
to ensure AI’s trustworthiness. Trust-
worthy AI systems must exhibit cer-
tain characteristics, such as reliability, 
fairness, transparency, accountabil-
ity, and robustness. Only then can AI 
systems be depended upon to operate 
ethically and effectively without caus-
ing harm or discrimination.

A critical aspect of trustworthy AI 
is privacy. Training accurate machine-
learning (ML) models often requires 
large, diverse, and representative da-
tasets. While models can be trained 
exclusively using publicly available 
datasets in some domains, other sce-
narios require access to private data. 
For example, training models to make 
medical diagnoses may require sensi-
tive patient data. Similarly, training 
models to detect fraudulent financial 
transactions requires detailed trans-
action data from financial institu-
tions. Such data must be safeguarded 
from unauthorized access, manipula-
tion, or misuse to maintain model in-
tegrity and prevent bias.

Consequently, there has been grow-
ing interest in privacy-preserving ML 
techniques, such as federated learn-
ing (FL).17 FL is a distributed ML para-
digm th ~at enables training models 
across multiple clients holding lo-
cal training data, without exchang-
ing that data directly. In a typical FL 
setup, a central aggregator starts a 
training job by distributing an initial 
model to multiple clients. Each client 
trains the model locally on its dataset 
and computes updates to the model 
(also referred to as gradient updates). 
The clients then send their updates to 
the central aggregator, which aggre-
gates these updates using a suitable 
aggregation function and updates its 
model. It then starts another epoch 
by sending the updated model to the 
clients, which perform local training. 
This process repeats until the mutu-
ally agreed-upon termination criteria 
are met (for example, the model con-
verges to an acceptable loss value).

FL can be combined with differen-
tial privacy7 to provide strong privacy 
guarantees.24 In this setting, each cli-

T H E A R T I F ICI A L I N T EL L IGENCE (AI) revolution is 
reshaping industries and transforming the way we 
live, work, and interact with technology. From AI 
chatbots and personalized recommendation systems 
to autonomous vehicles navigating city streets, AI-
powered innovations are emerging everywhere. As 
businesses and organizations harness AI to streamline 
operations, optimize processes, and drive innovation, 
the potential for economic growth and societal 
advancement is immense.

Amid this rapid progress, however, it is critical 
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ent adds suitable noise to the model 
updates locally, based on a privacy 
budget, before sending the updates 
to the aggregator, which bounds the 
probability for the model to memo-
rize individual points in the training 
dataset.

While FL prevents the flow of raw 
training data across trust domains, it 
introduces a new set of trust assump-
tions and security challenges. Clients 
participating in FL must trust a cen-
tral aggregator to deliver safe code, 
include only trustworthy clients, fol-
low the aggregation protocol, and use 

the model only for mutually agreed-
on purposes. In addition, the aggre-
gator must trust the clients to provide 
high-quality data, not tamper with 
the training protocol, and protect the 
model’s intellectual property. These 
trust assumptions are often difficult 
to satisfy in the real world, especially 
in adversarial settings where clients 
may be compromised or collude to 
undermine the system’s security and 
privacy guarantees. It is therefore un-
surprising that many FL deployments 
have been found to be vulnerable to 
attacks, including model poisoning, 

data poisoning, and inference at-
tacks8,10,22 (see Figure 1). Attacks may 
be carried out by clients, aggregators, 
or outsiders, and can occur during 
model training or inference.

Many of these attacks can be attrib-
uted to the ability of malicious partici-
pants to violate the confidentiality or 
integrity of data and computation in 
their control (for example, by poison-
ing datasets or gradient updates to in-
fluence the model’s behavior). These 
attacks are not limited to just the ag-
gregators or clients at training time—
attacks such as model extraction or 
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reconstruction can be carried out by 
entities with API access to the trained 
model at inference time. Therefore, it 
is critical to protect all sensitive infor-
mation throughout the lifecycle of FL 
jobs.

