’. On creation, each EnclaveDB enclave generates
a 128-bit GUID. This GUID is encrypted using the public
key of the KMS and included in the enclave’s quote. The
KMS maintains a mapping from database instances to GUIDs
and a black list of all GUIDs it has previously received in
quotes. When it receives a quote containing a new GUID, it
adds the current GUID to the blacklist and updates the GUID
associated with the database instance. Each database enclave
also includes its GUID (encrypted using the session key) in
all communication with clients. EnclaveDB clients verify that
they are establishing a session with or receiving a response
from the most recent incarnation of the database by validating
the response with the KMS, and retrying if validation fails.

E. Proof Sketch

In this section, we present an informal proof that the logging
protocol described above guarantees integrity, continuity and
liveness. Integrity and continuity are critical for establishing
that EnclaveDB guarantees linearizability (proof beyond the
scope of this paper), and liveness ensures that EnclaveDB
makes progress in the absence of an attacker.

Claim 5.1: Checkpoint continuity. Once EnclWriteFile
completes writing a root file, all log records included in
checkpoint file pairs referenced in the root file are guaranteed
to be read during any subsequent recovery.
This follows from the freshness guarantees of Ariadne’s pro-
tocol which prevents replay attacks, and integrity checks on
the root file and checkpoint file pairs.

Claim 5.2: Continuity. Log records generated by visible
transactions are either contained in the log or included in a
checkpoint file pair contained in the root file.
Consider a visible transaction T which generates log record l.
Let c be the counter value embedded in the log record, t be
the identifier of the enclave thread generating the log record,
and e be the epoch in which the log record is generated.

First, observe that each log record is uniquely identified by
the pair (t, c). This follows from the fact that c is obtained from
the tamper-proof, monotonic counter Wt, which is atomically
incremented every time a log record is generated.

Now consider any recovery that occurs following a failure
after the transaction T became visible. It follows that c < Vt.
There are two possible cases we encounter during recovery.

• Rt ≤ c < Vt. In this case, the log record l must be
read from the log since the recovery protocol reads all
records from Rt to Vt for each thread t. If the log record
is missing or has been duplicated, either the assert at line
47 or 51 fails. If the log record has been tampered with,
authentication fails. In either case, the database fails to
recover.



• c < Rt. In this case, we show that the log record must
belong to a checkpoint included in the root file. Observe
that the counters R are updated after a checkpoint has
been created and before the log is truncated. This im-
plies that the counters always under-approximate the set
of log records that have been included in checkpoints.
Therefore, if c < Rt, then the log record must have
been included in a checkpoint. This, in conjunction with
checkpoint continuity (Claim 5.1) ensures that either
the log record is included in a checkpoint read during
recovery, or the database fails to recover.

Claim 5.3: Integrity. Invisible transactions have no effect
on database state.
We show that log records generated by invisible transac-
tions are ignored while reconstructing database state during
recovery. Consider a log record l generated by an invisible
transaction T . Let c and e be the counter and epoch values
associated with l, and t be the enclave thread that generated
the log record. By definition, the commit callback was not
invoked for l. Since the counter Vt is incremented in the
commit callback, it must be true that Wt ≥ c and Vt < c
until a failure occurs. We consider two cases.
• If no failure occurs, then clearly the log record l is never

used during recovery. Furthermore, since the commit call-
back is never invoked for l, any transactions dependent
on T continue to remain blocked, and the client issuing
T is not sent a signed notification.

• If a failure occurs, then in the next recovery step, l is
not used to reconstruct state since c > Vt. Furthermore,
since Vt < Wt, EnclaveDB creates a checkpoint that
does not include l and increments the epoch counter
before updating Vt and resuming transaction processing.
Incrementing the epoch counter invalidates l.

Claim 5.4: Liveness. EnclaveDB does not introduce new
states where execution terminates in the absence of an active
attacker.

We show that none of the assertions introduced by En-
claveDB fail in the absence of an active attacker.
• Authentication failures. If requests, responses, the log and

checkpoints are not tampered with, and the database is
not forked, none of the authentication checks fail.

