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ABSTRACT
It is challenging for large-scale stream management systems to re-
turn always perfect results when processing data streams originat-
ing from distributed sources. Data sources and intermediate pro-
cessing nodes may fail during the lifetime of a stream query. In ad-
dition, individual nodes may become overloaded due to processing
demands. In practice, users have to accept incomplete or inaccurate
query results because of failure or overload. In this case, stream
processing systems would benefit from knowing the impact of im-
perfect processing on data quality when making decisions about
query optimisation and fault recovery. In addition, users would
want to know how much the result quality was degraded.

In this paper, we propose a quality-centric relational stream data
model that can be used together with existing query processing
methods over distributed data streams. Besides giving useful feed-
back about the quality of tuples to users, the model provides the
distributed stream management system with information on how to
optimise query processing and enhance fault tolerance. We demon-
strate how our data model can be applied to an existing distributed
stream management system. Our evaluation shows that it enables
quality-aware load-shedding, while introducing only a small per-
tuple overhead.

1. INTRODUCTION
Today’s distributed stream management systems (DSMSs) must

support a class of applications that process continuous queries over
a geographically-distributed set of data stream sources. Applica-
tions in many domains fall under this pattern. In healthcare, a
DSMS may monitor behaviours of patients and elderly citizens
across a metro area and signal emergency attention in real-time
when necessary [22]. In supply chain management, DSMSs may
supervise manufacturing chains to detect shipping delays before
they affect production [12]. In an urban-scale sensing infrastruc-
ture [26], such systems may collect and analyse weather data to
generate real-time notifications about air pollution levels and severe
weather conditions affecting road users. More detail on a variety of
sensor network applications can be found in [34].

Previous research on DSMSs focused primarily on high-volume
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financial data processing in single data centres [1, 4]. Such ap-
plications require perfect [5] and highly-available [16] data pro-
cessing. They benefit from resource over-provisioning in terms of
computational nodes and high-speed networks to cope with fail-
ure and workload peaks. In contrast, the large-scale DSMSs de-
scribed above face a more hostile environment. Data sources are
widely distributed and therefore only interconnected through unre-
liable wide-area network links. A set of heterogeneous processing
nodes may be spread around the infrastructure at various locations,
with different failure behaviour and under different administrative
control [27].

In such a deployment environment, stream processing failures
occur frequently due to faulty hardware, software bugs, overloaded
nodes and network faults or partitions. The DSMS may not have
sufficient resources to recover all lost processing after failure. While
users in many domains can accept incomplete query results, they
want to know about the degree of quality degradation due to im-
perfect processing. Answering this question is actually a challenge
for existing query processing methods since they aim for perfect
processing, masking the effects of failure through redundant pro-
cessing or re-processing of missed tuples [15]. Imperfect stream
processing usually indicates a catastrophic failure of the system.

To address this problem, we propose a new quality-centric stream
data model. In this model, streams have associated meta-data about
weight, recall and utility that estimates how imperfect processing
has affected the quality of tuples in a stream. This model is inde-
pendent of specific query semantics and can be used with existing
relational DSMSs to provide continuous feedback to users on the
achieved processing level. It also enables the DSMS to identify
important data streams and, for example, replicate them in advance
to mask future failure or optimise query processing under resource
shortage by dropping least important data tuples first.

The paper makes the following three main contributions: (1) We
describe a quality-centric data model that provides users with use-
ful information about incompleteness of query results due to fail-
ures. The data model is also designed to give the system feedback
on the importance of data streams when making resource allocation
decisions. (2) We demonstrate how to apply our data model to es-
timate the correctness of query results, optimise query processing
and replicate important data streams to mask failure. (3) We present
our implementation of the data model as part of Borealis [1], an ex-
isting state-of-the-art DSMS, and evaluate its performance.

The rest of the paper is organised as follows. In Section 2, we
discuss related work. In Section 3, we state our assumptions about
the DSMS. We describe the quality-centric data model in Section 4.
Three use cases for the data model are introduced in Section 5. In
Section 6, we describe how to implement the data model over an
existing DSMS. Our experimental evaluation that highlights bene-



fits and overheads is presented in Section 7. The paper finishes with
a discussion of future work (Section 8) and conclusions (Section 9).

