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Abstract—Security concerns are widely seen as an obstacle
to the adoption of cloud computing solutions. Information Flow
Control (IFC) is a well understood Mandatory Access Control
methodology. The earliest IFC models targeted security in a
centralised environment, but decentralised forms of IFC have
been designed and implemented, often within academic research
projects. As a result, there is potential for decentralised IFC to
achieve better cloud security than is available today.

In this paper we describe the properties of cloud computing—
Platform-as-a-Service clouds in particular—and review a range
of IFC models and implementations to identify opportunities for
using IFC within a cloud computing context. Since IFC security
is linked to the data that it protects, both tenants and providers
of cloud services can agree on security policy, in a manner that
does not require them to understand and rely on the particulars
of the cloud software stack in order to effect enforcement.

Index Terms—Cloud, data security, information flow, informa-
tion flow control (IFC).

I. INTRODUCTION

LOUD computing has matured into providing inex-

pensive, practical and on-demand access to computing
resources. It is realising utility computing—the vision of the
Grid and other distributed systems before it. One of the
least satisfactory aspects of cloud computing is the lack of
assurances about security. Unless cloud tenants are able to
trust cloud providers, the widespread use of cloud computing
solutions will be severely curtailed. The problem of cloud
security is challenging due to its wide range of legal and
technical facets.

The key technical challenge in cloud security stems from the
fact that cloud infrastructures combine heterogeneous software
and services written by multiple development teams with no
shared approach for guaranteeing data security. For example,
a cloud provider may rely on virtualisation to isolate the
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computations of different tenants but still share a single data
store across all tenants. Similarly, a data store may provide
facilities to isolate the confidential data of different users of
an application (e.g. via separate user accounts as supported by
most database management systems) but such functionality
is not typically exposed to tenant applications. Traditional
security practices such as access control [1], [2] Chinese
Wall [3] and promising technologies such as homomorphic
encryption [4] are already being used or considered in cloud
environments, but are unable to achieve the flexibility, gener-
ality and efficiency expected by cloud providers and tenants.

As a solution, we argue that data-centric security mech-
anisms such as Information Flow Control (IFC)—and De-
centralised IFC (DIFC) in particular—have the potential to
enhance substantially today’s cloud security approaches. We
envision future secure cloud computing platforms that support
the attachment of security policies to data and use these
policies at runtime to control where user data flows.

Such data-centric security mechanisms, which track or
enforce information flow, can improve cloud security in many
ways. First, developers are given the ability to coordinate with
the cloud provider and control how user data propagates in
a cloud platform. This facilitates compliance with regulatory
frameworks. Second, multi-tenancy, i.e. the practice of sharing
services between cloud tenants, becomes more secure because
the cloud platform can impose checks to enforce security poli-
cies despite flaws in the services themselves. Third, tracking
data flows across different services offers the cloud provider a
way to log sensitive operations on tenant data rigorously, thus
improving accountability.

In this paper we investigate the feasibility of deploying IFC
as part of the next generation of secure cloud infrastructures,
as proposed in [5]. We review research on information flow
tracking and enforcement and evaluate data-centric security
models. Our contribution is to show that despite the open
challenges that remain to be addressed, IFC models and
implementations can lead to practical and more secure cloud
computing infrastructures.

Section II gives an overview of cloud computing architec-
tures and an introduction to IFC. We also describe the current
status in cloud security, and suggest cross-cutting legal and
technical concerns relating to the protection of user data. A
discussion of the design space of IFC systems follows in
Section III, which introduces various comparison criteria for
IFC systems and the relevance of these criteria to IFC in the
cloud. In Section IV, we review security threats that IFC
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may not be able to mitigate. Section V describes existing
systems that leverage IFC as suggested by ourselves and
others. We summarise the challenges for deploying IFC in
cloud environments and conclude in Section VL.

II. BACKGROUND

In this section we give an overview of the three main
categories of cloud service provision (IaaS, PaaS, SaaS). For
each, we discuss the typical approaches used to secure them.
We then introduce Information Flow Control and discuss
cross-cutting legal and security concerns.

A. Cloud Computing and Security

Cloud computing [6] is the latest incarnation of utility
computing: the notion that computing services can be provided
in a manner that is abstracted away from the computing
resource itself. A key aspect is the sharing of resources to
increase their utilisation: the consequent economy of scale
offered to cloud providers allows them to sell slices of resource
on demand in a cost effective manner. Over the years, tech-
nology developments and tradeoffs often caused computing
provision to switch between centralised and decentralised
computing. In the early days, processing machinery was bulky
and expensive, so resources had to be shared to make them
cost-effective. Users often accessed mainframe computers
using shared “dumb” terminal devices. The personal computer
shifted processing closer to the user but as communication
bandwidth increased the advantages of remote server provision
re-emerged.

The Internet had always provided some remote access but
increasing bandwidth made it necessary to consider computing
beyond firewall-protected local administrative domains, giving
rise to new security concerns. Web-based, Service-Oriented
Architectures took the provision of computing to a global
scale. The Grid [7] explicitly draws an analogy between
performing computing and the electricity grid. Users should
be able to plug in and do their computing work with little
or no attention to how the distributed computing is actu-
ally orchestrated. While grid technologies were popular for
scientific infrastructure, they did not have great commercial
impact. Cloud computing gained significant momentum with
widespread user adoption of dynamic websites (e.g. for e-
commerce). These were typically hosted on servers with PC-
compatible architectures and were decoupled from infrastruc-
ture, as the development and deployment of high-efficiency
PC hardware virtualisation surged.

Cloud service offerings are typically divided into three
broad categories: Infrastructure as a Service (IaaS), Platform
as a Service (PaaS), and Software as a Service (SaaS). There
has been a recent proliferation of other “Something-as-a-
Service” varieties, but they have not reached critical mass
compared to the three we describe. Fig. 1 illustrates the
services of each cloud type, and their relation to tenants.

1) Infrastructure as a Service (laaS) Clouds: laaS cus-
tomers rent computing resources directly. This form of cloud
computing allows tenants most flexibility over the software
they use but requires most effort from them: they are respon-
sible for the configuration and customisation of the resources.

SaaS T t: > *
| Specific application services .
PaaST t > Security
Specific languages and services Management
Specific libraries and runtime services Monitoring
Middleware: Inter-process communication Accounting
IaaS T t: > Audit
| Hypervisor: Supports VMs and possibly VM IPC
l Hardware: data center facilities (machines, disks, network) ¢

Fig. 1. Cloud service levels and the points of tenant interaction.

TaaS was the first widely available commercial cloud type,
initiated by Amazon’s launch of their EC2 service,! and made
possible by the widespread availability of efficient open source
hardware virtualisation [8]. Other notable providers include
Rackspace,? Joyent,> Google, and Microsoft. IaaS resources
are usually provided to tenants in the form of Virtual Machines
(VMs). There have been significant recent developments in the
management of VM templates, which ease the deployment of
new VMs.

In terms of security, the operating systems and software run-
ning on the VMs generally need to be managed no differently
than on physical, dedicated servers. The exception to this is
“paravirtualised” device drivers that are installed into the VMs
to increase efficiency. These drivers are necessarily aware of
running in a VM. Instead of using expensive emulated device
access they typically interact directly with the VM host via
some agreed channel. However, there is little that an IaaS user
can do other than trusting the paravirtualised device driver
authors, or choosing to use much slower virtual hardware via
native device drivers. [9], [10] discuss a possible scheme to
create a cross-VM side-channel to extract information from a
co-resident. As in most systems, an administrator may be a
security risk [11].

