
to ensure AI’s trustworthiness. Trust-
worthy AI systems must exhibit cer-
tain characteristics, such as reliability,
fairness, transparency, accountabil-
ity, and robustness. Only then can AI
systems be depended upon to operate
ethically and effectively without caus-
ing harm or discrimination.

A critical aspect of trustworthy AI
is privacy. Training accurate machine-
learning (ML) models often requires
large, diverse, and representative da-
tasets. While models can be trained
exclusively using publicly available
datasets in some domains, other sce-
narios require access to private data.
For example, training models to make
medical diagnoses may require sensi-
tive patient data. Similarly, training
models to detect fraudulent financial
transactions requires detailed trans-
action data from financial institu-
tions. Such data must be safeguarded
from unauthorized access, manipula-
tion, or misuse to maintain model in-
tegrity and prevent bias.

Consequently, there has been grow-
ing interest in privacy-preserving ML
techniques, such as federated learn-
ing (FL).17 FL is a distributed ML para-
digm th ~at enables training models
across multiple clients holding lo-
cal training data, without exchang-
ing that data directly. In a typical FL
setup, a central aggregator starts a
training job by distributing an initial
model to multiple clients. Each client
trains the model locally on its dataset
and computes updates to the model
(also referred to as gradient updates).
The clients then send their updates to
the central aggregator, which aggre-
gates these updates using a suitable
aggregation function and updates its
model. It then starts another epoch
by sending the updated model to the
clients, which perform local training.
This process repeats until the mutu-
ally agreed-upon termination criteria
are met (for example, the model con-
verges to an acceptable loss value).

FL can be combined with differen-
tial privacy7 to provide strong privacy
guarantees.24 In this setting, each cli-

T H E A R T I F ICI A L I N T EL L IGENCE (AI) revolution is
reshaping industries and transforming the way we
live, work, and interact with technology. From AI
chatbots and personalized recommendation systems
to autonomous vehicles navigating city streets, AI-
powered innovations are emerging everywhere. As
businesses and organizations harness AI to streamline
operations, optimize processes, and drive innovation,
the potential for economic growth and societal
advancement is immense.

Amid this rapid progress, however, it is critical

Trustworthy
AI Using
Confidential
Federated
Learning

DOI:10.1145/3677390

Federated learning and confidential computing
are not competing technologies.

BY JINNAN GUO, PETER PIETZUCH, ANDREW PAVERD,
AND KAPIL VASWANI

48 COMMUNICATIONS OF THE ACM | SEPTEMBER 2024 | VOL. 67 | NO. 9

practice

https://dx.doi.org/10.1145/3677390
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3677390&domain=pdf&date_stamp=2024-08-26

ent adds suitable noise to the model
updates locally, based on a privacy
budget, before sending the updates
to the aggregator, which bounds the
probability for the model to memo-
rize individual points in the training
dataset.

While FL prevents the flow of raw
training data across trust domains, it
introduces a new set of trust assump-
tions and security challenges. Clients
participating in FL must trust a cen-
tral aggregator to deliver safe code,
include only trustworthy clients, fol-
low the aggregation protocol, and use

the model only for mutually agreed-
on purposes. In addition, the aggre-
gator must trust the clients to provide
high-quality data, not tamper with
the training protocol, and protect the
model’s intellectual property. These
trust assumptions are often difficult
to satisfy in the real world, especially
in adversarial settings where clients
may be compromised or collude to
undermine the system’s security and
privacy guarantees. It is therefore un-
surprising that many FL deployments
have been found to be vulnerable to
attacks, including model poisoning,

data poisoning, and inference at-
tacks8,10,22 (see Figure 1). Attacks may
be carried out by clients, aggregators,
or outsiders, and can occur during
model training or inference.

Many of these attacks can be attrib-
uted to the ability of malicious partici-
pants to violate the confidentiality or
integrity of data and computation in
their control (for example, by poison-
ing datasets or gradient updates to in-
fluence the model’s behavior). These
attacks are not limited to just the ag-
gregators or clients at training time—
attacks such as model extraction or

SEPTEMBER 2024 | VOL. 67 | NO. 9 | COMMUNICATIONS OF THE ACM 49

I
M

A
G

E
 B

Y
 L

E
A

V
E

 A
 T

R
A

C
E

reconstruction can be carried out by
entities with API access to the trained
model at inference time. Therefore, it
is critical to protect all sensitive infor-
mation throughout the lifecycle of FL
jobs.