2. RELATED WORK
Data stream processing has been extensively studied in the database
research community. A considerable number of research projects,
such as STREAM [3], Aurora [4], Gigascope [9], NiagaraCQ [8],
TelegraphCQ [7] and Borealis [1], exist in this research area. All of
them focus on how to process data stream queries efficiently within
the limited resource capability (e.g., memory, network bandwidth
and CPU) of nodes given the high rate of incoming data streams.
For example, the authors of [20] propose a unit-time-basis cost
model to evaluate the performance of join query processing algo-
rithms from which they propose suitable query processing strate-
gies for different scenarios. When tuples must be dropped due to
memory limitations, the authors of [10] suggest that tuples should
be dropped selectively to minimize the error of query results. The
authors of [32] introduce eight requirements that need to be satis-
fied for real-time stream processing, handling stream imperfection
being one of them.
Sensor networks carry out a specific type of distributed data stream
processing and often suffer from a high rate of failure [14]. Since
failure is unavoidable in many cases, it is necessary to cope with
failure in sensor networks. Several solutions have been proposed to
provide fault tolerance in sensor networks by detecting failure and
performing failure recovery as soon as it happens [36, 28]. To sup-
port real-time query processing, most solutions allow the system to
continue processing queries in case of failure [35, 30, 14]. How-
ever, none of the solutions are able to report to users (or the system)
about missed data due to failure. Since missing data in query pro-
cessing has an impact on the result quality, answering this question
is important, especially when the scale of sensor networks becomes
larger leading to global-scale sensing infrastructures [13, 25, 2, 6,
23]. Such large-scale system for stream processing continuously
suffer from failures [27, 29].
Data stream models. There have been multiple data models pro-
posed for distributed stream systems [3, 31], in general, and sensor
networks [21, 11], specifically. They cover different aspects of dis-
tributed data stream systems. The authors of [21] propose a model
for aggregating and routing data over sensor networks that reduces
data routing cost. Deshpande et al. [11] suggest a model to obtain
statistics in sensor networks, which is used to optimise data collec-
tion from sensors in query processing. On the other hand, Saleh et
al. [31] describe how to use quality-of-service constraints together
with queries to guarantee the quality of query results. The work
by Jain et al. [18] introduces “network imprecision”, a consistency
metric, that allows the system to raise alerts when it becomes un-
stable. Our proposal for a quality-centric data model is build on top
of the relational stream data model in [3]. The authors describe a
stream query processing language called CQL and a mechanism for
executing queries. None of the existing stream data models address
the issue of missing data in query processing due to failure and the
impact of missing data towards the final query result.

3. STREAM PROCESSING MODEL
Our work takes the streaming relational model proposed in [3]

as a starting point. In this model, a stream S is defined as an infi-
nite multiset of elements 〈t, τ〉, where t is a tuple consisting of at-
tributes belonging to a fixed schema of S and τ is the timestamp of
the element. There are two types of streams: base streams that are
the stream originating from data sources and derived streams that
are intermediate or result streams produced by operators in queries.

Next we briefly describe our assumptions about how query oper-
ators are executed. In a relational DSMS, tuples are processed by
operators for each query window whose size is specified as part of
the query. The size of a query window can be a time interval (time-
based window) or a number of tuples (tuple-based window). With
a time-based window, an operator is executed at each time interval,
while with a tuple-based window, it is executed after a sufficient
number of input tuples was received [19].

As an example, consider an urban sensing infrastructure [26],
in which sensor sources of environmental data are deployed per-
vasively throughout a city to obtain weather information. These
sensors are interconnected using a wired backbone network with
stream processing nodes at different locations. In our model, we
regard source nodes to be backed by an actual sensor or a wire-
less sensor network. In this example, a source node can be either a
temperature sensor that provides temperature readings in a region
TSensor(temperature, region) or a rainfall sensor that measures
rainfall RSensor(rainfall, region). Based on the above model and
the data streams provided by sensors, users can issue different rela-
tional stream queries to obtain real-time information such as:

Q1: get the 5-min average temperature in the city.
Select AVG(temperature)
From TSensor [Range 5 mins]

Q2: get the total hourly amount of rainfall in the city.
Select SUM(rainfall)
From RSensor [Range 1 h]

Q3: get all regions with snow in the past hour (assuming that a
region has snow if it rains with the temperature below zero).

Select T.region
From TSensor T [Range 1 h], RSensor R [Range 1 h]
Where T.region = R.region

and T.temperature < 0 and R.rainfall > 0

Since we plan to combine our data model with current query pro-
cessing methods, we assume existing techniques for creating query
execution plans from declarative query specifications. Therefore,
we will not discuss how to discover sensor sources and processing
nodes, assign operators to nodes, and build or optimise execution
plans for queries.

In addition, we assume that the DSMS only drops tuples delib-
erately. In other words, tuples are discarded by the system on pur-
pose when there is a shortage of network or processing resources or
downstream node failure. As a result, the DSMS knows the number
of tuples that it dropped due to resource shortage or failure.

4. QUALITY-CENTRIC DATA MODEL
A design goal of our quality-centric data model was to be query

agnostic, which is why we add meta-data to streams and keep the
process of meta-data management independent from query process-
ing. In our quality-centric model, we employ the same concepts as
used in the streaming relational model above except that we intro-
duce three additional properties to elements of a stream: weight w,
recall r and utility u. Before describing these quality metrics in
detail, we define a quality-centric stream as follows:

DEFINITION 4.1. A quality-centric stream S is an infinite mul-
tiset of elements 〈t, τ, w, r, u〉, where τ , w, r, and u represent the
timestamp, weight, recall and utility of tuple t, respectively.

Throughout this section, we use the query execution plan shown
in Figure 1 as a running example of how to calculate values of



Figure 1: A sample query execution plan showing the values of the
quality metrics. Since tuples are lost, the recall and utility values
are lowered.

weight, recall and utility. In this example, four sensor sources N1,
N2, N3 and N4 generate basic streams s1, s2, s3 and s4 at a rate
of 10 tuples/minute. N5, N6, and N7 are processing nodes that
execute query operators once every minute (i.e., the query window
size is one minute). They generate derived streams s5, s6 and s7,
of which s7 is the final result of the query returned to users.

4.1 Weight
The weight of a tuple t, denoted as w(t), describes the “impor-

tance” of data contained in t relative to the data in other tuples. In
our model, we define the weight of a tuple based on the number
of streams that contributed to the tuple and the weight of tuples in
these streams. The intuition behind this definition is that the weight
of a tuple generated from important tuples or a large number of
streams should be high and vice versa. We compute the weight of
tuples for different types of streams, as follows.
Weight of tuple in base stream. If we know nothing about the tu-
ples in a base stream of a query, we treat them as equally important
and assign them the same weight value. Similarly, when we know
nothing about the relative importance of different base streams, the
weights of all tuples in base streams are set to the same value.