The key trusted computing base is the hypervisor, or virtual-
isation host. However, IaaS clouds seldom allow manipulation
of the underlying hypervisor configuration. The correctness
of the hypervisor has to be assumed, although Microsoft’s
collaborative efforts to automatically verify a hypervisor [12]
are providing significant advances in that area.

2) Platform as a Service (PaaS) Clouds: PaaS customers
must develop their applications using languages and service
APIs specified by the cloud provider. The supported languages
are typically those most popular for web-development. The
services provided include facilities such as key-value stores,
relational databases, caching systems and various platform-
specific functionalities.

For example, the Google App Engine,* supports three pro-
gramming languages (Python, Java and Go) and provides APIs
to interact with Google accounts, send e-mail, manipulate
images and use various types of persistent storage.

A major incentive for cloud tenants to use PaaS services is
that the APIs often give a “scale out” capability, transparently
deploying more or fewer resources as required. The tenant
need not be concerned with how the PaaS system achieves
expansion under high load. Achieving equivalent scalability
of infrastructure in an IaaS context would involve setting up
services on a large number of VMs.

Uhttp://aws.amazon.com/ec2/
Zhttp://www.rackspace.co.uk/
3http://joyent.com/
“https://developers.google.com/appengine/



BACON et al.: INFORMATION FLOW CONTROL FOR SECURE CLOUD COMPUTING 3

Achieving high confidence regarding security within PaaS
infrastructure is challenging. The services on offer are gener-
ally highly heterogeneous, varying in their security offerings,
and are often sourced from other projects, which cannot be
reengineered. This makes it difficult to achieve consistent
security engineering. Further, the scalability of PaaS, and the
economy of scale offered to PaaS providers, often mean that
software systems are shared by multiple tenants simultane-
ously. Each service and language environment must separately
have its isolation properties verified.

3) Software as a Service (SaaS) Clouds: SaaS customers
use applications and/or data hosted by the cloud provider.
Often the data being manipulated will remain within the cloud,
which avoids the comparatively slow Internet links between
the tenant and the SaaS provider.

Google Mail,> Google Drive® (previously Google Docu-
ments), Microsoft Office 3657 and Salesforce® are examples
of such services. Unlike IaaS or PaaS offerings, users of SaaS
clouds need little technical knowledge. Individual users are
unlikely to distinguish SaaS from other types of web-based
service. For organisations, a SaaS offering may be customised
for the tenant by the SaaS provider. Any further customisation
available to the tenant will be using configuration methodolo-
gies designed by the SaaS provider.

B. Information Flow Control

Models of secure data access are often classified into
Mandatory Access Control (MAC) or Discretionary Access
Control (DAC) systems. Traditional and common models such
as Access Control Lists (ACLs), capability systems and Role-
Based Access Control (RBAC) are DAC systems, meaning that
the owner of the data can modify access permissions. DAC
systems achieve protection by controlling access to resources.
Their implementations often focus on where access control
checks are performed in the code of an application. Data
is protected as a function of access control checks in the
APIs provided to interact with that data. Problems with DAC
approaches are that (i) it may be possible to bypass access
control checks, especially in web-based systems [13] and (ii)
data can propagate or influence system behaviour indirectly in
ways that are disclosive, but which access control barriers at
discrete points in code do not detect.

MAC systems differ as security policy is defined for the
entire system, typically by administrators. Information flow
control (IFC) is a MAC approach, developed originally from
military information management methodologies. IFC is data-
centric, and achieves protection by associating security labels
with data, in order to track and limit data propagation. The
labels are also associated with principals in the system. IFC
security policy defines permitted relationships between the
labels of data and the labels of principals requesting access
to data. That is, data protection policy checking can be based
on comparing the label(s) associated with the data with the
labels held by principals. A simple example from traditional

Shttps://mail.google.com
Shttps://drive.google.com
http://www.microsoft.com/en-us/office365/
Shttp://www.salesforce.com/

military-style security practice is permitting unprivileged users
to pass information to privileged users, but not read privileged
information (so-called “no read up, no write down”) with
matching restrictions on the privileged users. In this case,
IFC labels such as public, secret and top-secret would be
associated with data items and principals and used to enforce
the required security policy.

1) A Model for Centrally Specified IFC: In 1975 Denning
[14] proposed a model for secure information flow. The
information flow model F'M is defined as:

FM =< N,P,SC,®, —>

where N = {a,b,...} is a set of logical storage objects or
information receptacles: files, memory segments or program
variables depending on the level of detail. P = {p,q,...} is a
set of processes, which are the active agents responsible for
the flow of information. SC' = {A, B, ...} is a set of security
classes corresponding to disjoint classes of information. A
security class a is bound to an object a. Processes are also
bound to a security class named p and are often bound to the
security clearance of the user running that process. @ is the
class combining operator, an associative and commutative bi-
nary operator, which specifies for any pair of operand classes,
the class in which the result of any binary function belongs.
The class of a binary function f(a,b) is a @ b. By extension
the class of any n-function f (a1, ...,a,) is a1 @...®a,. A flow
relation — is defined on a pair of classes. We write A — B
if and only if information is authorised to flow from class A
to class B.

Consider a function f (a1, ..., a,) and an object b associated
with security classes a; & ... © a, and b respectively. In order
to write the result of f(a1,...,ay) into bthen a; ®...Ha, — b
must hold true. For part of the military-style policy described
above, we can define security classes public and secret and
three authorised flows public — secret, public — public and
secret — secret. Suppose b = public; then the result of
f(aq,...,a,) can be written into b if and only if none of the
a; are secret. In general, a process p is allowed to read a if
the flow @ — p exists.

IFC can be used to enforce more general policies, using
appropriate labelling and checking schemes. The labels can
be used to manage both confidentiality and integrity concerns,
tracking “secrecy” and “quality” of data, respectively, where
quality relates to the trustworthiness of the source of any data
rather than accidental corruption, e.g. by hardware. Secrecy
concerns where data is permitted to flow to, and integrity
where it is allowed to come from. IFC implementations must
ensure that labels can be allocated to principals but not be
forged by them, can be allocated and ““stuck” to data, and that
label checking enforces security policy regarding all aspects
of information flow. We discuss alternative approaches to
implementing these aspects of IFC in later sections.

Practical IFC systems usually cannot work with policies
that only allow data to become more restrictively labelled,
for example secret data passed to a principal with fop-
secret clearance becomes top-secret when incorporated at that
level. There are situations where privileges should be relaxed,
for example, to enable the public release of (previously)
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classified governmental data, perhaps as a result of some
legislation, court order, a verified data desensitising process
(e.g. anonymisation), or elapsed period of time. A system of
privileges operates to introduce carefully controlled additional
components into the Trusted Computing Base that can modify
labelling contrary to the default restrictions. For example,
the privilege to override “secrecy” IFC restrictions is known
as the declassification privilege. Nonetheless, IFC remains
a methodology that is enforced continuously and is secure
by default when compared with DAC schemes. We survey
different IFC implementations in later sections.

IFC models for some applications have a fixed set of labels,
as in the military example above. For more general IFC
systems—perhaps provided by an operating system, middle-
ware platform or language system—new classes of security
concern may arise after the IFC system has been deployed,
giving rise to the need for new types of label to be introduced
dynamically. The representation and enforcement of security
policy must be capable of incorporating these new label types.

DIFC models address this need, permitting different parts
of the IFC system to introduce new labels into the runtime
system, and for the existing security policy to be enforced for
these new labels as in the static case.