Another challenge in FL is trans-
parency and accountability. Since, by 
definition, FL does not involve shar-
ing training data directly, it is difficult 
to audit the training process and veri-
fy that the model has not been biased 
or tampered with. This makes it chal-
lenging for model builders to comply 
with any AI regulations that require 
transparency or auditability of the 
training process as a precondition for 
deployment.

An alternative approach for priva-
cy-preserving ML is confidential com-
puting.21 Confidential computing en-
ables the secure execution of code and 
data in untrusted computing environ-
ments—for example, public clouds—
by leveraging hardware-based trusted 
execution environments (TEEs), such 
as Intel Software Guard Extensions 
(SGX),2,5 AMD Secure Encrypted Virtu-
alization-Secure Nested Paging (SEV-
SNP),1 Arm Confidential Compute Ar-
chitecture (CCA),15 and more recently, 
Nvidia Hopper Confidential Comput-
ing.6

Confidential computing protects 
the confidentiality and integrity of ML 
models and data throughout their life-
cycles, even from privileged attackers. 
However, in most existing ML systems 
with confidential computing, the 

training process remains centralized, 
requiring data owners to send (poten-
tially encrypted) datasets to a single 
client where the model is trained in a 
TEE. Unlike FL, this setup places sig-
nificant trust in the TEE infrastruc-
ture to protect datasets in a remote, 
potentially hostile environment.

FL and confidential computing 
should not be considered compet-
ing technologies. Rather, it is pos-
sible, with careful design, to combine 
FL and confidential computing to 
achieve the best of both worlds: the 
assurance of sensitive data remaining 
within its trust domain while ensur-
ing transparency and accountabil-
ity. This new paradigm, referred to 
here as confidential federated learning 
(CFL), can prevent large classes of at-
tacks on FL, broaden the adoption of 
FL in privacy-sensitive domains, and 
enable compliance with upcoming AI 
regulations.

Confidential Computing
Confidential computing uses TEEs to 
isolate sensitive code and data from 
privileged attackers. There are several 
kinds of TEEs in modern CPUs. For 
example, Intel CPUs support the cre-
ation of process-based TEEs through 
Software Guard Extensions.2 Process-
based TEEs can measure and isolate 
a user-space process from the rest of 
the system, including other processes 
and the operating system (OS). With-
in process-based TEEs, code does 
not have direct access to any OS ker-

nel functionality such as I/O devices. 
Therefore, writing applications to use 
process-based TEEs requires signifi-
cant developer effort.

Led by AMD SEV-SNP,1 recent CPUs 
support virtual machine (VM)-based 
TEEs, which can host and isolate both 
user-mode processes and a full OS 
from external access. This makes it 
simpler to migrate existing applica-
tions to VM-based TEEs, albeit at the 
cost of a larger TCB.

While confidential computing has 
been supported in CPUs for well over 
a decade, the primitives required for 
deploying AI workloads such as FL 
transparently with low performance 
overheads have evolved only recently.

Confidential containers. While 
VM-based TEEs can host legacy vir-
tual machines, this mode of deploy-
ment has limitations beyond a large 
TCB. Unless configured correctly, it 
does not fully isolate the workload 
(user-mode applications) from exter-
nal access (for example, secure shell 
access by the OS admin). It also pro-
vides limited attestation of the work-
load because it requires the VM to be 
started with a bootloader, which in 
turn boots an OS kernel. Therefore, 
only the bootloader is measured by 
the hardware. Even if attestation were 
to be extended to include the OS ker-
nel (for example, using a virtual Trust-
ed Platform Module), it is challenging 
to attest the entire OS and user-mode 
applications.