In cases when we know more about the relative importance of tu-
ples, we can assign different weights to different tuples. For exam-
ple, if we know the location of sensors that output base streams, we
may assign higher weights to tuples in sparsely-populated sensor
locations than in densely-populated ones. The rationale behind this
is that the former type of sensors provides more precious informa-
tion than the latter. Alternatively, if we know the quality/accuracy
of individual samples generated by a sensor, we can assign higher
weights for higher quality/accuracy tuples.

In this paper, we assume that we know nothing about the sen-
sors. Hence we set the weight of all tuples in base streams to be 1.
Given that the weight of tuples in stream S at nodeN is denoted as
W (S,N), this means that in Figure 1, we have

W (s1, N1) = W (s2, N2) = W (s3, N3) = W (s4, N4) = 1.
(1)

Weight of tuple in derived stream. Given n input streams, de-
noted as {X1, X2, · · · , Xn}, used to generate a derived stream S

at a node N , w(t) is calculated as follows.

w(t) =

nX
i=1

wavg(Xi, I,N) (2)

where wavg(Xi, I,N) is the average weight of tuples in the ith

input stream in query window I . This formula states that the weight
of tuples in a derived stream is the sum of the average weights of
tuples in the input streams that are used to generate the derived
stream. When the weights of all tuples in base streams equal to 1,
the weight of tuples in a derived stream is equal to the total number
of base streams that were used to generate the derived stream, up
to this point. For example, according to Figure 1, we have

W (s5, N5) = W (s1, N1) +W (s2, N2) = 2

W (s6, N6) = W (s3, N3) +W (s4, N4) = 2

W (s7, N7) = W (s5, N5) +W (s6, N6) = 4 (3)

The weight value of tuples is specific to each query. This means
that tuples in the same base stream may have different weights cor-
responding to different queries based on their contributions to the
query result.

4.2 Recall
The recall of tuple t in a stream specifies the ratio between the

actual amount of data that was used to generate tuple t over the
maximum amount of data that could have been used to generate
tuple t. Details of how to compute the recall of tuples in base and
derived streams are as follows.

Recall of tuple in base stream. Recall of a tuple t in a base stream
describes the ratio between the amount of tuples emitted versus
the maximum amount that the source node could have generated
in perfect conditions. Note that while the first value is measured
at runtime, the second value can be known based on the properties
(and configuration parameters) of the sensor source. Usually the re-
call of a base stream is 1, but in some cases, for example, when the
source node is congested, it may emit fewer tuples, thus lowering
its recall value.

Formally we define recall as follows. Given a tuple t of a base
stream S produced at a source nodeN , recall of the tuple t, denoted
as r(t), is determined as the ratio between the current amount of
tuples produced by S, Pcurrent(S), and the maximum amount that
N can generate when N is in perfect condition, Pmax(S).

r(t) =
Pcurrent(S)

Pmax(S)
(4)

According to the above formula, when the source node N pro-
ducing data stream S is in good condition achieving its maximum
productivity, r(t), t ∈ S, should be 1. When the source node
does not work well (e.g., when its network link is interrupted or
congested), Pcurrent(S) can be less than Pmax(S), and hence r(t),
t ∈ S, can be less than 1. In our data model, r(t) is calculated at
each time interval (e.g., every hour) or when there is a change in
the productivity of S because, say, N is running out of resources.

Let us assume that the current data rates for base streams s1, s2,
s3, and s4 in Figure 1 are 9, 10, 7 and 8 tuples/minute, respectively.
Since the maximum data rate of these streams is 10 tuples/minute,
the recalls of tuples in s1, s2, s3, s4 are

t ∈ s1 : r(t) =
9

10
= 0.9, t ∈ s2 : r(t) =

10

10
= 1.0

t ∈ s3 : r(t) =
7

10
= 0.7, t ∈ s4 : r(t) =

8

10
= 0.8. (5)



Recall of tuple in derived stream. Given a tuple t in a derived
stream S generated at a nodeN by executing a query operator over
a query window I from n input streams {X1, X2, · · · , Xn}, recall
of the tuple t, r(t) is calculated as

r(t) =

Pn
i=1 wavg(Xi, I,N) · ravg(Xi, I,N) · F (Xi)Pn

i=1 wavg(Xi, I,N)
(6)

wherewavg(Xi, I,N) is the average weight of tuples from streamXi

received at node N in query window I , ravg(Xi, I,N) is the av-
erage recall value of tuples from stream Xi in query window I .
F (Xi) is the ratio between the amount of data sent from the up-
stream node generating Xi and the amount of data of Xi that is
received and available for processing at the downstream node N .

F (Xi) =
σrecv(Xi, N)

σsend(Xi, N)
(7)

In the recall formula, F (Xi) refers to the amount of data that
was not lost. Ideally, when processing and network transmission
is perfect, F (Xi) should be 1. However, under failure, F (Xi)
can be less than 1. In the worst case, when the network link is
disconnected, F (Xi) = 0 since there is no received input fromXi.
When some of the tuples were lost (e.g., due to load-shedding or
limited capacity of a network link), we assume that the tuples were
explicitly discarded by the DSMS, which therefore knows the count
of lost tuples and can provide this count to downstream nodes.

