
Outsourcing Multi-Version Key-Value Stores with

Verifiable Data Freshness

Yuzhe Tang

Georgia Institute of Technology

Atlanta, GA, USA

yztang@gatech.edu

Ling Liu

Georgia Institute of Technology

Atlanta, GA, USA

ling.liu@cc.gatech.edu

Ting Wang Xin Hu Reiner Sailer

IBM Research Center,

Yorktown Heights NY, USA

{tingwang, xinhu, sailer}@us.ibm.com

Peter Pietzuch

Imperial College

London, UK

prp@doc.ic.ac.uk

Abstract—In the age of big data, key-value data updated by
intensive write streams is increasingly common, e.g., in social
event streams. To serve such data in a cost-effective manner,
a popular new paradigm is to outsource it to the cloud and
store it in a scalable key-value store while serving a large user
base. Due to the limited trust in third-party cloud infrastructures,
data owners have to sign the data stream so that the data users
can verify the authenticity of query results from the cloud. In
this paper, we address the problem of verifiable freshness for
multi-version key-value data. We propose a memory-resident
digest structure that utilizes limited memory effectively and can
have efficient verification performance. The proposed structure
is named INCBM-TREE because it can INCrementally build a
Bloom filter-embedded Merkle TREE. We have demonstrated
the superior performance of verification under small memory
footprints for signing, which is typical in an outsourcing scenario
where data owners and users have limited resources.

I. INTRODUCTION

In the big data era, data sources are generating intensive
data streams in terms of both high arrival rates and large
volumes. Such streams are widely observed in system logs,
network monitoring, social events, among many others. To
digest such streams, which is beyond the capability of a
normal data owners, a popular new method is to outsource
the processing to the cloud. As shown in Figure 1, processing,
storage and query serving of the data stream is outsourced
to a number of servers inside the cloud, which substantially
reduces the effort of the data owner.

A cloud infrastructure, while being capable of handling
big data, may not be fully trusted: owners should not assume
that a third-party cloud will act as it claims. In an outsourced
scenario, owners have to sign the outsourced data in order to
protect its authenticity. In other words, the data user who issues
the query to a cloud should be able to verify that the query
result includes authentic copies of the data, as published by
the original data owner.

In our targeted applications, we consider a data model of
multi-version object in a key-value format. In particular, an
object is of an unique row key k and of multiple overwriting
versions, each version associated with a value v and a unique
timestamp ts. The query model focuses on the snapshot read,
which is based on the Get operation of generic key-value

Outsource

Data users

Cloud

Query

Data owners

Fig. 1: Outsourced data system in the cloud

stores. Given a data key k and timestamp ts, it returns the
oldest object version before ts and of key k. Its API is defined
as below,

VGet(k, ts) → {〈k, v′, ts ′〉} ∪ π (1)

Here, π is a proof presented by the cloud to the data user who
issued the query. π is used to verify data authenticity in two
aspects:

• Correctness: The server cannot alter data without
being noticed. Each 〈k, v′, ts ′〉 in the result is the same
as the original data published by owners.

• Freshness: The server cannot omit a fresh data version
without being noticed. In other words, the result
version ts

′ is indeed the newest version for key k as
of time ts.

In this work, we address the problem “how to authenticate
snapshot queries on an intensive stream with correctness and
freshness.” This problem is unique and different from existing
streaming authentication work. Proof-infused streams [1] do
not consider data freshness while considering range queries
on ordered keys. Prior work [2] addresses result freshness
of streaming data, but in the context of aggregation queries.
CAT [3] addresses a similar query model as our work, but
freshness is provided by expensive update-in-place actions,
which does not work in an intensive stream scenario.

II. APPROACH: INCBM-TREE

To securely publish an intensive data stream, we follow the
common wisdom to partition the stream into multiple windows
or data batches, and for each batch to build a digest and apply a



digital signature. In this framework, we propose a new digest
structure called an INCBM-TREE. The motivation is based
on the observation that data owners with limited memory can
only build a key-ordered Merkle tree with constrained size. In
key-ordered Merkle trees (e.g., as used in [1]), the data in a
batch is first sorted based on a key, after which the Merkle
tree digest is constructed. Since all data has to be kept in local
memory before signing, the batch size is constrained by the
local memory size. On the other hand, batch size is crucial to
the verification overhead on the user side: the bigger the batch
size, the fewer signatures need to be verified, thus reducing
the latency of authenticated query processing. Therefore, we
propose the INCBM-TREE based on a time-ordered design,
i.e., we construct the Merkle tree on the raw data stream with
records in their arrival order. This way, the digest or Merkle
tree can be constructed incrementally, significantly reducing
the memory footprint.