Another challenge in FL is trans-
parency and accountability. Since, by
definition, FL does not involve shar-
ing training data directly, it is difficult
to audit the training process and veri-
fy that the model has not been biased
or tampered with. This makes it chal-
lenging for model builders to comply
with any AI regulations that require
transparency or auditability of the
training process as a precondition for
deployment.

An alternative approach for priva-
cy-preserving ML is confidential com-
puting.21 Confidential computing en-
ables the secure execution of code and
data in untrusted computing environ-
ments—for example, public clouds—
by leveraging hardware-based trusted
execution environments (TEEs), such
as Intel Software Guard Extensions
(SGX),2,5 AMD Secure Encrypted Virtu-
alization-Secure Nested Paging (SEV-
SNP),1 Arm Confidential Compute Ar-
chitecture (CCA),15 and more recently,
Nvidia Hopper Confidential Comput-
ing.6

Confidential computing protects
the confidentiality and integrity of ML
models and data throughout their life-
cycles, even from privileged attackers.
However, in most existing ML systems
with confidential computing, the

training process remains centralized,
requiring data owners to send (poten-
tially encrypted) datasets to a single
client where the model is trained in a
TEE. Unlike FL, this setup places sig-
nificant trust in the TEE infrastruc-
ture to protect datasets in a remote,
potentially hostile environment.

FL and confidential computing
should not be considered compet-
ing technologies. Rather, it is pos-
sible, with careful design, to combine
FL and confidential computing to
achieve the best of both worlds: the
assurance of sensitive data remaining
within its trust domain while ensur-
ing transparency and accountabil-
ity. This new paradigm, referred to
here as confidential federated learning
(CFL), can prevent large classes of at-
tacks on FL, broaden the adoption of
FL in privacy-sensitive domains, and
enable compliance with upcoming AI
regulations.

Confidential Computing
Confidential computing uses TEEs to
isolate sensitive code and data from
privileged attackers. There are several
kinds of TEEs in modern CPUs. For
example, Intel CPUs support the cre-
ation of process-based TEEs through
Software Guard Extensions.2 Process-
based TEEs can measure and isolate
a user-space process from the rest of
the system, including other processes
and the operating system (OS). With-
in process-based TEEs, code does
not have direct access to any OS ker-

nel functionality such as I/O devices.
Therefore, writing applications to use
process-based TEEs requires signifi-
cant developer effort.

Led by AMD SEV-SNP,1 recent CPUs
support virtual machine (VM)-based
TEEs, which can host and isolate both
user-mode processes and a full OS
from external access. This makes it
simpler to migrate existing applica-
tions to VM-based TEEs, albeit at the
cost of a larger TCB.

While confidential computing has
been supported in CPUs for well over
a decade, the primitives required for
deploying AI workloads such as FL
transparently with low performance
overheads have evolved only recently.

Confidential containers. While
VM-based TEEs can host legacy vir-
tual machines, this mode of deploy-
ment has limitations beyond a large
TCB. Unless configured correctly, it
does not fully isolate the workload
(user-mode applications) from exter-
nal access (for example, secure shell
access by the OS admin). It also pro-
vides limited attestation of the work-
load because it requires the VM to be
started with a bootloader, which in
turn boots an OS kernel. Therefore,
only the bootloader is measured by
the hardware. Even if attestation were
to be extended to include the OS ker-
nel (for example, using a virtual Trust-
ed Platform Module), it is challenging
to attest the entire OS and user-mode
applications.

Confidential containers3,11 present
a new mode of deploying applications
in VM-based TEEs that address these
limitations. In confidential contain-
ers, a VM-based TEE is used to host
a utility OS along with a container
runtime, which in turn can host con-
tainerized workloads. Confidential
containers support full workload in-
tegrity and attestation via container
execution policies. These policies de-
fine the set of container images (rep-
resented by the hash digest of each
image layer) that can be hosted in the
TEE, along with other security-critical
attributes, such as commands, privi-
leges, and environment variables. The
policy itself is measured (as an initial-
ization time claim) by the hardware
root of trust, included in the hard-
ware-signed attestation report and
enforced by the container runtime. In

Figure 1. Attacks on federated learning systems.