• Thread-level commit ordering failure (line 47). Each
thread in EnclaveDB generates a log record with counter
value c only after a previous log record with counter value
c−1 has been saved to storage. Therefore, in the absence
of an active attacker, the recovery protocol should receive
log records in a sequence that respects this ordering.

• Mismatched epoch (line 45). We prove this using in-
duction. It is easy to see that this assertion cannot fail
with E = 0. Assume this assertion does not fail during
recovery when E = i. Consider any subsequent recovery
which increments the epoch counter. In the absence of an
active attacker, EnclaveDB initiates recovery with start
and end indexes equal to the most recent truncation index

and the tail of the log. This ensures that the entire log is
truncated before the epoch counter is incremented. Since
new log records are generated only after the counter is
incremented and recovery completes, all subsequent log
records will be generated with epoch counter i+1. There-
fore, there will be no epoch mismatch when E = i+ 1.

VI. OPTIMIZATIONS

In EnclaveDB, the use of enclaves introduces several
sources of overheads. These include the cost of context
switching (saving and restoring thread context and invalidating
hardware TLB), memory encryption and integrity checking,
encrypting and decrypting data, and copying data in and out
of enclaves. Compared to prior work that uses trusted hardware
for evaluating individual expressions of a query in trusted
hardware [12], [13], EnclaveDB has a much smaller number of
context switches because the entire transaction is evaluated in
enclave mode. Furthermore, the number of context switches is
fixed and independent of the amount of data being processed.
Also, EnclaveDB incurs the cost of software encryption and
decryption only at transaction boundaries (parameters and
return values), and for log records and checkpoints, which
is significantly more efficient than encrypting and decrypt-
ing individual values. When compared to designs such as
Haven [14], EnclaveDB achieves better performance because
of more efficient protocols for ensuring integrity and freshness.
We implemented a number of optimizations to further improve
performance.
• We refactored the Hekaton engine to move state and logic

that does not depend on secrets to the host. This includes
state for tracking whether log IO for a transaction has
been completed.

• SQL Server uses a co-operative thread scheduler where
all threads are expected to periodically yield control. In
EnclaveDB, every yield results in a context switch. We
modified the Hekaton engine to reduce the frequency with
which threads yield (by 50%).

• We use prefetching to reduce the number of context
switches. Prefetching involves speculatively calling an
enclave API as part of a previous enclave invocation,
caching its results on the host and returning the cached
result when the API is subsequently called. This opti-
mization only applies to side-effect free APIs.

• We cache values of per-thread monotonic counters in
thread-local state. Therefore, we incur the cost of context
switches only on writes.

These optimizations resulted in a significant reduction in
the number of context switches (from an average of 110 to 10
context switches per transaction). This includes 5 calls into the
enclave and an additional callback to write the log record if
the transaction performs any writes, and 4 calls out of enclave
mode, which includes 2 monotonic counter updates.

VII. MULTI-PARTY SQL

In this section, we show how EnclaveDB can be extended to
support a scenario where mutually untrusting users can host a



shared database while guaranteeing strong security properties.
For simplicity, we consider a fixed set of mutually untrusting
users U = {U1, . . . Uk} who share a database hosted in an
untrusted environment. Each user Ui is associated with a
public-private key pair (PKi,SKi). A subset of these users
may collude with the database administrator. For this paper,
we assume that the table definitions and stored procedures are
pre-defined and known to all users. We would like to guarantee
the following properties (in addition to protection from the
administrator).
• Access control. Only authorized users can execute stored

procedures.
• Integrity. Authorized users can only execute one among

the set of pre-defined stored procedures.
• Confidentiality. Authorized users learn no information

about the state of the database apart from the results of
stored procedures they execute.