Time-ordered Merkle tree is not enough: Our starting
point is a time-ordered Merkle tree. Consider an example
where a stream has 4 key-value records, 〈ts = 1, k =
10〉, 〈2, 15〉, 〈3, 14〉, 〈4, 11〉, and a 7-node Merkle tree (with 4
leaf nodes) can be built on top of this key-unordered list. Given
a snapshot query on key 10 as of now, the Merkle tree can
prepare a proof of authentication path from leaf node 〈1, 10〉
to verify its correctness. On the other hand, the freshness is
not easy to prove: verifying that record 〈1, 10〉 is the newest
version of key 10 is equivalent to presenting a proof for “non-
membership” of key 10 in the data list after time 1, i.e.,
to prove that 10 is not in the list of 15, 14, 11. To prove
this, a Merkle tree can do nothing more than exhaustively
returning the whole list. This approach is inefficient and when
the queried data refers to a stable version that has not updated
in a while.

The Structure of INCBM-TREE: Based on the observa-
tion that a BLOOM FILTER is a summary for (non)-membership,
we propose to combine a BLOOM FILTER with a Merkle tree
for efficient verification of both correctness and freshness.
The structure of an INCBM-TREE is illustrated in Figure 2a.
Compared to the traditional Merkle tree, each tree node in
an INCBM-TREE maintains not only a hash digest but also
a BLOOM FILTER that summarizes the key set in the subtree
rooted at this node. For instance, a leaf node 6 maintains a
BLOOM FILTER BF 6 summarizing key 14 on node 6 and a
hash digest h6. Given node 3 which is the parent of two leaf
nodes (node 6 and node 7), its digest is a BLOOM FILTER

of the union of its child nodes’ BLOOM FILTER, namely
BF 3 = BF 6 ∪ BF 7. In addition, the hash digest is the hash
value of the concatenation of all children’s’ hash and bloom
filters, i.e., h3 = H(h6‖h7‖BF3). Generally, an INCBM-
TREE uses the following construction:

BF (parent) = BF (left child) ∪BF (right child) (2)

h(parent) = H(h(left child)‖h(right child)‖BF (parent))

Here, in different levels in the tree hierarchy, we consider a
BLOOM FILTER of the same length.

Proof construction and verification: To enable verifi-
cation of a query result of VGet, the INCBM-TREE needs
to be consulted to construct a proof. To describe the proof
construction, we start with the ideal case where the BLOOM

FILTER is without error. Following the previous example, in

1

32

54 76

h3=H(h6||h7||BF3)

BF3=BF6UBF7

h7
BF7

h6
BF6

10

1

Key

Timestamp

15

2

14

3

11

4

(a) The INCBM-TREE structure

Data 

stream

Batch 

digest

(b) Incrementally construction

Fig. 2: INCBM-TREE internals

order to provide a proof for result freshness, it suffices to return
only two nodes, i.e., node 5 and node 3 in Figure 2a. Since the
BLOOM FILTER BF 3 can answer non-membership queries of
a given key in the subtree, and digest h3 can be used to verify
authenticity of BF 3. Note that the BLOOM FILTER may contain
errors—in the case that non-membership cannot be provided
at certain levels, we may need to descend into lower levels so
that non-membership can be guaranteed.

Incremental construction: As mentioned earlier, the
time-ordered digest allows for incremental construction. We
describe the incremental process of constructing a INCBM-
TREE. It is done by maintaining a “frontier” of the INCBM-
TREE, a sequence of roots of subtrees. As illustrated in
Figure 2b, when new data in the stream arrives, it tries to merge
the data with the existing node at the same level. Initially the
new data record is at leaf level 0. Merging two INCBM-TREE

nodes involves the calculation in Equation 2. If it succeeds
in merging, the merged root is promoted one level up and
replaces the existing node. A similar merging attempt is tried
iteratively until it does not find other existing roots at the same
level or the root is reached. The constructing entity only needs
to maintain the frontier roots, but not their descendants. The
batch digest is produced by exporting the highest subtree with
its root hash. Notice that the subtree is always complete and
balanced.

III. SYSTEM: MATERIALIZING INCBM-TREE

We implement the proposed INCBM-TREE in a client-
server system for outsourced stream serving. The system has
two client libraries, which are deployed at owners and users,
respectively, allowing them to sign and verify the outsourced
stream. The server hosts the outsourced stream and runs on a
number of machines in the cloud.