● Model poisoning

■ Inference Attack

■ Reconstruction

▲ Byzantine Attack

● Evasion

■ Inference

■ Model Extraction

■ Reconstruction

● Model poisoning

■ Inference Attack

■ Reconstruction

▲ Byzantine Attack

■ Inference

● Data poisoning

● Integrity ■ Confidentiality ▲ Availability

50 COMMUNICATIONS OF THE ACM | SEPTEMBER 2024 | VOL. 67 | NO. 9

practice

sures, there are plenty of avenues for
a malicious participant to exfiltrate
secrets or tamper with the training
process. For example, a malicious
participant can poison datasets by
adding samples or changing labels of
training data to introduce back doors
or bias into the model. Data may be
poisoned either before a training job
or adaptively during the job, based on
intermediate models. A participant
may also observe or tamper with gra-
dient updates or arbitrarily tamper
with the workflow—for example, by
skipping training entirely or not ag-
gregating certain inputs.

CFL is an emerging paradigm18,19
that aims to harden FL deployments
against such attacks. Figure 2 shows
the architecture of a typical CFL de-
ployment for a single training job.
In CFL, all computation (aggrega-
tion and training) is hosted in a spe-
cial class of hardware-isolated TEEs,
which isolate data and computation
from all external access, including
administrators and privileged attack-
ers. With TEEs in particular, model
weights are no longer exposed to cli-
ent administrators; they are visible
only to attested client code. Similarly,

other words, the combination of the
OS, container runtime, and container
policy fully represents the workload
hosted in the TEE and can be used by
relying parties to establish trust in the
environment.

Confidential GPUs. Initially, sup-
port for confidential computing was
limited to CPUs, with all other devices
considered as untrusted. This was, of
course, limiting for AI applications
that use GPUs to achieve high per-
formance. Over the past few years,
several attempts have been made at
building confidential computing sup-
port in accelerators. NVIDIA’s Hopper
generation of GPUs6 supports the cre-
ation of TEEs and can be coupled with
CPU-based TEEs (AMD SEV-SNP, Intel
TDX4) to create a unified TEE across
CPU and GPU, enabling transparent
offload with low performance over-
heads.

Hopper GPUs support the new con-
fidential computing mode in which
the GPU carves out a region of mem-
ory called the protected region and
enables a hardware firewall that iso-
lates this region and other sensitive
parts of state from the host CPU. In
this mode, a CPU-based TEE, such as
an SNP VM, can attest and establish a
secure channel with the GPU and pro-
vision encryption keys to copy engines
in the GPU. All subsequent data trans-
fers—including code; models; and ap-
plication data between the CPU TEE
and the GPU, and between GPUs—are
encrypted using these keys.

Confidential Federated Learning
A typical FL deployment involves sev-
eral components that work together
to enable collaborative model train-
ing across multiple clients. This in-
cludes client environments that hold
local data, a central aggregator, an or-
chestrator for managing FL tasks, and
the communication infrastructure for
provisioning tasks and exchanging
model updates.

Most FL frameworks, such as NV-
Flare,20 support several security mea-
sures to protect data and models, in-
cluding the use of network security
to isolate and sandbox remote code;
transport layer security (TLS) for se-
cure communication; and strong
authentication and access-control
mechanisms. Despite these mea-

intermediate gradient updates are
no longer exposed to the aggregator;
they are exposed only to attested ag-
gregator code. The aggregator learns
the trained model only, and even that
access can be limited by hosting the
trained model in a TEE.

TEEs used in CFL also provide
integrity—a malicious aggregator or
client cannot tamper with data, com-
putation, or configuration of the de-
ployment. For example, if a training
job requires each client to pre-process
the dataset (for example, run sam-
pling and reweighing with specific
parameters to mitigate bias),13 clients
cannot change the control flow of the
training job or parameter values with-
out being detected via attestation. The
integrity properties of TEEs hold even
in the presence of side-channel at-
tacks.12,14,16,23

Finally, CFL uses TEEs that can pro-
vide hardware-based attestation for
the full workload and configuration of
the FL job, including pre-processing,
training, and optional inferencing.
TEEs that meet these requirements
include Azure Confidential Contain-
ers and Confidential Spaces on the
Google Cloud Platform.

Figure 2. Architecture of a typical CFL deployment.