By calculating r(t) from ravg(Xi, I,N) and F (Xi), r(t) mea-
sures both failures that affected input tuples earlier in the query
and failures that have just occurred on the last hop. The use of
wavg(Xi, I,N) in the formula is to allow higher weight tuples to
have more effect on the calculation of r(t). Note that if F (Xi) =
1, i = 1 . . . n, r(t) is the average recall value of input streams,
normalised by the weight (i.e., importance) of input tuples.

Let us assume that N5 and N6 in Figure 1 receive 8 tuples of
s1, 10 tuples of s2, 7 tuples of s3, and 6 tuples of s4 from source
nodes, respectively. In that case, we have

F (s1, N5) =
8

9
= 0.89, F (s2, N5) =

10

10
= 1.00

F (s3, N6) =
7

7
= 1.00, F (s4, N6) =

6

8
= 0.75

t ∈ s5, r(t) =
1 · 0.9 · 0.89 + 1 · 1.0 · 1.00

1 + 1
= 0.90

t ∈ s6, r(t) =
1 · 0.7 · 1.00 + 1 · 0.8 · 0.75

1 + 1
= 0.65 (8)

Reasons for reduced recall. In general, the recall of output tu-
ples from an operator is lower than 1 if any of the input tuples in
a processed window have reduced recall. A tuple may acquire a
reduction in recall due to several reasons.
(1) The first reason is load-shedding: some tuples need to be dropped
deliberately because a node is overloaded and cannot keep up with
the processing. In this situation, the rate at which tuples flow in
the input streams is too high and needs to be lowered by discarding
tuples. In Figure 2, node N5 is not able to process all incoming
tuples and decides to drop one of them. This affects the recall of
the outgoing tuples and eventually it is also reflected in the final
results. In this case, the tuples delivered to the user by N7 have a
recall value of 7/8 instead of 1.
(2) The second case in which recall is lowered is node or network
failure. In this situation, no tuple is output at all. The downstream
node treats this as an extreme case of load-shedding — it sets the
recall for the missing stream to 0 while retaining an estimated value
for weight. Figure 3 shows this scenario. Here node N4 crashed

Figure 2: Node N5 dropped a single tuple due to load-shedding.
Recall for stream S5 is consequently lowered to 3/4 and it is finally
7/8 at node N7.

Figure 3: The network link to nodeN4 failed. Recall for stream S5

is then lowered to 1/2 and it is finally 3/4 at node N7.

and does not output any tuples. Downstream nodeN6 calculates the
recall value of new tuples considering a recall of 0 for the missing
stream S4, assigning a recall of 1/2 for S6. The final recall value
perceived by the user is 3/4.

As discussed above, the recall value of tuples in a stream can
vary over time. For base streams, it is re-calculated only when
there is a variation in the stream data rate produced by the sources.
Recall for tuples in a derived stream, instead, is calculated for each
query window. This means that when a node performs a query
operation over a window, it also calculates the new recall value,
which is assigned to all produced tuples for this window.

4.3 Utility
The utility of a tuple t, denoted as u(t), specifies the contribution

of the tuple towards the final query result, i.e., the result returned
to the user issuing the query. The utility of a tuple t in a stream S
with respect to a query q is computed as

u(t, q) =
w(t) · r(t)
|WB(q, I)| (9)

where |WB(q, I)| is the maximum possible weight value calcu-
lated as the sum of the average weights of tuples in all base streams
that exist in the query execution plan of q. In practice, |WB(q, I)|
can be computed by a periodic two-phase data propagating pro-
cess. In the first phase, the average weights of base stream tuples
are forwarded up the query tree, from sources to the root node in the
query plan, for computing |WB(q, I)|. In the second phase, the re-



sult value is sent downwards from the root node to all intermediate
nodes in the query plan.

A property of utility is that its value always lies between 0 and
1. A tuple has the maximum utility value of 1 when it is part of
the result stream of a query with all sources producing data for that
query in good condition and no loss occurred during query pro-
cessing (i.e., the recall values of all input streams used to compute
the final output are 1). When considering the value of u(t, q), the
closer the value is to 1, the more important t is towards the final
result of q and vice versa. In other words, u(t, q) is a measure of
the contribution of a tuple to the whole query computation.

While the concept of utility appears to be similar to weight, it
is actually different. The weight w(t) specifies the importance of
t measured by how many base streams have been used to produce
t. In contrast, u(t, q) emphasises the contribution of t towards the
final query result. u(t, q) is useful when we want to compare the
importance of two tuples t1 and t2 that are used to generate the
result of different queries q1 and q2. For example, if q1 is a query
that aggregates data from thousands of sources, even though w(t1)
can be 100, it does not really contribute much to the final result. On
the other hand, if q2 is a query that operates on a smaller number
of sources, even though w(t2) = 5, it contributes more towards
the final result. In this case, a comparison between u(t1, q1) and
u(t2, q2) highlights this difference.