2) A Model for Decentralised IFC: In 1999 Myers [15]
introduced the notion of security label to replace the security
class of Denning’s model [14]. Clearance levels are considered
too coarse-grained, permitting unnecessary access and have
been replaced by the “need-to-know” principle, also known as
Principle of Least Privilege [16]. Therefore, in Myers’ model,
the owner specifies the authorised readers of the data.

Given an owner o7 and a list of authorised readers 71, ..., 1y,
the label is represented as L = {o; : ri,...,m,} and the
information can only flow between o; and the specified readers
or between those readers. Consider two objects a and b with
respective labels L, = {01 : r1,72} and Ly = {02 : 71,73}
These labels are shown in the first two rows of Fig. 2.
The “Authorised Flow” group on the right-hand side of each
row in the figure indicates the principals that can interact
for data labelled with L, and L;. Now consider a function
f(a,b) that combines data labelled with L, and L;. The
result of the function f(a,b) will be associated with the label
Li@py = {o1 : r1,72 5 02 @ 71,73} and therefore will be
authorised to flow only towards r; (bottom right of Fig. 2).

It seems that a central authority is not needed in such a
model since data flow policy is user-specified (discretionary)
rather than centrally mandated. However, system support is
needed at runtime for the continuous checking of data flows. In
order to declassify an information item, all owners must agree

to remove their policy. This principle of declassification again
appears to remove the need for a central authority, as every
owner is responsible for its own policy. But since the processes
running on behalf of a principal o;, or the precise hierarchy
of principals, is only known at runtime, declassification also
requires runtime support. In this model, users specify data
protection policy and rely on the runtime system to enforce it.

C. IFC within Cloud Services

We believe that DIFC is of particular relevance to the
cloud, and indeed to any complex distributed system, as in
these systems the security infrastructure will typically have an
independent and longer life-span than the applications being
managed on the platform.

For ITaaS, there will be situations that require collaboration
across IaaS services, e.g. when tenants wish to share data. IFC
provides the means for managing and securing information
flows both within and between virtual machines.

For PaaS, IFC potentially provides a security abstraction
that is at an ideal level of granularity: mandatory security
checks will occur at the interfaces between the software com-
ponents provided by the PaaS platform, including interactions
between tenants. DIFC is even more desirable, as it would
allow applications to define their own independent security
terminology dynamically.

For SaaS, IFC is of more relevance to the engineering of the
SaaS software itself than to the tenants of SaaS clouds. The use
of IFC by SaaS providers would increase tenants’ confidence
that their data is being compartmentalised correctly. The
engineering of SaaS-providers’ software to use IFC is similar
to that for IaaS and PaaS. However, the extra expressiveness
of DIFC might not be needed, as the SaaS provider would be
able to define the set of security labels in use centrally.

D. General Cloud Security Concerns

Individuals and organisations that use cloud services to
store their sensitive data generally rely on the provider to
maintain an appropriate level of security. However, it is often
the case that agreements (SLAs) between cloud providers
and tenants are silent with respect to security guarantees, or
even disclaim many types of service responsibility. Further,
the global nature of cloud services brings jurisdiction and
regulation considerations, which can directly influence the way
in which data is managed and governed, in addition to raising
issues concerning liability, enforcement, and compensation.

We highlight below some cross-cutting technical security
concerns: multi-tenancy, access control enforcement and ac-
countability. We first present some current regulatory issues.

1) Regulatory Framework: Governments have shown con-
cern about widespread use of cloud services. Here, we give a
selection of current recommendations by several nations.

Enforcement of the data protection policies of cloud ten-
ants is of great importance for companies wishing to push their
data or services to the cloud, as they are ultimately responsible
for the use and security of their users’ data [17]; it is their re-
sponsibility to ensure that the policies they define are correctly
enforced [18]. In the US, it is a requirement for a company
storing medical data to ensure its availability, integrity and
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privacy [19], [20], including any medical-related information
a company may have about its employees. Privacy-preserving
laws within the EU and elsewhere have caused companies
manipulating private information (e.g. Google and Facebook)
to be faced with the threats of numerous lawsuits.

Another key issue is compliance with respect to the rules
imposed by a regulatory agency [21], [22] or law [17], [23].
A company hosting data should be able to provide documents
concerning data (logs, etc.); this is known in computer foren-
sics as e-discovery [24]. Furthermore, proposals for European
Regulation [22] specify that a cloud provider should comply
with this regulation and demonstrate this compliance, includ-
ing by way of adoption of internal policies and mechanisms for
ensuring and demonstrating such compliance. The report by
CNIL (French National Board on Information and Liberties)
[21] suggests that corporate rules should be bound to the data.

There are also issues concerning the physical location
of data. That is, certain information may be required to
be stored and/or processed in a location that falls under
a particular jurisdiction. Locality requirements may derive
from the data owner, who seeks to operate under a specific
regulatory regime. Alternatively, such requirements may be
legally mandated.

The US Patriot Act [25] and EU legislation [21], [22]
restrict where data can flow. French regulation enforced by
CNIL forbids copy or transfer of private information outside
the European Union, with the exception of a limited number
of countries that enforce similar laws (Argentina, Canada,
Israel, etc.) and to US companies enforcing Safe-Harbor.
Furthermore, CNIL [21] specifically recommends that cloud
providers limit flow of private information to locations that
have been agreed through a contract with the tenant.

Currently there is no generally available technical mecha-
nism for a user to specify constraints on where his data can
be stored, or even to know where it is stored.

DIFC provides a means to control and monitor data flow
continuously, according to policy. We therefore believe that
DIFC may be a useful tool to help cloud providers comply
with regulation—and audit this compliance—more easily in
future. Later sections expand on these possibilities.

2) Multi-Tenancy: Multi-tenancy, where a number of ten-
ants share the same infrastructure, may be used by any of
the three forms of cloud described above. As such, there is a
need to ensure that information from a given customer cannot
flow to another, whether or not tenants are actively seeking to
view others’ data. Note that a tenant may be hosting a multi-
user service on cloud infrastructure. IFC supports isolation of
individual users’ data, not just inter-tenant isolation.

It is possible that a bug or error in the infrastructure
design inadvertently allows a user to access the private data
of another. Secondly, a user may observe a change in public
data while knowing that another user is running concurrently,
allowing inference about the concurrent user’s data. This case
is addressed by non-interference policy [26], which states that
private data should not affect (or interfere with) public data.
IFC mechanisms can help enforce non-interference policies.

3) Access Control: A security challenge faced by com-
panies and institutions wishing to delegate the hosting of
sensitive data to a cloud provider is the management of

data isolation data flow tracking data flow enforcement
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Fig. 3. IFC data isolation, data flow tracking and enforcement between two
applications.

access rights. The cloud interface may have a less subtle
and comprehensive view of access control than is required
for the application. Examples are many and varied, including
medical health records, customer records of companies, per-
sonnel records, and commercial design documents. The cloud
provider’s staff may be granted access to perform maintenance
on the database or in order to provide technical support, which
could cause privacy issues [11], [27]. A way to avoid this
problem might be to encrypt the data stored in the database.
Although some progress has been made towards performing
queries on encrypted data [4], [28], [29], existing solutions
either require the database to know the encryption key to
perform the query [28] or impose limitations on supported
queries [4], [29]. Until this issue is resolved, there is perhaps
unacceptable risk involved in storing personal or commercially
sensitive data on public clouds. IFC would allow applications’
access control policy to be carried through to runtime and
to provide a self-contained expression of a tenant’s data
management requirements.