Confidential containers3,11 present 
a new mode of deploying applications 
in VM-based TEEs that address these 
limitations. In confidential contain-
ers, a VM-based TEE is used to host 
a utility OS along with a container 
runtime, which in turn can host con-
tainerized workloads. Confidential 
containers support full workload in-
tegrity and attestation via container 
execution policies. These policies de-
fine the set of container images (rep-
resented by the hash digest of each 
image layer) that can be hosted in the 
TEE, along with other security-critical 
attributes, such as commands, privi-
leges, and environment variables. The 
policy itself is measured (as an initial-
ization time claim) by the hardware 
root of trust, included in the hard-
ware-signed attestation report and 
enforced by the container runtime. In 

Figure 1. Attacks on federated learning systems.
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sures, there are plenty of avenues for 
a malicious participant to exfiltrate 
secrets or tamper with the training 
process. For example, a malicious 
participant can poison datasets by 
adding samples or changing labels of 
training data to introduce back doors 
or bias into the model. Data may be 
poisoned either before a training job 
or adaptively during the job, based on 
intermediate models. A participant 
may also observe or tamper with gra-
dient updates or arbitrarily tamper 
with the workflow—for example, by 
skipping training entirely or not ag-
gregating certain inputs.

CFL is an emerging paradigm18,19 
that aims to harden FL deployments 
against such attacks. Figure 2 shows 
the architecture of a typical CFL de-
ployment for a single training job. 
In CFL, all computation (aggrega-
tion and training) is hosted in a spe-
cial class of hardware-isolated TEEs, 
which isolate data and computation 
from all external access, including 
administrators and privileged attack-
ers. With TEEs in particular, model 
weights are no longer exposed to cli-
ent administrators; they are visible 
only to attested client code. Similarly, 

other words, the combination of the 
OS, container runtime, and container 
policy fully represents the workload 
hosted in the TEE and can be used by 
relying parties to establish trust in the 
environment.

Confidential GPUs. Initially, sup-
port for confidential computing was 
limited to CPUs, with all other devices 
considered as untrusted. This was, of 
course, limiting for AI applications 
that use GPUs to achieve high per-
formance. Over the past few years, 
several attempts have been made at 
building confidential computing sup-
port in accelerators. NVIDIA’s Hopper 
generation of GPUs6 supports the cre-
ation of TEEs and can be coupled with 
CPU-based TEEs (AMD SEV-SNP, Intel 
TDX4) to create a unified TEE across 
CPU and GPU, enabling transparent 
offload with low performance over-
heads.

Hopper GPUs support the new con-
fidential computing mode in which 
the GPU carves out a region of mem-
ory called the protected region and 
enables a hardware firewall that iso-
lates this region and other sensitive 
parts of state from the host CPU. In 
this mode, a CPU-based TEE, such as 
an SNP VM, can attest and establish a 
secure channel with the GPU and pro-
vision encryption keys to copy engines 
in the GPU. All subsequent data trans-
fers—including code; models; and ap-
plication data between the CPU TEE 
and the GPU, and between GPUs—are 
encrypted using these keys.

Confidential Federated Learning
A typical FL deployment involves sev-
eral components that work together 
to enable collaborative model train-
ing across multiple clients. This in-
cludes client environments that hold 
local data, a central aggregator, an or-
chestrator for managing FL tasks, and 
the communication infrastructure for 
provisioning tasks and exchanging 
model updates.

Most FL frameworks, such as NV-
Flare,20 support several security mea-
sures to protect data and models, in-
cluding the use of network security 
to isolate and sandbox remote code; 
transport layer security (TLS) for se-
cure communication; and strong 
authentication and access-control 
mechanisms. Despite these mea-

intermediate gradient updates are 
no longer exposed to the aggregator; 
they are exposed only to attested ag-
gregator code. The aggregator learns 
the trained model only, and even that 
access can be limited by hosting the 
trained model in a TEE.