We achieve these properties as follows. Each user Ui

creates her own copy of the enclave package by compiling
all table definitions and stored procedures in her own trusted
environment. Additionally, Ui embeds the public keys of all
authorized users in a well-known section of the trusted kernel
binary. The DBA (who is not trusted) repeats this process and
deploys his version of the package on an untrusted server. On
enclave creation, EnclaveDB generates a new DK instead of
retrieving the key from the KMS, and seals DK to the platform
for future recovery. This key is used to encrypt log records and
checkpoints and shared with all users using a secret sharing
algorithm [30].

Once the database is initialized, any user Ui can use
remote attestation to check that the database enclave has been
correctly initialized by comparing the enclave’s measurement
with the measurement of her package, and initiate creation of a
secure channel. The enclave authenticates requests for creating
a secure channel using public keys embedded in the trusted
kernel binary. Once a secure channel is established, the user
can send requests to execute any of the pre-compiled stored
procedures. EnclaveDB ensures that users learn nothing more
than the response of transactions they execute.

VIII. EVALUATION

We have developed and tested EnclaveDB on Intel SGX.
Our implementation uses an in-house SGX SDK and Intel
SGX PSW v1.1.28151. Since the current generation of Intel
Skylake CPUs restricts the EPC to 128MB, we can only deploy
small databases using SGX hardware. To evaluate performance
for realistic database sizes, we use a performance model that
simulates large enclaves and accounts for the main sources of
overheads. In this section, we describe the performance model
and present results from an evaluation using two standard
database benchmarks.

Performance model: To model SGX performance with
larger enclaves, we assume that code in SGX will have
the same performance as current CPUs except for (1) the
additional cost of enclave transitions and (2) the additional
cost incurred by last level cache (LLC) misses due to memory

encryption and integrity checking while accessing the EPC.
We model enclave transitions by introducing a system call to
change protection of a pre-allocated page. This call flushes
the TLB and adds a delay of ~10000 cycles, which is approx-
imately the cost of a transition measured on SGX hardware.

For modeling the cost of memory encryption, we con-
sidered the option of artificially reducing DRAM frequency
and hence available memory bandwidth (similar to [14]).
However, reducing frequency affects both enclave and non-
enclave code, and does not accurately reflect the slowdown
caused by memory encryption. Instead, we model the cost
of memory encryption by using binary instrumentation to
’penalize’ all memory accesses generated by code within the
enclave. Our instrumentation tool injects a fixed delay before
every memory access within the enclave (excluding accesses
to the stack since they are likely to hit in the caches). The
amount of delay is obtained using a process of calibration
on current SGX hardware. We first measure the overhead of
running a set of micro-benchmarks using SGX enclaves. The
delay is the lowest number of cycles such that running the
same benchmarks after injecting the delay before every access
on the same hardware without enclaves results in overhead
higher than the overhead of running the application within the
enclave. Our microbenchmarks consists of a simple key-value
store [31] and a set of machine learning applications [32].

Using this calibration process, we find that our performance
model with a delay of 10 cycles always over-approximate
overheads of current SGX hardware. For example, SGX incurs
an overhead of 37% for the key-value store whereas our
performance model estimates the overhead to be 42%. On
processors of older generations, we introduce this delay by
injecting a single pause instruction. On Skylake processors
and CPUs from newer generations, a pause has much higher
latency (∼140 cycles). We therefore inject a sequence of 20
NOPs instead, which delays the access by 10 cycles. This
delay is implementation dependent so that the model should
be re-calibrated if the implementation changes.

Benchmarks and Setup: We evaluate the performance of
EnclaveDB using two standard database benchmarks, TPC-
C [33] and TATP [34]. The TPC-C benchmark represents
the activity of a wholesale supplier which manages and sells
products. We use a database with 256 warehouses. This
database has an in-memory size of 32GB. The workload
consists of a client driver running on two machines simulating
64 concurrent users each; each user executes five stored
procedures in accordance with the TPC-C specification [33].
The in-memory size grows by ~6GB/min during execution
of this workload. The TATP benchmark simulates a typical
location register database used by mobile carriers to store
information about valid subscribers, including their mobile
phone number and their current location. The database consists
of 4 tables and 7 stored procedures. We create a database with
10 million subscribers. The client driver simulates 100 active
subscribers querying and updating the database.