4) Accountability: There is a lack of accountability on what
operations are performed on tenants’ data in the cloud. A
tenant should have the right to know if its data has been
misused, mishandled by the provider, or transmitted to third
parties without its consent. In general, the tenant cannot ensure
that the policy agreed with the provider is respected. Even if
a tenant trusts its cloud provider, it has no contract with or
control over the actions of any third party cloud providers.
There is a lack of standards relating to interoperability between
cloud providers.

Since IFC tracks all data flows in order to detect policy
violations it also has the potential to provide detailed logs for
audit purposes.

III. INFORMATION FLOW CONTROL SYSTEM DESIGN

In this section we examine and classify the IFC design
space with a view to cloud deployment. Cloud computing has
particular needs in terms of information flow security. Fig. 3
illustrates possible requirements for two cloud-hosted, inter-
acting applications. Data isolation must be provided between
compartments of the applications, and data flows tracked
and/or enforced on input, output and inter-compartment and
application communication.

We discuss how these can be achieved by using the follow-
ing four criteria as a basis for comparing IFC provision.

A. When the system operates, (static, runtime, hybrid)

B. How the system isolates data, (e.g. hardware-assisted

OS and virtualisation mechanisms, programming
language and library mechanisms)
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C. How the system tracks data flow across isolated
data, (e.g. domain level, process level, variable level,
message level) and

D. How the system uses the output of data flow tracking
to enforce data flow (how policy is specified, the
structure of label metadata, and the declassification
of security data)

Security engineering involves tradeoffs between security
and efficiency. The designers of IFC systems will select their
threat models to inform any compromises they need to make
within the IFC design space. In the following sections we
discuss threats against which IFC systems provide protection,
followed by a discussion in §IV of threats that are not covered
by most IFC systems.

A. Options for When an IFC System Operates

1) Static Methods: Static methods for data flow analysis,
while not directly relevant to the runtime enforcement of
IFC in the cloud, can be used for certifying that cloud
software components and their interactions are safe before
their deployment. In the case of PaaS for example, this may
allow a verified trusted base to be developed on top of which
cloud tenants can build their applications.

We outline two representative examples: taint analysis, and
security-typed languages, presenting references for further
detail. This is not an exhaustive coverage of static methods;
e.g. we do not cover symbolic execution techniques [30]-[32],
nor the use of theorem provers to verify IFC policy [33]-[35],
which can be useful for ensuring information flow control
within applications [15], [36], [37]. See [38] for a survey of
languages for information flow.

a) Taint Analysis: Taint analysis [32], [39]-[41] is a
method for identifying the illicit use of untrusted data. Its
techniques are similar to those of source code data flow
analysis [42]. The original notion of ‘tainting’ relates to
the risk of potentially damaging data being introduced into
software by malicious users. It is a common programmer
error to treat user input as ‘safe’ internal data whereas it
is potentially ‘tainted’ data which must be sanitised before
it can be treated as safe. This can lead to serious security
problems. Taint analysis usually works at the granularity of
programming language variables, and tracks whether or not
each variable is potentially ‘tainted’, (e.g. it has incorporated
potentially dangerous user data). Taint analysis can help ensure
unsanitised data is never used directly in system calls, or other
constructs that might facilitate user attacks via tainted data. For
example, SQL queries must be considered potentially tainted
in order to prevent SQL injection attacks.

The main limitation of taint analysis is the lack of runtime
information. This means that static taint analysis needs to be
pessimistic regarding program structures, such as conditional
branches. This pessimism often leads to an over-conservative
analysis of where tainted data propagates within software.

In a cloud context, cloud tenants’ software is generally not
amenable to static taint analysis, since it is often deployed
dynamically. Also, a protocol would be needed for reporting
back taint analysis results, coupled with a means for tenants
to provide code path assertions to improve the usefulness of
the taint analysis results.

b) Security-Typed Languages: Security-typing has been
the subject of several research projects [43]-[46]. In their
seminal work Volpano and Smith [47] suggested augmenting
a traditional language type system with data flow annotations.
This allows developers to express confidentiality and integrity
data flow policies that are enforceable by the compiler. This
work inspired Jif [15], [48], which uses the JFlow policy
language. Jif is described as a security-typed language, as
data flow requirements are explicitly declared as part of
the type of each variable. This enables the enforcement of
non-interference [26]—where data belonging to one security
category cannot interfere with another—to ensure confiden-
tiality and integrity as appropriate. Further, as programs are
composable, they can be combined into a larger program
that also enforces non-interference [38]. Jif has influenced a
number of languages, such as FlowCaml [37], and systems
[49]-[51] that we discuss in §V.

Jif [15], [52] extends Java by adding DIFC labels to its
type system. The compiler examines all program statements
based on the DIFC labels of the variables involved and the
semantics of each Java operation. The compiler ensures that
data associated with a certain label does not reach a variable or
a communication channel with a more permissive label. If this
happens the compiler generates compilation errors. The com-
piler then generates a program with additional runtime taint
tracking mechanisms—1Jif is therefore a hybrid system by our
classification criteria. The generated program propagates data
according to the data flow requirements stated by the labels. It
is able to run on an unmodified Java Virtual Machine (JVM).

Adoption is a major issue for security-typed languages
because developers would have to use a novel programming
language, with static typing and low-level, label-based data
flow policies, for writing or rewriting applications. For this
to be feasible, such languages must offer sufficiently rich
libraries, and users must have access to training and support
or specialist, trained developers.

Static techniques have their place in IFC systems, for
example for verifying the correctness of long-lived IFC system
components. Ensuring that the data of dynamically arriving ap-
plication components is accessed and transferred as specified
by policy is more challenging.

2) Runtime IFC Methods: Runtime enforcement of IFC in
the cloud is the main focus of this paper. First, we outline a
simple runtime technique, taint tracking.

a) Runtime Taint Tracking: It is a minimal form of IFC; a
technique for analysing and enforcing data flow in applications
[53]. It assumes only two types of data: tainted/untainted
which might be secret/public (to capture confidentiality) or
untrusted/trusted (to capture integrity). The tainted data often
represents user input data which is untrusted and should not
be used in sensitive sections of the code. Other tainted data
could be sensitive information that should not leak out of the
application or should flow only through well-defined channels.

Taint tracking became of interest to the research commu-
nity through its use to prevent cross-site scripting or SQL-
injection [54]-[59] or to detect suspicious information flows
in applications [60]-[66]. When such a flow is detected,
the system could either generate a report, perform automatic
data sanitisation or terminate the execution depending on the
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purpose of the application concerned.

Runtime taint tracking is a simple technique for developers
to understand and use. While it can involve a specific security
language, conceptual simplicity has motivated research on
systems that expose taint tracking to developers as a stand-
alone security mechanism [49], [50], [58], [67]. Such systems
use developer input to devise a data flow policy and then
restrict processing as a result of that policy. Assuming that
the part of the system that enforces data flow policy has been
implemented without error, correct data flow is ensured in any
application built on top of it. Thus, in contrast to security-
typed languages, this allows developers to continue to use
familiar languages, only having to learn how to interact with
the taint tracking system.

b) Runtime Label Tracking: Taint-tracking systems can
be seen as the simplest form of runtime IFC. More gen-
eral runtime IFC methods will manage many different, and
possibly orthogonal, notions of data security in their label
metadata. For both taint and more general label tracking at
runtime, the program statements that an application executes,
as well as their execution order, are known. These include
statements generated dynamically, e.g. when fetching code
at runtime from remote locations. At runtime, the results of
program statements are also known to the tracking system.
The analysis therefore can focus on the current execution and
not on alternative paths, which may never affect data flow (but
noting implicit flow—S§IV-A). These properties render runtime
tracking suitable for data flow analysis in large systems written
in dynamic languages, which are hard to analyse statically.