Dataset Merkle Tree

Model

Attestation
report

Model
developer

Attestation
Policy

Job configuration

Data
provider

Commitment
(merkle tree root)

Attestation
Policy

FL Application
Container

Container Runtime

Utility Operating System

FL Client

Proxy

FL Application
Container

Container Runtime

Utility Operating System

FL Aggregator

Proxy

Mutually
attested TLS

SEPTEMBER 2024 | VOL. 67 | NO. 9 | COMMUNICATIONS OF THE ACM 51

practice

be designed to work irrespective of
other datasets used in training. Final-
ly, commitments, in conjunction with
attestation reports, provide tamper-
proof provenance for the entire FL
job. Armed with attestation reports,
external auditors get full visibility
into the flow of datasets that contrib-
uted to the model and can hold par-
ticipants responsible for a model’s
behavior.

Mutual attestation. Including the
full workload, configuration, and
commitments in attestation reports
enables other participants in an FL
computation to remotely verify and
establish trust in a participant’s com-
pute instances. For example, an ag-
gregator can verify all clients, and
each client can independently verify
the central aggregator.

In CFL, each participant specifies
its criteria for trusting other partici-
pants by creating an attestation poli-
cy. This can take the form of a key-val-
ue map, where each key is the name of
a claim, and the value is the set of val-
ues that the claim is allowed to take.

The following is a sample attesta-
tion policy with multiple claims and
permitted values for each claim. Each
CFL node is provisioned with a policy
that it uses to verify attestation re-
ports from other nodes.

{
 "host_data": ["..."],
 "report_data": ["...", "...", "...",]
 "svn": ["..."]
}

To ensure that a participant com-
municates only with other partici-
pants that it trusts, CFL deployments
can perform attestation verification
as part of the TLS handshake:

1. On start-up, each client and ag-
gregator generates an ephemeral TLS
signing key and obtains an attesta-
tion report with the key as a runtime
claim.

2. Each node generates a self-
signed certificate and includes the at-
testation report and other collateral
required to verify the report (such as
device certificates) as a custom exten-
sion in the certificate. Each instance
configures its TLS stack to use this
TLS signing certificate.

3. Each node also configures the
TLS stack (for example, using call-

Commitments. In addition to host-
ing computations in TEEs, CFL can
support transparency and account-
ability through commitments. Partici-
pants in CFL can be required to com-
mit to their inputs before running a
training job. Data providers commit
to their datasets, and model providers
commit to the job configuration and
the initial model state (if provided
externally). For example, the job con-
figuration in NVFlare is a list of tasks
that will be executed by the aggrega-
tor and clients, along with the config-
uration for each task.

Commitments can take various
forms. For smaller inputs, such as a
job configuration, the input (or its
hash digest) can be attested directly.
For larger inputs, such as datasets,
one option is to compute a Merkle
hash tree over the dataset (for exam-
ple, using dm-verity) and use the root
hash of the tree (combined with a ran-
dom nonce) as a commitment.

In CFL, commitments are reflected
in TEE attestation, verified by other
participants, and enforced during
TEE execution. For example, in an
implementation with Azure Confi-
dential Containers, the dm-verity
root hash of the training dataset is in-
cluded as an environment variable in
the container security policy. Within
the TEE, this root hash is used to ver-
ify that the Merkle tree is correct. The
Merkle tree is then used to verify the
integrity of the dataset by compar-
ing the hash digest of each block that
is read against the hash value in the
Merkle tree. Reflecting commitments
in attestation ensures that any given
client can connect to the aggregator
only if it provides the committed da-
taset as input. This invariant holds
even across clients and aggregator re-
starts, since clients and aggregators
mutually attest each other on every
connection.

Commitments, as used in CFL,
have a few noteworthy characteris-
tics. First, they do not impact privacy
since only a hash is revealed, not the
dataset itself. Commitments do not
prevent clients from providing bad
data; they ensure only that a mali-
cious client cannot change the data-
set adaptively during training. This
significantly limits the power of an
attacker because the attack must now

Confidential
computing
enables the
secure execution
of code and data
in untrusted
computing
environments
by leveraging
hardware-based
trusted execution
environments.

52 COMMUNICATIONS OF THE ACM | SEPTEMBER 2024 | VOL. 67 | NO. 9

practice

Theoretical Computer Science 9, 3–4 (2014), 211–407;
10.1561/0400000042.

8. Fang, M., Cao, X., Jia, J., and Gong, N. Local model
poisoning attacks to Byzantine-robust federated
learning. In Proceedings of the 29th Usenix Security
Symp., article 92 (2020), 1623–1640; https://bit.
ly/4f2t84z.