TEEs used in CFL also provide 
integrity—a malicious aggregator or 
client cannot tamper with data, com-
putation, or configuration of the de-
ployment. For example, if a training 
job requires each client to pre-process 
the dataset (for example, run sam-
pling and reweighing with specific 
parameters to mitigate bias),13 clients 
cannot change the control flow of the 
training job or parameter values with-
out being detected via attestation. The 
integrity properties of TEEs hold even 
in the presence of side-channel at-
tacks.12,14,16,23

Finally, CFL uses TEEs that can pro-
vide hardware-based attestation for 
the full workload and configuration of 
the FL job, including pre-processing, 
training, and optional inferencing. 
TEEs that meet these requirements 
include Azure Confidential Contain-
ers and Confidential Spaces on the 
Google Cloud Platform.

Figure 2. Architecture of a typical CFL deployment.
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be designed to work irrespective of 
other datasets used in training. Final-
ly, commitments, in conjunction with 
attestation reports, provide tamper-
proof provenance for the entire FL 
job. Armed with attestation reports, 
external auditors get full visibility 
into the flow of datasets that contrib-
uted to the model and can hold par-
ticipants responsible for a model’s 
behavior.

Mutual attestation. Including the 
full workload, configuration, and 
commitments in attestation reports 
enables other participants in an FL 
computation to remotely verify and 
establish trust in a participant’s com-
pute instances. For example, an ag-
gregator can verify all clients, and 
each client can independently verify 
the central aggregator.

In CFL, each participant specifies 
its criteria for trusting other partici-
pants by creating an attestation poli-
cy. This can take the form of a key-val-
ue map, where each key is the name of 
a claim, and the value is the set of val-
ues that the claim is allowed to take.

The following is a sample attesta-
tion policy with multiple claims and 
permitted values for each claim. Each 
CFL node is provisioned with a policy 
that it uses to verify attestation re-
ports from other nodes.

{ 
 "host_data": [ "..." ], 
 "report_data": [ "...", "...", "...", ] 
 "svn": [ "..." ] 
}

To ensure that a participant com-
municates only with other partici-
pants that it trusts, CFL deployments 
can perform attestation verification 
as part of the TLS handshake:

1. On start-up, each client and ag-
gregator generates an ephemeral TLS 
signing key and obtains an attesta-
tion report with the key as a runtime 
claim.

2. Each node generates a self-
signed certificate and includes the at-
testation report and other collateral 
required to verify the report (such as 
device certificates) as a custom exten-
sion in the certificate. Each instance 
configures its TLS stack to use this 
TLS signing certificate.

3. Each node also configures the 
TLS stack (for example, using call-

Commitments. In addition to host-
ing computations in TEEs, CFL can 
support transparency and account-
ability through commitments. Partici-
pants in CFL can be required to com-
mit to their inputs before running a 
training job. Data providers commit 
to their datasets, and model providers 
commit to the job configuration and 
the initial model state (if provided 
externally). For example, the job con-
figuration in NVFlare is a list of tasks 
that will be executed by the aggrega-
tor and clients, along with the config-
uration for each task.

Commitments can take various 
forms. For smaller inputs, such as a 
job configuration, the input (or its 
hash digest) can be attested directly. 
For larger inputs, such as datasets, 
one option is to compute a Merkle 
hash tree over the dataset (for exam-
ple, using dm-verity) and use the root 
hash of the tree (combined with a ran-
dom nonce) as a commitment.

In CFL, commitments are reflected 
in TEE attestation, verified by other 
participants, and enforced during 
TEE execution. For example, in an 
implementation with Azure Confi-
dential Containers, the dm-verity 
root hash of the training dataset is in-
cluded as an environment variable in 
the container security policy. Within 
the TEE, this root hash is used to ver-
ify that the Merkle tree is correct. The 
Merkle tree is then used to verify the 
integrity of the dataset by compar-
ing the hash digest of each block that 
is read against the hash value in the 
Merkle tree. Reflecting commitments 
in attestation ensures that any given 
client can connect to the aggregator 
only if it provides the committed da-
taset as input. This invariant holds 
even across clients and aggregator re-
starts, since clients and aggregators 
mutually attest each other on every 
connection.