In the example in Figure 1, the utility of tuples in s1, s2, s3,
s4, s5 and s6 towards the query q in the query execution plan are
calculated as follows

u(t, q) =
1 · 0.90

4
= 0.23, t ∈ s1

u(t, q) =
1 · 1.00

4
= 0.25, t ∈ s2

u(t, q) =
1 · 0.70

4
= 0.18, t ∈ s3

u(t, q) =
1 · 0.80

4
= 0.20, t ∈ s4

u(t, q) =
2 · 0.90

4
= 0.45, t ∈ s5

u(t, q) =
2 · 0.65

4
= 0.33, t ∈ s6 (10)

In contrast to weight and recall, utility does not need to be carried
by tuples as meta-data in streams. Instead, it can be calculated by
operators when needed because it is a function of the other two
metrics and the total number of base stream weights in a query.
As explained above, we assume that the number of base stream
weights is known or can be computed at runtime. Tuples in the
result stream at the root of the query tree have the same recall and
utility values so that utility does not need to be calculated.

4.4 Discussion
Adding the three properties of weight, recall and utility to data

streams helps derive useful information that can benefit both users
and the system. Looking at the weight value of tuples in a stream,
a DSMS is able to know how many base streams are used to gen-
erate a tuples, and hence can conclude the importance of the tuple
in general. On the other hand, while a data stream can be used to
answer different queries, its role in different queries may be differ-
ent. In this case, the utility value of a stream specifically tells us
the importance of the stream with respect to a specific query. In
addition, since the utility is always between 0 and 1, this value can
reveal how close the current stream is towards the final result (e.g.,
if the value is close to 1, the current stream is close to the final re-
sult and vice versa). Finally, the recall value of a stream quantifies

the fraction of the overall amount of data that is used to generate
the stream, and can be used to infer the amount of missing data.

Note that the definition of these properties is query-agnostic, in
that it does not make assumptions about the specific semantics of
query operators. This has the advantage that it makes the model
applicable to any relational processing operator. However, it has
the drawback that it can only estimate the true utility of a tuple to a
user and will provide incorrect estimates for some queries. To im-
prove the accuracy of estimation, custom equations for computing
weight, recall and utility may be provided for given operators when
their exact processing semantics is known.

5. APPLICATIONS OF DATA MODEL
Since the quality-centric data model provides information about

“importance” of data streams (in terms of weight and utility) and
incompleteness of query results (in terms of recall), it can applied
in several ways. Next we describe three use cases: (1) to op-
timise query processing under resource shortage by carrying out
quality-aware load-shedding; (2) to replicate important operators
(and therefore associated streams) to deal with node and network
failures and (3) to estimate the correctness of query results.

5.1 Quality-aware load-shedding
When a node in a DSMS has a shortage of computational or net-

work resources while executing query operators, it becomes over-
loaded. Overload conditions are often transient since they may
be caused by variations in stream rates or resource consumption
by other processes executing on the node. For example, a sensor
source may increase its sampling rate after it discovered a signifi-
cant observation resulting in increased bandwidth consumption.

To relieve an overload condition, a node may have to drop tuples
in streams. Mechanisms for load-shedding can be found in many
practical DSMSs [24]. Different strategies and algorithms were
proposed in the past (a) to decide where to drop tuples in the query
to relieve overload, (b) to choose how many tuples to drop and (c) to
select which particular tuples to drop from the stream.

Without information about the significance of tuples in a stream,
most load-shedding mechanisms instruct nodes to drops tuples sim-
ply at random until the processing load falls below a given thresh-
old. Using the quality-centric model, a node can prefer to discard
tuples with low utility values from one or more streams. Since
low utility tuples contribute less to the final query result, the qual-
ity of query results does not change significantly after such tuples
were dropped. As a result, the DSMS is able to achieve better per-
formance with limited processing resources. We describe the im-
plementation of such a quality-aware load-shedder as part of the
Borealis system in Section 6.1.

A DSMS that attempts to load-balance operators across a set of
processing nodes may decide to compensate for load-shedding by
assigning additional resources to the overloaded operator. For ex-
ample, the DSMS may monitor the performance of each operator in
a query and decide to migrate or replicate an operator if the utility
of its output tuples decreases below a given threshold after load-
shedding. This threshold can be specified by the user or set by
the system given the amount of available resources that can still be
allocated for query processing.

When assigning additional resources to a poorly-performing op-
erator, the DSMS may either (a) migrate the operator to a new
node or (b) replicate it. When the operator is replicated, the system
can start a competition between the old node and the new replica
and observe which node produces streams with higher utility. This
competitive approach for operator replication has been proposed
previously to improve overall system reliability [16, 17].



5.2 Quality-aware fault tolerance
When processing long-running, continuous queries, DSMSs must

cope with network and node failures. A typical technique for achiev-
ing fault-tolerance in a DSMS is to use redundant processing of
streams by replicating operators on multiple physical nodes. Previ-
ous research in this space explored the practicalities of stream repli-
cation in terms of replication strategies and consistency guarantees
for replicated streams [16]. A hidden assumption in previous work
is that the system has enough spare resources to support redundant
processing. In a large-scale deployment environment with limited
resource availability, this may not be the case and the DSMS will
have to be strategic when deciding which operators to replicate.

The quality-centric model can enhance fault tolerance of the sys-
tem. Since the utility values of tuples in a stream specifies the con-
tribution of the stream towards the final query result, a DSMS can
use this information to decide where to spend resources for redun-
dant processing. If the utility values in a stream are high, users
should benefit more from replicating this stream. If failure occurs
affecting a single replica of a high utility stream, the system can
still keep the quality of the final query result unchanged.

Next we describe two mechanisms for selecting operators for
replication given a limited budget for additional replicas. In a proac-
tive mechanism (Section 5.2.1), decisions about replication are made
statically at query deployment time before failure occurs. The re-
active scheme (Section 5.2.2) uses the change in calculated tuple
utilities at runtime to decide whether to compensate for failures af-
ter they have happened.