B. Data Isolation

Data isolation is a prerequisite for effective data flow track-
ing. It prevents the application from exchanging data using
mechanisms that are not explicitly controlled or monitored by
the runtime IFC system. When data exchange is monitored by
the IFC system, the results of data flow analysis do not contain
false negatives (i.e. data flow that occurs in the application but
is not detected by IFC tracking).

To achieve data isolation, the system first separates the
analysed compartment from its environment. All outside com-
munication must be inspected by the IFC system, if it is to
prevent any unmonitored access to external data.

A cloud-specific isolation concern is the need not only to
isolate tenants’ use of resources, but also to support tenants’
abilities to provide multi-client services. Here, isolation of
individual clients’ data is required, while allowing the sharing
of data when appropriate for the application needs.

There are many ways in which isolated compartments can
be created, a selection of which we cover below.

1) Hardware-Assisted Isolation by the OS: All common,
modern operating systems provide at least some support for
isolation of software systems. At the very least, there is a
separation between kernel and user-space. For a long time
many monolithic kernel designs caused the whole kernel to
be a trusted computing base (however technologies such as
SELinux are beginning to change this). This isolation is usu-
ally hardware-assisted, e.g. memory protection mechanisms
and ‘ring levels’ at which code runs within CPUs.

With large trusted computing bases, it is difficult to adhere
to the Principle of Least Privilege (POLP) [16]. POLP would
ideally require applications to be programmed as components
with appropriate privilege separation. Runtime IFC instead
allows for the POLP notions to exist in the IFC policy, and
unmodified applications checked against that policy.

Most operating systems provide additional isolation facili-
ties such as Unix-style “chroot” tools, to limit the accessibility
of the filesystem to contained processes.

It has been observed [68] that application authors generally
find working with such mechanisms too cumbersome, so they
create application code that is significantly over-privileged.
Any vulnerabilities can then have significant impact on the
applications. It is argued that the OS should support IFC
directly instead of offering only general features on which
to build POLP.

2) Isolation via Virtualisation: Data isolation can be
achieved using virtualisation technology by placing the IFC
system “below” all the software and hardware running unmod-
ified application code. The virtualisation framework modified
for IFC support need not be that used by the cloud hosting
provider. For example, in Argos [69] the QEMU [70] virtu-
alisation framework is modified to extend the target code so
that it defines isolation regions and checks information flow
metadata. This is useful for analysing unmodified binary code,
such as malware, but has the downside of executing 15-30
times slower than the original code.

In contrast, the Flicker project descends below the OS and
the hypervisor to form an independent but minimal trusted
computing base supported by new hardware features [71]. The
CLAMP system [72] works in a similar way, using lightweight
VMs to add isolation to unmodified web applications. Simi-
larly, Payne et al. [73] control data flows between different
VMs running on top of Xen [8].

3) Isolation in Programming Languages and Libraries: For
IFC systems built with static methods, data isolation is usually
defined by attaching IFC metadata to existing compile-time
software elements.

More dynamic methods of language-based IFC will rely on
features of the runtime system, for example the taint-tracking
facilities in the Perl and Ruby languages.

Finally, it is possible to gain many IFC benefits without
requiring a modified runtime environment, simply through
disciplined use of libraries—although isolation will not be
strictly enforced in such cases. For example, shared-nothing
actor frameworks [74] and the disciplined use of specific APIs
to interact with the environment can provide isolation.

C. Data Flow Tracking

Assuming the isolation of data can be achieved, the next
key aspect of IFC systems is tracking how data propagates
throughout the application. IFC systems generally have a
mechanism to classify each isolated component with respect
to its required security properties.

The data flow tracking part of any IFC system is responsible
for maintaining accurate metadata as data moves between the
isolated components. Other parts of the IFC system will be
informed about the tracked flows, and can react appropriately.
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One key design decision in any data flow tracking system
is the granularity at which the tracking operates. Since IFC
systems are designed for a certain granularity of tracking
defined by the IFC model, in most cases it is not possible for
code using the IFC system to alter this granularity. There is a
predictable design tradeoff: using a finer granularity provides
more precise information about the data movements in the
application, but causes higher overhead.

Operation of a data flow tracking system involves:

1) intercepting the exchange of data,
2) inspecting the intercepted data, and
3) updating information flow metadata as necessary.

Since the tracking operations must be invoked at every data
exchange, it is crucial that their operation is efficient. Further,
it is particularly important to track data flows into and out
of the information flow system—e.g. when software interacts
with external storage or other processes.

IFC tracking can be made more efficient simply by reducing
the number of interaction points that are monitored. Working
at a domain level allows most interactions between software
components to proceed: an example might be kernel and
user-space domains. This matches the common need to track
interaction between application software and the underlying
operating system.

A more fine-grained approach is process level tracking, e.g.
as used by Asbestos (§V-B2). However, this will not track the
fine-grained interaction of data within software in the manner
of the variable level tracking within Jif (§I1-B2). Our work on
the DEFCON (§V-C1) and SafeWeb (§V-C2) systems shows
that event-based systems provide another level at which to
track data flow: at the message level.

As discussed in §IV, there are still likely to be potential
side-channels of communication that are available to malicious
processes regardless of the data flow tracking granularity.

D. Data Flow Enforcement

The enforcement part of IFC systems involves IFC policy
being checked, and action taken if such a policy is violated
by a given data flow. Note that checking policy may be more
resource intensive than just tracking data flows, see §III-C.
This is why many IFC systems choose to perform enforcement
only on key isolation boundary crossings, even if the policy
restrictions could theoretically have been enforced earlier.

Any enforcement approach must first allow a means to
specify policy. One common approach is to define a “can-
flow-to” relation among DIFC labels, for example using JFlow,
or tag-based approaches (see §V-B1). For IFC systems that
aim to assist cooperative developers, such as Resin (§V-D1),
an alternative is to allow these developers to write their own
policy checking code, as part of their application.

In systems with explicit security labels, there are still many
options for the structure of label metadata. At one end of
the spectrum are systems with single-bit taint metadata. At the
other end are DIFC label systems that maintain integrity and
confidentiality information.

IFC systems enforce data flow policy at a particular
granularity. For static IFC systems, compile-time errors can
indicate that developers’ software violates IFC policy. For

example, if potentially tainted data input from outside the
compiled software was being used in sensitive system calls, the
software needs at least to ensure sanitisation of the potentially
tainted data.

Simple runtime taint tracking systems can enforce domain-
specific policies with little, if any, input from the application
administrator or user [13], [75], [76]. Such a ‘fixed policy’
approach allows cloud providers to ensure a base level of
security, and is particularly useful for the administrators of
TaaS and SaaS cloud services, as the respective application
developers and users have minimal input into or control
over the platform. IFC approaches that allow applications to
manipulate labels (to various degrees) [49]—[51], [58], and
control the actions of checking operations [77], suit PaaS
services as they enable application developers to customise
the management of their data flows.

Finally, the data flow enforcement within many IFC systems
provides a means to declassify data to lower levels of secrecy,
or endorse data to higher levels of integrity. As discussed
above in §II, most practical applications cannot have data only
increasing in secrecy while losing integrity. Declassification
(or endorsement) privileges provide software components with
a way to modify the security labels attached to data in a man-
ner that reduces security. However, they also mean that, for
example, a system can produce public output, when sensitive
intermediate data has been vouched as being appropriately
desensitised. Clearly the use of such privileges expands the
trusted computing base, and must be done with care.