Commitments, as used in CFL, 
have a few noteworthy characteris-
tics. First, they do not impact privacy 
since only a hash is revealed, not the 
dataset itself. Commitments do not 
prevent clients from providing bad 
data; they ensure only that a mali-
cious client cannot change the data-
set adaptively during training. This 
significantly limits the power of an 
attacker because the attack must now 

Confidential 
computing 
enables the 
secure execution 
of code and data 
in untrusted 
computing 
environments 
by leveraging 
hardware-based 
trusted execution 
environments.
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in overall throughput for simple FL 
workloads (based on CIFAR-10).

We also investigated the overhead 
of introducing commitments us-
ing dm-verity with a sequential read 
benchmark, which is representative 
of training workloads where the entire 
dataset is read sequentially. Our ex-
periments suggest dm-verity protec-
tion can introduce an overhead up to 
40% in sequential read throughput as 
a result of read amplification caused 
by Merkle tree checks. The impact of 
reduced storage throughput on end-
to-end training throughput is small 
because most training workloads 
tend to be compute-bound. These are 
initial results and need to be substan-
tiated with more rigorous evaluation 
using larger workloads.

Conclusion
The principles of security, privacy, 
accountability, transparency, and 
fairness are the cornerstones of mod-
ern AI regulations. Classic FL was 
designed with a strong emphasis on 
security and privacy at the cost of 
transparency and accountability. Con-
fidential federated learning addresses 
this gap with a careful combination of 
FL with TEEs and commitments. CFL 
also brings other desirable security 
properties, such as code-based access 
control, model confidentiality, and 
protection of models during infer-
ence. Recent advances in confidential 
computing, such as confidential con-
tainers and confidential GPUs, mean 
that existing FL frameworks can be 
extended seamlessly to support CFL 
with low overheads. For these reasons, 
CFL is likely to become the default 
mode for deploying FL workloads. 
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backs supported by TLS) to verify 
certificates obtained from other 
participants during the handshake, 
based on its attestation policy. This 
protocol ensures that each instance 
establishes a secure encrypted com-
munication channel with other in-
stances only after verifying the attes-
tation report against the attestation 
policy. All subsequent communica-
tion between the aggregator and cli-
ent, such as communicating model 
weights and gradient updates, uses 
this channel.

One challenge in deploying attes-
tation policies is that it can lead to 
cyclic dependencies, because the ag-
gregator’s attestation policy depends 
on each client’s attestation, and vice 
versa. One way to break the cycle is to 
include the aggregator’s attestation 
policy in its attestation but exclude 
the client’s policy from its attestation. 
This design choice preserves the abili-
ty for clients to assess the aggregator’s 
attestation policy before entrusting 
the aggregator with their data.

Implementing CFL
We have experimented with a CFL 
implementation based on NVIDIA 
NVFlare, a commonly used FL frame-
work. Our prototype can run on con-
fidential containers on Azure Con-
tainer Instances (ACIs) as well as 
confidential VMs (CVMs).9 NVFlare 
containers could be hosted in ACI and 
CVMs without modifying the core NV-
Flare framework. To simplify deploy-
ment, we built a provisioning tool to 
generate scripts for generating data-
set commitments, attestation policies 
for clients and servers, and scripts for 
deploying NVFlare containers to ACIs 
and CVMs. Dataset commitments are 
implemented using dm-verity. Trans-
parent, mutually attested TLS and at-
testation policy enforcement are sup-
ported using a network proxy.

We evaluated the CFL’s end-to-end 
performance by measuring the train-
ing throughput. To perform the end-
to-end evaluation, we deploy the CFL 
aggregator in Azure DC4asv5 CVM 
(with four vCPUs, 16GB of memory) 
and the CFL client in Azure DC32asv5 
CVMs (32 vCPUs, 128GB of memory). 
Our experiments suggest that adding 
TEE and dm-verity protection for the 
FL system results in a 5% reduction 
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