5.2.1 Proactive replication
Queries in a DSMS are represented logically as abstract query

trees (see Figure 1). When the DSMS has to make a proactive
decision on replication, it is natural to look at the query tree to
evaluate the importance of streams. This is particularly important
in a resource-constraint environment since not all operators can be
replicated: it is crucial to spend resources on the most valuable
ones. In general, the importance of tuples increases as they moves
towards the root of the tree since they contain more information
and more computational resources have been spent on their pro-
cessing. A tuple in a base stream contains only simple sensor data
but a tuple close to the root may carry information computed after
aggregating data from a large number of sources. Intuitively, when
failure occurs at a node close to the root, the impact of data loss is
greater than when it happens close to the leaves.

A simple replication strategy would be to start replicating oper-
ators beginning with the root of the tree, then traversing the tree in
a breadth-first fashion. To achieve a dependable query processing
service, as many operators as possible should be replicated given
the available resources. However, such a replication strategy would
only provide an optimally outcome when the query tree is perfectly
balanced and all sources make an equal contribution towards the
query result.

In our quality-centric data model, we can provide a proactive
replication mechanism based on the weight of tuples in streams.
Weight can be estimated at query deployment time. The DSMS first
orders operators according to the weights of their output streams
and then replicates as many operators as possible starting with the
ones having maximum weight. The weight metric naturally cap-
tures the increase in importance of tuples flowing through the query
tree. The weight of tuples in a derived stream is calculated as the
sum of the average tuples weights in its input streams, thus being
minimum at the leaves and maximum at the root. Tuples become
more important as they propagate up the query tree. Streams with
the highest weight are likely to carry tuples with the highest utility

(a) All base streams have a default weight of 1.

(b) The base streams in the right branch have higher weights.

Figure 4: Unbalanced query plan with a replication budget of 2.
Different weight assignment result in different replicated nodes.

at execution time. By choosing these for replication, we increase
the ability of the system to deliver tuples with maximum utility to
the user.

An example of replication based on stream weight is shown in
Figure 4. In the case of an unbalanced query tree in Figure 4a,
replicating nodes just based on their distance from the root could
lead to bad decisions. Some operators may be equi-distant from the
root but carry tuples with different weights. By considering weight,
the right decision can be made. Figure 4b illustrates how a DSMS
may make different replication decisions, as the weights of tuples
in base streams are assigned differently.

5.2.2 Reactive recovery
When node or network failures occur in a DSMS, the system

may take action to recover from those failures. This usually means
creating new instances of the failed operators on unaffected pro-
cessing nodes with spare resources and updating the query accord-
ingly. Since the system may only have limited resources available
for new operator instances, it must make decisions about which op-
erators to recover and which to ignore. Especially in the case of
multiple node failures, the system has to decide which operators of
which queries should be recovered with higher priority.

Using the quality-centric data model, the utility value of tuples
in a stream can be used to decide in which order operators should
be recovered. The higher the average utility value of the stream
emitted by an operator, the higher its priority for recovery should
be. Therefore, if there are not enough spare resources, the system
should consider the historical average of utility values produced by
a failed operator. If this value is above a given threshold, it should
recover that operator. Otherwise it will deem the failure of this



operator acceptable. Overall this will help maximise the utility of
result tuples received by users.

5.3 Estimating correctness of query results
Based on information about the incompleteness of query results

and the semantics of query operators, it may be possible to estimate
the actual correctness of results for simple queries such as single
aggregations. These queries have a direct relationship between the
amount of missing information and the accuracy of the final result.
For example, if the recall value of Q2 from Section 3 is 0.6 and
the returned value is 60 mm of rainfall, we may estimate that the
correct result without failures should have be 60/0.6 = 100 mm of
rainfall (given the assumption that the amount of missing rainfall
in the result is proportional to the number of failed base streams in
the system). If the utility value of a query result is 0.9, the DSMSs
can notify users that even though failures occurred and the result is
incomplete, the true numerical value of the result is unlikely to be
significantly different from the returned value.

Although utility can be used to estimate the error for simple
queries, it is not a metric that can provide an estimate of the ex-
act error of any query. In general, the utility value of result tuples
has no direct correlation to the difference between the correct query
result and the returned one. This is because utility is defined in a
query-agnostic way. Instead, utility is an indicator of the overall
processing performance of the DSMS. When the utility values of
result tuples are lower than 1, the user is made aware that some
failure occurred during the computation and the amount of failure
is quantified as 1− U .

6. IMPLEMENTATION
To evaluate the quality-centric data model, we implemented it

within the Borealis stream processing engine [1]. Borealis is a
DSMS based on the Aurora processing engine [4] with advanced
features, such as adaptive query optimisation, support for load-
balancing and load-shedding and fault-tolerance mechanisms for
achieving high availability. Queries are presented using a boxes-
and-arrows model, in which boxes are query operators and arrows
represent streams between them.