9. Hande, K. Announcing Azure confidential VMs with
NVIDIA H100 Tensor Core GPUs in preview. Azure
Confidential Computing Blog (Nov. 15, 2023); https://
bit.ly/3VXtnFf

10. Jere, M.S., Farnan, T., and Koushanfar, F.. A taxonomy
of attacks on federated learning. In Proceedings of
IEEE Security & Privacy 19, 2 (2020), 20–28; https://
ieeexplore.ieee.org/document/9308910.

11. Johnson, M.A. et al. COCOAEXPO: Confidential
containers via attested execution policies. arXiv
(2023); https://arxiv.org/abs/2302.03976.

12. Kocher, P. et al. Spectre attacks: exploiting speculative
execution. In Proceedings of the 40th IEEE Symp. on
Security and Privacy (2019), 1–19; https://ieeexplore.
ieee.org/document/8835233.

13. Krasanakis, E., Spyromitros-Xioufis, E., Papadopoulos,
S., and Kompatsiaris, Y. Adaptive sensitive reweighting
to mitigate bias in fairness-aware classification.
In Proceedings of the 2018 World Wide Web Conf.,
853–862; 10.1145/3178876.3186133.

14. Li, M. et al. CIPHERLEAKS: Breaking constant-time
cryptography on AMD SEV via the ciphertext side
channel. In Proceedings of the 30th Usenix Security
Symp. (2021), 717–732.

15. Li, X. et al. Design and verification of the Arm
confidential compute architecture. In Proceedings of
the 16th Usenix Symp. on Operating Systems Design
and Implementation (2022); https://bit.ly/3zGvpSH

16. Lipp, M. et al. Meltdown: reading kernel memory from
user space. In Proceedings of the 27th Usenix Security
Symp.; https://bit.ly/45YQzr6.

17. McMahan, B. et al. Communication-efficient learning
of deep networks from decentralized data. In
Proceedings of the 20th Intern. Conf. on Artificial
Intelligence and Statistics (2017), 1273–1282; https://
bit.ly/3XUaHZD

18. Mo, F. et al. PPFL: Enhancing privacy in federated
learning with confidential computing. GetMobile:
Mobile Computing and Communications 25, 4 (2022),
35–38; https://bit.ly/3xGWFQw.

19. Quoc, D.L. and Fetzer, C. SecFL: confidential federated
learning using TEEs. arXiv 2110.00981 (2021); https://
arxiv.org/abs/2110.00981.

20. Roth, H.R. et al. NVIDIA Flare: federated learning
from simulation to real-world. arXiv (2022); https://
arxiv.org/abs/2210.13291.

21. Russinovich, M. et al. Toward confidential cloud
computing. Communications of the ACM 64, 6 (2021),
54–61; 10.1145/3453930.

22. Tolpegin, V., Truex, S., Gursoy, M.E., and Liu, L.
Data poisoning attacks against federated learning
systems. In Proceedings of the 25th European Symp.
on Research in Computer Security, Part I 25 (2020),
480–501; https://bit.ly/3WgHaIq.

23. Van Bulck, J. et al Foreshadow: extracting the keys
to the Intel SGX kingdom with transient out-of-order
execution. In Proceedings of the 27th Usenix Security
Symp. (2018); https://bit.ly/3LlwdPu

24. Wei, K. et al. Federated learning with differential
privacy: algorithms and performance analysis. In
Proceedings of IEEE Transactions on Information
Forensics and Security 15 (2020), 3454–3469;
https://bit.ly/3VSmlS8

Jinnan Guo is a Ph.D. candidate at Imperial College
London, U.K., advised by Peter Pietzuch. His research
interest lies in the intersection of systems, security, and
machine learning.

Peter Pietzuch is a professor of distributed systems at
Imperial College London, U.K., where he leads the Large-
scale Data & Systems (LSDS) group.

Andrew Paverd is a principal research manager in the
Microsoft Security Response Center (MSRC). His research
work focuses primarily on security, privacy, and safety in
AI systems.

Kapil Vaswani is a principal researcher at Azure Research
in Cambridge, England, U.K. His research interests lie in
secure and robust systems.

in overall throughput for simple FL
workloads (based on CIFAR-10).