We optimized these benchmarks for use with an in-memory
database by creating appropriately sized indexes to optimize



query performance. The workload we generate drives CPU
utilization close to 100% in the baseline configuration while
leaving just enough slack for the checkpointing process to keep
up with the rate of transaction commits. We run each bench-
mark 5 times for 20 minutes each and measure performance
every minute. We performed the experiments on Intel Xeon
E7 servers running at 2.1 Ghz. The servers have 4 sockets
with 8 cores each (hyper-threading disabled). Each CPU has
an integrated memory controller with 4 memory channels
attached to 8 32GB DDR4 DIMMs (2 DIMMs per channel),
with a total capacity of 512GB. The storage subsystem consists
of 8 256GB SSDs and is used for storing both the log and
checkpoints. The servers run Windows Server 2016.

We evaluated each benchmark in four configurations. BASE
is the configuration with Hekaton running outside enclaves.
CRYPT is a configuration with EnclaveDB running in simu-
lated enclave mode. The model emulates enclaves within the
application’s address space by allocating a region of virtual
memory and loading all enclave binaries in that part of the
address space. In this configuration, all software security fea-
tures such as log/checkpoint encryption and integrity checking
are enabled. CRYPT-CALL is a configuration that adds the
cost of context switching to CRYPT. Finally, CRYPT-CALL-
MEM adds the cost of memory encryption to CRYPT-CALL. In
all configurations except BASE, we simulate enclaves of size
192GB. We configured the trusted kernel to use 128 threads;
for each thread, we allocate a stack of size 64K. For both
benchmarks, we consider all tables and stored procedures as
sensitive and host them in enclaves.

Trusted computing base: We measured the size of the
TCB for both these benchmarks. The Hekaton engine is 300K
LOC and the trusted kernel is 25K LOC. The queries and table
definitions are 41K and 18K lines of auto-generated code in
TPC-C and TATP respectively. In comparison, the SQL Server
OLTP engine is 10M LOC and Windows is >100M LOC.
Thus, the TCB of EnclaveDB is over two orders of magnitude
smaller than a conventional database and over an order of
magnitude smaller than systems such as Haven [14] whose
library OS has >5M LOC [35]. The main components that
contribute to the TCB in EnclaveDB are checkpointing and
recovery (̃ 100K LOC) and the transaction manager (̃ 50K
LOC). Reducing the TCB further, either by refactoring the
engine, or using verification remains an open problem.

Context switches: The number of context switches is
an important indicator of overheads for applications using
enclaves. We measured the number of context switches per
transaction for both benchmarks. On average, TPC-C incurs 5
context switches into the enclave (4 for the commit protocol,
and 1 call to serialize the log record). TPC-C also incurs 3
call outs per transaction on average, a call out to notify the
host of the outcome of TxPrepare, a call out to create a log
record, and a number of other less frequent call outs that occur
periodically. TATP has a similar profile, with the difference
that context switches due to logging are less frequent since
80% of the transactions are read-only. In either case, the
number of context switches is independent of the amount of

Fig. 5: TPC-C and TATP throughput for different configura-
tions. The plot shows the maximum, 95th percentile, mean,
median and minimum throughput values over a period of 20
minutes across 5 executions.

state in the enclave and the transaction logic (except in the
case of read-only transactions).

TPC-C: Figure 5 shows the variation in TPC-C through-
put for different configurations. In the baseline configuration,
EnclaveDB achieves a mean throughput of 52,000 tps (which
translates to 1.35 million new order transactions per minute or
tpmC), with a peak of over 1.6 million tpmC. The throughput
in both CRYPT and CRYPT-CALL configurations is statistically
similar to the baseline. This suggests that the additional
overheads of running the database with the trusted kernel,
switching thread contexts, copying data in and out of the
enclave, and encryption and integrity checking are negligible.
We attribute this to our design which minimizes the number of
context switches, amortizes the cost of encryption/decryption,
and the efficient protocol for checking integrity of the log.