IV. THREATS TO IFC SYSTEMS

IFC is a robust access control methodology, but not a
security panacea—this section explores some threats that IFC
does not typically protect against. For many IFC systems,
though the environment is considered hostile, the application
code is generally considered not to be explicitly malicious,
even if the threats may be caused by implementation errors
[59]. For instance, taint tracking systems commonly assume
a benevolent developer [56], [77], that is, a non-malicious
developer that does not actively try to evade tracking. This
assumption reflects the fact that runtime taint tracking systems
cannot guarantee that all data flows are monitored effectively.
This assumption may or may not be safe to hold in multi-
tenant cloud contexts, depending on the relationship between
tenants and the cloud provider. We now explore some threats
that are not commonly addressed in IFC systems.

A. Implicit Flow

One of the weaknesses of runtime information flow control
is the difficulty of tracking implicit information flows [78]-
[81]. Explicit flows from x to y, noted x = y are caused by
passing data between variables, for example: y := x mod 2.
An implicit flow of information arises from the control
structure of the program, for example
X := X mod 2
y =0
if x=1theny :=1
illustrates the implicit flow x = y equivalent to the explicit
flow y := x mod 2.
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It is possible to track such an assignment by introducing
a process sensitivity level [82], in which case the assignment
of y can be detected at runtime. We could consider that any
variable modified within the if statement (or any function
called from it) must be assumed to create an information flow.
However, in the case x = 0, no value is assigned to y and
therefore no flow is detected even if it exists.

It is possible to prevent such flows remaining unnoticed by
applying the label from the if to any assignment happening
after the if statement. However, this means that the number of
labels assigned to variables will increase [81] often unneces-
sarily. This leads to data with higher sensitivity than intended,
known as label creep [1]. The following example illustrates
this phenomenon:

X := X mod 2

z = z mod 2

y =0

w =0

if x =1 then y:=1

if z =1 then y:= 1

w:= x mod 2
From the Denning model, described in §II-B, we expect that
w = z; that is, X and w are of the same security level.
However, if we enforce process sensitivity levels, we have
w = x & z even if we know there is no z = w.

To address the concerns brought by the benevolent de-
veloper assumption, it has been suggested that an implicit
flow can be prevented by the preemptive halting of program
execution [79], [83], [84]. However, this could prevent legit-
imate applications from terminating [80]. Therefore, to deal
with potentially malicious code, variable-level runtime taint
tracking can be combined with static analysis techniques [76].

B. Other Covert Channels

A covert channel is an unintended method of communi-
cation and thus violates, or operates outside of, a security
policy. With respect to IFC, any unmonitored data flow is
considered a covert channel [85]. Clearly, implicit flows may
give rise to a covert channel, though arguably these are
more easily identified than those that arise from the appli-
cations’ runtime behaviour. Storage channels [86], [87] are
covert channels where communication occurs through (read-
ing/writing to) a shared resource, while timing channels [86],
[87] concern communication through the timing of particular
operations. In the case that an attacker is able to observe
program termination or non-termination, a program of the
type do something() while(h=1) is not safe [88]. This is known as
a termination channel. Probabilistic channels can be defined
as follows: interference rules [26] stipulate that private data
should not interfere with whether or not a given event occurs;
however, this does not stipulate that such private data cannot
interfere with the probability at which such an event occurs
[89], [90].

Side channels refer to the leakage of information through
sanctioned use of the system. In contrast to covert channels,
which are illicit, side channels refer to the unintended leakage
of information through use of the system in a manner consis-
tent with data flow policy. For instance, knowing when/where

data of a particular classification is communicated might reveal
sensitive information, even if one cannot access the data itself.

We highlight these risks to ensure a false sense of security
is not bestowed on DIFC approaches: IFC is just one piece
of the cloud security puzzle. There are approaches that can
help address the above security threats, but many are so highly
disruptive (e.g. synchronisation approaches to reducing timing
channels) they are infrequently used. If they are necessary,
they can be applied in parallel to DIFC models.

V. DIFC SYSTEM IMPLEMENTATIONS

Here, we summarise selected work on implemented DIFC
systems that could contribute to adoption of DIFC within
the cloud. Their features relevant to cloud deployment are
compared in Table I. We cover IFC systems that operate in
hardware then some implementations of IFC within operating
systems. All share or have gained inspiration from Myers’
Jif DIFC label model (§II-B). IFC implementations at the
middleware level and as language libraries are then described.
Finally, we consider IFC provided at these system levels
for possible integration with the IaaS, PaaS and SaaS cloud
architectures described in §II-A.

A. IFC Protection in Hardware

Some IFC schemes target custom hardware. RIFLE [91]
translates normal binary code to run on hardware that supports
IFC tracking. To avoid the pitfalls of implicit flow inherent
to all dynamic systems, see §IV-A, all implicit flows are
translated to explicit flows. Suh et al. [92] present a hardware
mechanism to track information flow. The authors modify how
standard instructions behave to propagate tags and add an
additional cache to store those tags. CPU registers have an
additional bit to denote tagged data.

B. IFC Enforced by Operating Systems

When IFC is enforced by Operating Systems, IFC tracking
is typically done at the process level. Processes and persistent
data are labeled, and labels are propagated when persistent
data is accessed and when inter-process communication oc-
curs. Asbestos (2005) [49], [93] is a fully IFC-capable OS,
albeit with a non-standard interface. Flume (2007) [51] runs
on top of a slightly modified Linux OS and intercepts system
calls to enforce IFC. DStar [94] enables IFC in distributed
systems, by translating the security labels between instances
of IFC-enabled OSs. Aeolus runs Asbestos [95] across a
distributed system by providing cross-host communication and
IFC tracking.

1) Flume: Flume [51] runs on top of a modified Linux OS,
intercepting system calls to enforce IFC. Its label model draws
on that of Jif [48] but is less complex than Asbestos.

Flume uses tags and labels to track data in the system. A
tag ¢t simply serves to carry some information; e.g. tag a may
represent Alice’s private data. A label L is a subset of the tags
available in the system. Each Flume process has an associated
label for integrity I and for secrecy S. If a process p has seen
Alice’s data associated with tag a then its secrecy label S,
is such that @ € S,. In order for p to publish any data to
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Fig. 4. The Processes of the Asbestos Web Server [49]. Blue, pink and
purple represent trusted, untrusted and semi-trusted processes respectively.

the public, it requires the agreement of Alice (and any other
tag owner in Sp). If a process has an integrity label I, such
that a € I, this process is only allowed to read data with a
label I; if a € 1. Objects (such as files or directories) are
represented as processes with immutable labels.

Each process has a set of capabilities. Two types of capabil-
ity are associated with a tag ¢: t*, which allows a process to
add the tag to its labels, and ¢, giving the privilege to remove
it. For secrecy, tT allows a process to receive data associated
with ¢ and protect data sent with that tag, while ¢t~ allows
processes to declassify data. Regarding integrity, ¢+ enables
a process to endorse itself as high-t-integrity, while ¢~ allows
it to receive low-t-integrity data.

Although Flume has the advantage of supporting a standard
OS and programs, this also means that it is vulnerable to any
security flaws inherent in those systems. It cannot establish
the same trusted computing base as a dedicated DIFC OS.

Laminar (2009) [96] takes a similar approach to Flume at
the OS level, adding a security module to standard Linux. In
addition, the JVM is customised to support thread isolation
and object protection. Airavat [97] is an example of cloud
services running above Laminar; it makes the Hadoop file
system and MapReduce DIFC aware.