We also investigated the overhead
of introducing commitments us-
ing dm-verity with a sequential read
benchmark, which is representative
of training workloads where the entire
dataset is read sequentially. Our ex-
periments suggest dm-verity protec-
tion can introduce an overhead up to
40% in sequential read throughput as
a result of read amplification caused
by Merkle tree checks. The impact of
reduced storage throughput on end-
to-end training throughput is small
because most training workloads
tend to be compute-bound. These are
initial results and need to be substan-
tiated with more rigorous evaluation
using larger workloads.

Conclusion
The principles of security, privacy,
accountability, transparency, and
fairness are the cornerstones of mod-
ern AI regulations. Classic FL was
designed with a strong emphasis on
security and privacy at the cost of
transparency and accountability. Con-
fidential federated learning addresses
this gap with a careful combination of
FL with TEEs and commitments. CFL
also brings other desirable security
properties, such as code-based access
control, model confidentiality, and
protection of models during infer-
ence. Recent advances in confidential
computing, such as confidential con-
tainers and confidential GPUs, mean
that existing FL frameworks can be
extended seamlessly to support CFL
with low overheads. For these reasons,
CFL is likely to become the default
mode for deploying FL workloads.

References
1. AMD. AMD SEV-SNP: Strengthening VM isolation with

integrity protection and more. White Paper (2020);
https://bit.ly/3zE4vec.

2. Anati, I., Gueron, S., Johnson, S., and Scarlata, V.
Innovative technology for CPU based attestation and
sealing. In Proceedings of the 2nd Intern. Workshop on
Hardware and Architectural Support for Security and
Privacy (2013); https://intel.ly/3S1kpFC.

3. Brasser, F. et al. Trusted container extensions for
container-based confidential computing. arXiv (2022):
https://arxiv.org/abs/2205.05747.

4. Cheng, P.-C. et al. Intel TDX demystified: A top-
down approach. arXiv (2023); https://arxiv.org/
abs/2303.15540.

5. Costan, V. and Devadas, S.. Intel SGX explained
(2016); https://eprint.iacr.org/2016/086.

6. Dhanuskodi, G. et al. Creating the first confidential
GPUs. ACM Queue 21, 4 (2023); https://queue.acm.
org/detail.cfm?id=3623391.

7. Dwork, C. et al. The algorithmic foundations of
differential privacy. Foundations and Trends in

backs supported by TLS) to verify
certificates obtained from other
participants during the handshake,
based on its attestation policy. This
protocol ensures that each instance
establishes a secure encrypted com-
munication channel with other in-
stances only after verifying the attes-
tation report against the attestation
policy. All subsequent communica-
tion between the aggregator and cli-
ent, such as communicating model
weights and gradient updates, uses
this channel.

One challenge in deploying attes-
tation policies is that it can lead to
cyclic dependencies, because the ag-
gregator’s attestation policy depends
on each client’s attestation, and vice
versa. One way to break the cycle is to
include the aggregator’s attestation
policy in its attestation but exclude
the client’s policy from its attestation.
This design choice preserves the abili-
ty for clients to assess the aggregator’s
attestation policy before entrusting
the aggregator with their data.

Implementing CFL
We have experimented with a CFL
implementation based on NVIDIA
NVFlare, a commonly used FL frame-
work. Our prototype can run on con-
fidential containers on Azure Con-
tainer Instances (ACIs) as well as
confidential VMs (CVMs).9 NVFlare
containers could be hosted in ACI and
CVMs without modifying the core NV-
Flare framework. To simplify deploy-
ment, we built a provisioning tool to
generate scripts for generating data-
set commitments, attestation policies
for clients and servers, and scripts for
deploying NVFlare containers to ACIs
and CVMs. Dataset commitments are
implemented using dm-verity. Trans-
parent, mutually attested TLS and at-
testation policy enforcement are sup-
ported using a network proxy.

We evaluated the CFL’s end-to-end
performance by measuring the train-
ing throughput. To perform the end-
to-end evaluation, we deploy the CFL
aggregator in Azure DC4asv5 CVM
(with four vCPUs, 16GB of memory)
and the CFL client in Azure DC32asv5
CVMs (32 vCPUs, 128GB of memory).
Our experiments suggest that adding
TEE and dm-verity protection for the
FL system results in a 5% reduction

This work is licensed under
a Creative Commons Attribution

International 4.0 License.

SEPTEMBER 2024 | VOL. 67 | NO. 9 | COMMUNICATIONS OF THE ACM 53

practice