We also find that the variability in throughput is lower in the
CRYPT configuration compared to baseline. This is due to two
aspects of our design. First, virtual memory for the enclave is
allocated at enclave creation and never returned to the host
operating system. In contrast, the in-memory engine running
outside the enclave periodically returns unused memory back
to the SQL buffer pool, and must re-allocate memory when
required. Secondly, the enclave thread scheduler yields control
to the host less often compared to the baseline scheduler to
reduce switching costs.

Finally, we observe that the CRYPT-CALL-MEM configu-
ration, which models the cost of memory encryption, has a
mean throughput of 31,000 tps, a drop of ~40% compared
to baseline. Even with these overheads, throughput is over
two orders of magnitude higher than prior work [14], which
achieved a throughput of ~80 tpsE for the TPC-E benchmark
on a 4-core machine using a similar performance model.

To further understand these overheads, we compared the
configurations CRYPT and CRYPT-CALL-MEM with baseline
across a number of other performance metrics. Figure 6 shows
the comparison over a 20-minute window with samples col-
lected every 10 seconds and averaged every minute. All con-
figurations have high CPU utilization (over 90%) on average,
which suggests that CPU remains the main bottleneck. The
periodic changes in CPU, memory, and disk bandwidth utiliza-
tion in BASE (and to a lesser extent in CRYPT) are caused by



Fig. 6: Profiles comparing CPU, memory bandwidth and disk bandwidth utilization for the TPC-C benchmark. BASE (unmarked
lines), CRY (red lines marked with diamonds) and CCM (blue lines marked with stars) represent the baseline, CRYPT and
CRYPT-CALL-MEM configurations.

checkpointing. The similarity of memory and disk utilization
between BASE and CRYPT also confirms that the the integrity
checking protocol does not introduce new bottlenecks. We also
observe that memory bandwidth utilization is high (reaching
10GBps), and memory reads dominate writes, whereas disk
writes dominate reads. This is expected since most of the
transaction processing occurs in-memory, whereas disk traffic
is dominated by writes to the log. Finally, we observe that both
memory and disk bandwidth utilization in CRYPT-CALL-MEM
configuration are significantly lower than baseline and CRYPT,
caused by pause instructions which model memory encryption.
Based on these observations, we conclude that if the next
generation SGX hardware can deliver an effective memory
read/write bandwidth of ~6GBps and 2GBps respectively with
large enclaves, we can expect overheads of ~40%.

TATP: We deployed a scaled down version of the TATP
benchmark (with 1000 subscribers) in EnclaveDB using SGX
hardware. We were only able to run this benchmark for 40,000
transactions (4 client threads issuing 10,000 transactions each)
before running out of enclave memory. For this scaled down
workload, Hekaton achieves a peak throughput of 7,900 tps
whereas EnclaveDB achieved a peak throughput of 7,700 tps,
an overhead of 2.5%. This is however, not a representative
workload because of the small size of the database and short
duration of the workload.

Figure 5 shows the throughput for the full TATP workload.
EnclaveDB achieves a higher throughput of 71,000 tps with
low variability compared to TPC-C because it is a predomi-
nantly read only workload (with 80% read transactions). The
mean throughput reduces to ~65,000 tps after switching to
the CRYPT configuration. Accounting for the costs of context
switching and memory encryption reduces the throughput
further; we observe a mean throughput of 60,500 tps in the
CRYPT-CALL-MEM configuration, an overhead of 15% relative
to baseline.

As shown in Figure 7, CPU remains the main bottleneck in
the CRYPT-CALL-MEM configuration. Also, much like TPC-C,

memory reads dominate writes and disk writes dominate reads.
However, both memory and disk bandwidth utilization are
lower compared to TPC-C, reflecting the predominantly read-
only nature of the workload. The memory read bandwidth for
the CRYPT-CALL-MEM configuration is higher than baseline.
This is because the additional memory traffic generated by
EnclaveDB (due to context switching, encryption/decryption
and integrity checking) dominates the reduction in utilization
caused by pause instructions. We also measured the end-to-
end latency for this benchmark. We find an increase in average
latency by 10%, 18% and 22% for CRYPT, CRYPT-CALL, and
CRYPT-CALL-MEM configurations respectively over BASE.