The aim of our implementation was to extend any Borealis query
so that the system computes the metrics required by the quality-
centric data model. This is done by modifying the original query,
while retaining the same semantics. We implemented a query pre-
processor that parses the original query and generates a modified
version. First, the pre-processor changes the schema of tuples in
streams so that they carry weight and recall values. This is done
by adding two fields named weight and recall to the tuple
schema. Utility is not propagated in streams since it is calculated
only when needed. Next, the pre-processor updates the operators
in the query. Each Borealis operator has a specific way of updating
the quality metrics of tuples. We differentiate between three classes
of operators:

1. Single input, single tuple: First, we consider operators that have
a single input stream and only handle a single tuple at a time. Bo-
realis’ Map and Filter operators fall within this category. Such
operators are trivially supported because nothing needs to be done
as the recall and weight values are not modified.

2. Multiple inputs, single tuple each: A second class of opera-
tors generates an output stream based on multiple input streams,
processing exactly one tuple from each input stream window at a
time. This is the case for the Join, AuroraJoin and Union opera-
tors in Borealis. For Join and AuroraJoin, the quality metrics of
output tuples have to be re-calculated based on the values of two in-

Figure 5: New weight and recall values are calculated for 3 tuples
passing through an Aggregate operator. Tuple TA holds interme-
diate values that are corrected by an additional Map box. The final
output tuple TF contains the correct new values.

put tuples. Since exactly two tuples contribute to each new output
tuple, the new values can be calculated easily from within the oper-
ator simply by adding the weight of the two tuples and averaging
their recall. This is done based on Equations 2 and 6.

The Union operator creates a single combined stream from sev-
eral input streams of the same type. Since it only passes on tuples
without modification, only the weight of the tuples is updated ac-
cording to Equation 2.

3. Single input, multiple tuples: The third class contains the Ag-
gregate operator, which computes an output tuple based on all tu-
ples within a window. Here the computation of weight and recall
values is more complicated. It requires a modification of the struc-
ture of the query plan by introducing additional operators. The
necessary modifications are twofold: first the pre-processor adds
two expressions to the aggregate operator that calculate intermedi-
ate values. Then it attaches a Map box on the output to compute
the final recall value and restore the correct weight value. A Map is
necessary because we cannot calculate the new recall value directly
with one aggregate function. We illustrate the computation for the
Aggregate operator in Figure 6.

We adopted this two step approach in the computation due to
the different nature of the quality metrics. Recall is dynamic and
changes at query execution time based on the amount of dropped
tuples, while weight in our example never changes and can be cal-
culated during the pre-processing step. We exploit this observation
to minimise the overhead introduced by our extension by not recal-
culating weight dynamically. We investigate the overhead of this as
part of the evaluation in Section 7.1.

6.1 Load-shedding
In Borealis, load-shedding is done by inserting drop boxes into

the query plan. When the load manager in Borealis detects an over-
load condition at a processing node, it determines which operator
is causing the overload and adds a drop box operator on its input
streams. The drop box operator reduces the rate of incoming tu-
ples by discarding a given number of them. Two types of drop box
operators exist, RandomDrop and WindowDrop: the former dis-
cards a percentage of tuples at random, and the latter discards an
entire window worth of tuples, as specified by a set of parameters.



Figure 6: Three-operator Borealis query used for experiments, con-
sisting of 8 stream sources, 2 union operators and 1 join with asso-
ciated drop boxes. The 2 additional map operators are needed for
the computation of the quality-centric metrics.

The main issue with these drop box operators is that they are not
aware of the potentially different importance of tuples in a stream.

We extended Borealis with a new load-shedding operator called
UtilityDrop that discards tuples selectively according to their utility
values. It is a modified version of RandomDrop but inspects tuples
to extract the quality metrics and makes decisions based on their
utility. For every window of tuples, it calculates the amount of
tuples to drop N as

N = drop rate · window size (11)

where drop rate is the fraction of tuples in the window to be dropped
and window size is the window size. The UtilityDrop operator
then discards the N tuples with the lowest utility values in the win-
dow. By doing so, it manages to maximise the utility of the pre-
served tuples in the window.

7. EVALUATION
In this section, we describe the experiments and results of the

preliminary evaluation of our quality-centric data model as an ex-
tension to the Borealis stream processing engine. The goals of
our evaluation were two-fold: First, we wanted to investigate the
overhead introduced by adding quality metrics to regular Borealis
stream queries (Section 7.1). Second, we wanted to observe the
operation of the quality-aware load-shedding mechanism and com-
pare the quality of result tuples with and without our mechanism
(Section 7.2).

We ran all of the experiments on a Intel dual core 2.1 Ghz Linux
machine with the Summer 2008 distribution of Borealis. Our ex-
tensions of the Borealis code base were minor and only involved
writing in the order of a hundred lines of code to implement the
data model and custom drop box operators.

7.1 Operator overhead
In this experiment, we studied the performance reduction due to

our quality-centric model in terms of the increase in tuple delay.
As a micro-benchmark, we measured the performance decrease for
each operator after adding the quality metrics. For this, we exe-
cuted a synthetic query that chained 10 operators of the same type
together. We then measured the increase in tuple delay with our

Operator Increase in tuple delay
Join 1%
Map 1%

Aggregate 18%

Table 1: Micro-benchmark that shows the increase in tuple delay
for each operator due to the quality-centric calculation.
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Figure 7: Comparison of load-shedding with utility drop boxes and
with random drop boxes under varying tuples loss.

quality-centric data model.
We show the results for each type of operator in Table 1. As ex-

pected, there is almost no impact for stateless operators. In the case
of the Map operator, it only needs to propagate two extra fields.
Since the Join operator in Borealis always processes two tuples at
a time, the performance impact of an additional calculation is also
negligible. The only significant overhead occurs for the Aggregate
operator. This is due the insertion of an extra Map box, which is
needed to finalise the calculation of recall and to restore the correct
weight value, as described in Section 6.