2) Asbestos: Asbestos [49], [93] is an OS prototype that
provides labelling and isolation in order to bound exploitable
software flaws. Each process P has a send label Ps and
a receive label P,.. The send label represents the current
contamination of the data being sent, and the receive label
the contamination a process is willing to accept from another.
Labels are composed of a default access/privilege level and
a number of handles (h), each handle comprising a unique
identifier and an access level. Access levels can take values
0, 1 (untainted), 2 (partially tainted), 3 (tainted) and * which
indicates the declassification privilege.

Process P is able to send data to @ only if P; T @,,
that is, iff VA Ps(h) < @,(h). When the process ) re-
ceives data from P its send label is changed such that
Qs < Qs U Ps. LU is the least upper bound operator, i.e.,
(QsUPs)(h) = max(Qs(h), Ps(h)). Similarly when a process
reads a file from the trusted file system or from the network
it is contaminated by the file and can only send a message to
another process which accepts this level of contamination. For
a process to receive data with a certain label the system must
raise the receive label of this process to the appropriate level.

A process can create a decentralised compartment and can

create other processes with labels such that they can only
reveal information to other processes in that compartment.
The process that created the compartment can declassify
information in that compartment or delegate the right to do
so. This enables the implementation of POLP [16].

A web server was built on top of Asbestos to illustrate its
ability to enforce DIFC in highly concurrent applications [49].
Its architecture, shown in Fig. 4, is relevant to cloud deploy-
ment, as we will discuss in §V-E. The server is composed
of a number of dynamic untrusted workers, each with a
particular task such as logging, retrieving data, or changing
passwords. The demux, a trusted process, analyses incoming
requests and directs them to the relevant worker. The idd is a
trusted process that verifies user credentials and system state.
Each worker, maintains an isolated—through labels and event
processes—cache for each user. A trusted proxy manages
database access, associating each table row with a particular
user. The declassifier worker is semi-trusted; if compromised
it could leak the compromised user data, but could not access
uncompromised data.

HiStar (2006) [50] extended Asbestos to avoid the possi-
bility of covert channels caused by the implicit modification
of taint levels. HiStar also provides a user-space level library
emulating a Unix-like OS interface.

3) DStar: DStar [94] enables IFC in distributed systems
by leveraging the labelling mechanisms of IFC-compliant op-
erating systems. To facilitate tracking across machines, DStar
involves translating a local machine’s security labels into a
set of globally-meaningful labels. Each machine maintains an
exporter that tracks the labels of the local processes, and
enforces data flow policy when interacting (via messages)
with other machines. DStar can operate over a range of OSs,
including HiStar, Flume and (trusted instances of) Linux.

4) Aeolus: Aeolus [95] deploys a common trusted com-
puting base (TCB) on every node of a distributed system.
It is based on Asbestos, extending the Asbestos design for
distributed communication. Each application thread runs on
behalf of a principal. Applications run on top of the trusted
base, which filters I/O, inter-thread and external communica-
tions, enforcing the policy associated with the data.

C. IFC at the Middleware Level

Integrating IFC mechanisms within middleware means that
policy can be enforced against all applications’ interactions us-
ing that middleware. IFC security can be exposed as an explicit
service provided by the middleware, and/or the middleware
may use IFC internally to act as a safety-net to mitigate against
erroneous or insecure application behaviour. As the role of
middleware is to mediate between applications and lower-
level system (OS/Network) concerns, it is more amenable
to managing distributed applications, as heterogeneous OS
support is often a development goal.

1) DEFCoON: In previous work, we explored data-centric
security mechanisms in several domains. The DEFCON sys-
tem [98] adds strong object isolation to Java without impacting
the efficiency of object sharing. In particular we introduced the
notion of Decentralised Event Flow Control (DEFC), which
focuses on the IFC requirements of event-based systems. Our
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DEFC model uses labels similar to Flume, but applies them
in parallel to different parts of messages. These multipart
messages can then be passed between isolates using software
developed using an event-driven paradigm.

DEFCoON is implemented in Java, and runs on an unmod-
ified JVM. It provides efficient inter-isolate communication
using a combination of static and runtime techniques. As a
middleware, DEFCON provides an API that applications can
be developed against. However, to strongly enforce isolation,
the system goes further than providing middleware: additional
runtime data flow containment instrumentation can be installed
using Aspect], an aspect-oriented weaver. A static analysis
phase ensures that isolates cannot communicate using channels
such as the many thousands of static variables maintained
by the Java runtime environment.

We show that DEFCON can be used to provide a secure,
low-latency, centralised event processing middleware for fi-
nancial trading applications.

Our DEFC approach generalises beyond Java: a similar
approach to the message-based information flow control in
DEFCoON was implemented in the Erlang language [74].

2) SafeWeb: SafeWeb [59] is a middleware that aims to
mitigate against policy violations in multi-tier web applica-
tions. It uses IFC to track data flows through all tiers of
the web application infrastructure, in order to ensure end-
to-end data confidentiality and integrity. SafeWeb consists
of an event processing backend, that deals directly with
the processing of confidential data, and a web frontend that
manages application (or client) requests. By decoupling web
requests from the processing of data, implementation issues in
the logic handling web requests cannot result in inappropriate
release of confidential data. The architecture is illustrated in
Fig. 5.

The event processing backend is responsible for directly
handling the data of the confidential datastore. The backend
encapsulates data in events, which are associated with ‘sticky’
labels to enable tracking throughout the system. Event Pro-
cessing Units (EPUs) generate, process and filter events in
accordance with the system’s functional requirements, and
are responsible for labelling the events they produce. The
event dispatcher acts as a broker to distribute events to those
EPUs that are willing and able (by comparing labels and
privileges) to process them. EPUs can generate result events,
which along with their labels, are exported to a database in
the web frontend. In this way, the flow of information from

the confidential (main) database to web requests is indirect,
and unidirectional. The Event Processing Engine manages the
overall process by checking and tracking labels, and restricting
access to the environment by managing the privileges assigned
to EPUs.

The web frontend operates to serve requests by querying
the local datastore that holds the data, and associated labels,
as a result of backend processing. The taint checker uses
these labels to effect confidentiality at the frontend, where a
requesting client may only access a variable’s contents if they
hold the privileges allowing access to the associated label(s).
This approach means that data flow policy is enforced in a
manner transparent to web applications.

D. Library-Level IFC

Library-level IFC systems track explicit flow of information
within a web application by extending a given language with
IFC related features. These features include the ability to
define “sandboxes” for containing labeled data, to associate
labels with variables and define policies to be applied to
labeled data.

The purpose of these systems is to prevent SQL injection,
cross-site scripting and to protect users’ sensitive information.

1) Resin: Resin is a runtime taint tracking system for
PHP web applications, which improves server-side security
and can be used to guarantee user-data privacy [58]. Resin
provides mechanisms to help programmers implement IFC
assertions. Filter objects define data flow boundaries that can
be interposed at I/O interfaces or on a function call interface.
Sticky policies can associate data with a policy that application
programmers have defined themselves. The programmers rely
on the Resin label tracking system to propagate those policies
throughout the application (however the programmer must pay
particular attention to implicit flow, see §IV-A).

Programmers are able to write filters and policies in their
usual application language (PHP) which will likely ease the
adoption of such techniques. Filters enable a programmer to,
for example, prevent user passwords being leaked out of the
application, and by using appropriate policy, programmers
can ensure that certain data is automatically anonymised or
sanitised when leaving the application.