Based on these experiments, we can conclude that En-
claveDB achieves a very desirable combination of strong
security (confidentiality and integrity) and high performance,
a combination we believe should be acceptable to most users.

IX. RELATED WORK

Existing research on secure databases falls into two broad
categories, one based on homomorphic encryption, and the
other using trusted hardware.

Homomorphic encryption: Homomorphic
encryption [36] refers to encryption schemes that permit
operations on encrypted values. While fully homomorphic
encryption is not practical yet [37], a number of partially
homomorphic encryption schemes have been proposed [38],
[39], [40] that permit specific operations on encrypted data,
potentially at the cost of weaker security. Systems such
as CryptDB [1], Monomi [2], and Seabed [3] use these
schemes to provide secure query processing while protecting
the confidentiality of data. However, the types of queries
supported by these systems are limited by the availability of
corresponding encryption schemes or need to be augmented,
e.g. by offloading parts of the query execution to clients [41],
[2]. Arx [42] introduces two new types of database indices
for range and equality queries based on garbled circuits [43].
With these, it can support a similar set of queries as previous
systems while using semantically-secure encryption. In



Fig. 7: Profiles comparing CPU, memory bandwidth and disk bandwidth utilization for the TATP benchmark.

contrast, EnclaveDB supports a broader set of queries,
including arbitrary arithmetic, string manipulation, grouping
and sorting, and uses strong probabilistic encryption. In
addition, EnclaveDB provides not only confidentiality but
also integrity and freshness guarantees for both stored data
and query results.

Trusted hardware: Several database designs have been
proposed that incorporate secure coprocessors [44], [45], [46]
to securely process sensitive data. The data is stored in
encrypted form on the host system and is only decrypted
on the coprocessor as part of the query execution. However,
currently available coprocessors are limited in terms of pro-
cessing speed, storage, and bandwidth. TrustedDB [13] and
Cipherbase [12] outsource computations on sensitive data to
secure co-processors and FPGAs. These approaches require
additional hardware and focus only on confidentiality, but do
not guarantee the integrity or freshness of computation. They
also suffer from high overheads due to the cost of data transfer
over PCIe.

Haven [14] and Graphene [24] use Intel SGX for isolation
and run unmodified applications by bundling them with an in-
enclave library OS. Haven can run an unmodified version of
SQL server but its library OS alone has over 5M LOC [35].
To avoid the large TCB overhead of a whole library OS,
SCONE [47] places the C standard library inside the enclave
and delegates all system calls performed by the application to
the untrusted host. Compared to EnclaveDB, it still runs the
full application inside the enclave while EnclaveDB further
minimises the TCB by running large parts of the database
server outside of the enclave. Panoply [48] allows applications
to be split into multiple compartments and to be run across
multiple enclaves following the principle of least privilege.
Similarly, Glamdring [49] semi-automatically partitions appli-
cations to only run security-sensitive code within enclaves.
However, these approaches are not easily applicable to com-
plex applications such as databases.

X. CONCLUSIONS

In this paper, we proposed EnclaveDB, a database that
uses trusted execution environments such as SGX enclaves

to guarantee confidentiality and integrity with low overhead.
EnclaveDB makes a careful set of design choices that reduce
the TCB to a small set of security critical components such
as the query engine and the transaction manager, and removes
trust from the DBA. EnclaveDB also supports a multi-party
mode where multiple, mutually distrusting users host sensitive
data and execute queries in a shared database instance. A key
component of EnclaveDB is an efficient protocol for ensuring
the integrity and freshness of the database log. There are many
ways EnclaveDB can be improved, such as support for online
schema changes, dynamically changing the set of authorized
users, and further reducing the TCB. But we believe that
EnclaveDB lays a strong foundation for the next generation
of secure databases.
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