7.2 Load-shedding
The next two experiments compare quality-aware load-shedding

to the regular Borealis load-shedding mechanism. In both experi-
ments, we executed the query shown in Figure 6. The query takes
the union of 4 temperature sensors T1–T4 and 4 rainfall sensorsR1–
R4 and after that computes a join. Drop boxes at the inputs of the
union and join operators can discard tuples when nodes becomes
overloaded. The additional map operators are needed to update the
quality metrics for the join, as explained in Section 6.

(1) In the first experiment, we varied the recall values of tuples
coming from source nodes uniformly at random between 0.5 and
1. This emulated imperfect data collection from the sensor sources.
The date rate of tuples from the sources was 10 tuples/second.
Next we performed runs with RandomDrop and UtilityDrop drop
boxes. All drop boxes were discarding tuples with a drop rate of
0.5 emulating an overloaded system.

The graph in Figure 7 shows the observed utility values of result
tuples with RandomDrop and UtilityDrop drop boxes over time.
The utility values give an indication of the completeness of the re-
sult data returned to the user. As can be seen from the graph, the
utility of result tuples for UtilityDrop remains higher on average,
compared to RandomDrop. Due to its drop strategy, UtilityDrop
discards lower utility tuples thus raising the average utility value of
the stream.

(2) In the second experiment, we investigate the impact of quality-
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aware load-shedding on the quality of the result tuples from a user’s
perspective. In this experiment we show that a quality-aware load-
shedding leads not only to an increase in the perceived utility but
also to more accurate results.

In the query in Figure 6, we assume that the temperature sen-
sors T1–T3 and the rain sensors R1–R3 redundantly measure the
same phenomenon. Sensors of each of these two types compete
with each other to deliver the highest number of readings. Each
sensor is impacted by adverse conditions, which we emulate by
varying the drop rates of the bottom layer of drop boxes. Samples
from temperature and rain sensors are combined using the Join op-
erator. The user is interested in maximising the number of joined
temperate/rain TxRy tuples that originated from the same sensor.
We assume that only samples obtained from the same temperature
(or rain) sensor can be compared in a meaningful way.

We present the results in Figure 8. The graph shows the num-
ber of tuples in the join result for each pairing of temperature/rain
sensors. The quality of the query result from the perspective of the
user is proportional to the number of tuples for the temperature/rain
pairing with the largest number of tuples.

We observe that in case of RandomDrop, the distribution is
fairly uniform, while for UtilityDrop the T1R1 tuples are repre-
sented in greater numbers in the result stream compared to the other
pairings. This means a more accurate result, as there are more mea-
surements coming from the same two sensors.

The increase in user-perceived result quality is also reflected by
our quality metrics. Due to the more frequently occurring pairing of
measurements, we can observe an increase in average utility in the
result stream. Using RandomDrop, we achieve an average utility
of 0.49, while with UtilityDrop the value is higher, namely 0.73.

8. FUTURE WORK
As part of future work, we will explore the potential of our data

model to estimate the correctness of query results in more depth.
Since correctness estimation requires not only meta-data about data
streams but also an understanding of stream and operator seman-
tics, it relies on assumptions about the underlying query and is
harder to achieve for any generic query. Given that non-trivial
queries involve multiple types of operators, we plan to examine
how users can provide additional input about error propagation in
their queries. The DSMS can then use this information to estimate
the correctness and accuracy of result tuples under the constraints
of imperfect processing.

In addition, we want to explore how our quality-centric data
model can support custom processing operators. In many appli-
cation domains of DSMSs, relational query operators alone are not
sufficient to express the custom processing needs of users. Here it
would be beneficial for users to define custom operators in queries
and specify how these operators may affect weight, recall and util-
ity of output tuples.

Finally, we are building a global-scale stream processing en-
gine that we intend to deploy on the PlanetLab test-bed [33]. This
prototype deployment is meant to show-case our ideas on quality-
aware, imperfect data processing on a large scale. We believe that
the resource-constraint PlanetLab test-bed will be a good environ-
ment to explore the benefits of intelligent load-shedding and fault-
tolerance given a limited set of computational resources and con-
stant node and network failures.

9. CONCLUSION
In this paper, we have described a quality-centric stream data

model that gives explicit feedback to the system and users on how
much data was missed in query processing due to failure and re-
source shortages. The data model tracks the importance of each
data stream towards the final query result. The basic idea of our
data model is to add meta-data, in the form of weight, recall and
utility metrics, to data streams. In general, weight and utility de-
scribe the importance of tuples in streams: weight measures the
importance of data based on the number of streams that are used to
generate an output stream, while utility evaluates the importance of
data in a stream with respect to the contribution of that stream to-
wards the final query result. The recall metric captures the amount
of data that was lost during query processing.

Based on our data model, we have sketched simple solutions that
perform quality-aware load-shedding when resources are limited,
provide fault-tolerance with both proactive replication and reactive
failure recovery, and estimate the correctness of query results. We
have implemented our proposed data model as part of Borealis,
a mature stream processing engine, and performed initial experi-
ments to evaluate the efficiency and effectiveness of the data model.
Our results indicate the benefits of a quality-centric stream pro-
cessing model in terms of quality-aware load-shedding and show
that these benefits can be achieved with an acceptable performance
overhead.
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