2) PHP Aspis: The PHP Aspis tool [54] uses a simpler
approach than Resin: Aspis marks all user generated data
with a “taint” and propagates this taint across the application.
Some critical methods are modified (such as echo or print)
to present specific behaviour when faced with tainted data.
This is done by performing code-to-code translation of the
source code of executed software. Thus, PHP Aspis does not
require a modified language runtime, and does not require that
software be written to be aware of PHP Aspis. The tradeoff
against Resin is a reduction in expressiveness and control from
the point-of-view of the programmer.

3) Bello et al.: Bello et al. [57] use a Python taint library
[99] that extends the Python language to support taint track-
ing without the need to modify the interpreter. The library
specifically targets applications running on the Google App
Engine (a PaaS cloud). Applications can specify policy that
will be applied to tainted data, in a similar manner to Resin.
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TABLE 1

COMPARISON OF DIFFERENT CLOUD-RELEVANT FACETS OF EXISTING DIFC SYSTEMS
Implementation Tracking Granularity Interface Distributed?  Re-engineering Effort Label expressiveness
RIFLE [91] Memory page Hardware No Large Confidentiality
Suh et al. [92] Memory page Hardware No Very Large Taint
Flume [51] Process Linux-Like No Large Integrity & Confidentiality
Laminar [96] Thread, object Linux-like No Medium Integrity & Confidentiality
Asbestos [49], [93] Process Custom No Large Integrity & Confidentiality
HiStar [50] Process Linux-Like No Large Integrity & Confidentiality
DStar [94] Message & Process  Linux-Like Yes Large Integrity & Confidentiality
Aeolus [95] Process Custom Yes Large Integrity & Confidentiality
DEFCoN [98] Message Custom Yes Large Integrity & Confidentiality
SafeWeb [59] Message Custom Yes Large Integrity & Confidentiality
Resin [58] Variable Library N/A Medium Programmer-defined
PHP Aspis [54] Variable Library N/A Low Taint
Bello et al. [57] Character level Library N/A Low Taint

However, their IFC only supports single-bit taint tracking,
rather than more complex labels. One of the advances of this
work over the two preceding systems is that it provides a
library that modifies the interface with persistent storage to
allow the persistence of taint information.

The work of Bello et al. is not the only project aiming
to support persistence of taint information: DBTaint provides
database interface libraries in several languages to propa-
gate character-level taint into the database [56]; the work of
Pasquier et al. [100] propagates more complex labels such as
those described in Resin, but at the database row level.

E. Potential for IFC Provision within laaS, PaaS and SaaS

Table I summarises the features of the above IFC implemen-
tations with cloud deployment in mind. The unit of isolation
is implied by tracking granularity e.g. process, thread, object.
Hardware-supported IFC is considered out of scope for our
study, since it will only be feasible within real-world cloud
deployment when integrated into commodity CPUs. It is not
inconceivable that this will happen soon: hardware virtuali-
sation support appeared very rapidly, and prototypes such as
the Capability Hardware Enhanced RISC Instructions platform
(CHERI) [101] have demonstrated incremental integration of
hardware-supported isolation.

We explore how the different schemes’ IFC designs relate
to the three main types of cloud provider:

IaaS: The software running on VMs provided by laaS hosts
can usually ignore their own virtualisation. Since network
connectivity is provided between VMs, any fine-grained dis-
tributed IFC implementation, such as HiStar, can be run by a
tenant over laaS$ infrastructure agnostic to its hosting. However
in this case, the cloud host must be fully trusted.

More interesting cases would involve the cloud provider
participating in the IFC, and the client VMs exposing labels.
Given that the security of the virtualisation hypervisor is
critical, it is unlikely that IaaS providers would modify it
directly, but IFC at the network level might allow the cloud
provider to give some form of guarantee on the flow exchanged
between different instances from the same tenant or between
instances belonging to different tenants. The IFC software
would still need to be a distributed variant. This would be
a logical extension of the network controls provided by IaaS
operators, e.g., the Security Groups provided within services

such as Amazon EC2. Currently, these only effect firewall
configuration, but they indicate an appropriate place at which
to manage inter-VM IFC.

Most distributed IFC systems would require a significant
reengineering effort to use. This would be at odds with IaaS
allowing clients to offload computing to [aaS VMs with a view
to minimising their management effort. While IaaS provides
many opportunities for IFC use, it does not present one clear
route for such usage.

PaaS: We believe this is the most promising cloud architec-
ture type in which to integrate IFC support. Applications typ-
ically need to be modified, at least in part, to use PaaS APIs,
so their developers can consider exposing labelling semantics
when doing this redevelopment. PaaS APIs usually provide
services to facilitate storage and communication, and thus
the PaaS provider is well positioned to intercept and manage
requests that would need IFC checks performed on them.

Process, thread and message-level IFC tracking granularity
are likely to work effectively. For example, Laminar provides
an IFC-enabled OS that supports process isolation, and a
modified Java virtual machine that guarantees thread isolation
runs above the OS. It therefore become possible for a cloud
provider to allow tenants to run Java applications in an IFC-
aware environment. The PaaS provider can manipulate the
JVM container to effect elasticity based on tenants’ needs.

The components within PaaS designs—such as the car-
tridges that execute on RedHat OpenShift gears—are likely
to match parts of an application that should run with different
privileges. For example, the number of gears in a typical
web application is likely to correlate with the number of
components in the Asbestos web server illustrated in Fig. 4.

The PaaS provider will need to isolate tenants from each
other. However the IFC mechanisms that the provider uses to
achieve this isolation can themselves be provided for tenants to
use to isolate their own clients’ concerns. This would facilitate
collaboration between multiple tenants or their clients with
controlled information disclosure.

The PaaS provider needs to see the components that make
up an application, and understand how they interact. This
type of specification may help to reduce the effort required to
integrate security into an application, as the security concerns
may be able to be woven into existing code by a specialist.
This is seen in the IFC schemes implemented using Aspect
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Oriented Programming (AOP) weavers, such as Aspect] for
Java or Aquarium for Ruby.

SaaS: Clients are often unaware of how SaaS providers’
software works, and do not depend on knowing this. Thus,
SaaS providers can use any IFC system that meets their
needs, including systems such as Flume OS that would require
significant reengineering effort to deploy.

An interesting emerging avenue for IFC relates to clients’
interactions with the SaaS provider (this also holds, to a
lesser degree, with providers of the other cloud types). Much
of our discussion assumes that the cloud provider is trusted
not to leak information. However, increasingly, services are
expected to interconnect. Just as technologies such as OpenID
and OAuth have been developed to effect distributed authen-
tication and authorisation, SaaS applications may promote
development of external representations of IFC labelling, that
facilitates the interoperation of IFC-enriched cloud services.

VI. CONCLUSIONS AND FUTURE WORK

We believe that DIFC is most appropriately integrated into
a PaaS cloud model—which can be tested by augmenting
existing open source implementations such as VMware Cloud-
Foundry® and Red Hat OpenShift.'?

We have discussed how DIFC has been used to protect user
data integrity and secrecy. In order to apply these techniques
to a cloud environment a number of challenges need to be
overcome. These include: selecting the most appropriate DIFC
model; policy specification, translation, and enforcement; audit
logging to demonstrate compliance with legislation and for
digital forensics. DIFC should not impose an unacceptable
performance overhead and it is important that application
developers using cloud-provided IFC are aware of the trust
assumptions inherent in the IFC provision. We plan to address
these challenges in our future work.

Security concerns are a major disincentive for use of the
cloud, particularly for companies responsible for sensitive
data. We believe that augmenting existing approaches to cloud
security with DIFC is a promising way forward.
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