Owner client: We show the system architecture of the
owner in Figure 3. Given a stream of data writes, the client
invokes a RPC call Write that writes the data to the remote
server. At the same time, it locally constructs the digest. It first
buffers a batch of data writes and then (more specifically, when
the buffer overflows) flushes all the pending data, building a
batch digest that includes the root hash of the key-ordered
Merkle tree and the bloom filter of this data batch. Recall that
the digest based on the key-order Merkle tree cannot work with
large batch sizes. This digest of small batches is then sent to
the INCBM-TREE construction component, which can build a
digest of larger batches. When the INCBM-TREE construction
component completes, it will export a digest of a logic tree in
which the upper part is an INCBM-TREE and the lower part



Data stream

Stream signer library Query engine

Cloud

Digest builder

KoMT IncBM Signature

R

P

C

Stream writer

R

P

C

Put
Key-value stores (HBase)

Get

R

P

C

0/1

R

P

C

Data owner
Data user

Digest 

reproducer
Result 

prover
Result 

verifier

Fig. 3: Outsourced system architecture based on HBase

consists of multiple regular key-ordered Merkle trees. After
that, the client invokes the Sign RPC call, which first signs
the exported digest using a digital signature and then writes
the signed data to the remote server. The two RPC calls used
by the owner client have the following function signature in
our system:

• Write(k, v, ts): Given data key k, it inserts or updates
this row to be value v.

• Sign(d, tslast, tsnow): Given a batch of data in time
period 〈tslast, tsnow〉, the owner client would generate
certain digest d, on which the Sign operation signs.

The owner-side client system is designed to be a generic
platform which a user or system administrator can configure
regarding which stream-signing approach to use. By changing
the buffer size, one can use the pure key-ordered Merkle tree
or the INCBM-TREE, or their combinations.

Cloud server system: As shown in Figure 3, the cloud
server is structured into a two-tier system architecture. An
application server is responsible for data coordination, while
a storage server persists the streaming data and metadata (i.e.,
the signatures and digests). On the write path, the application
server digests the write stream of data and metadata and sends
them to the storage servers. In addition, the digest structures
(i.e., INCBM-TREEs and Merkle trees) are not transmitted, as
they can be reproduced from the base data stream.

The storage tier uses a write-optimized key-value store
(e.g., HBase, Cassandra or BigTable). These stores adopt a
log-structured design [4], which lends themselves to persisting
the intensive data stream. A key-value store typically exposes
a Put/Get interface. There are multiple tables for storing
different kinds of data and metadata. The original data is stored
in the base table, which is sorted by the data key. To store the
signatures, we use the generation time as a signature’s primary
key and store it in the signature table. To store the reproduced
digest, we explore two design choices:

• Storing digests in the signature table: By default,
the digests, after being reproduced by the application
server, are stored in the signature table by application
servers issuing the Put call to key-value stores.

• Caching digests in the base table: When the appli-
cation server receives a VGet call from clients, it

retrieves the digest and signatures from the signature
table to construct the proof for verification. In this
process, we allow the retrieved digest to be cached
on the base table, which facilitates the processing of
repeated VGet requests in the (near) future.

User client: The user system, designed as in Figure 3,
processes a query by sending a RPC request, whose function
signature is described in Equation 1, to the remote server,
which returns both the data result and the verification proof.
Given such a proof, the client applies the verification process
(e.g., verifying the authentication path in Merkle trees, or
verifying the Bloom filters and hash digests in the INCBM-
TREE) to verify the authenticity of the data result returned
from the outsource server.

IV. DEMONSTRATION SCENARIOS

In the demonstration, we show the efficiency of the stream
signature and verification operations using our INCBM-TREE.
The demonstration is based on a key-value dataset generated
by YCSB [5], an industry standard cloud benchmark tool.
In particular, we choose an update-heavy workload (i.e., the
workload-A in YCSB dataset) to simulate the real-world cloud
streaming application used in Yahoo! (e.g., session store). In
this workload, data keys are generated by a Zipf distribution,
and there are 50% write operations and 50% read operations.
The cloud server used in this demonstration is a 11-node
cluster in Emulab [6]. Each node is equipped with a 2.4 GHz
64-bit Quad Core Xeon processor with hyper-threading support
and 12 GB RAM. To deploy our 2-tier server in this cluster,
we use one node for application server and the rest for storage
servers. The storage servers use HBase [7]1, an industrial
strength NoSQL server that is optimized for writes and is
modeled after Google BigTable [8]. The clients are two regular
servers at our university, whose location is geographically
remote to the servers in Emulab.

A. Scenario 1: Owner’s write throughput

This demonstration shows INCBM-TREE’s capability to
ingest the data stream. We load a dataset into the system and
measure the total running time. To be specific, it starts with
replaying a data stream from a pre-materialized YCSB dataset

1We use version 0.94.2.



Fig. 4: The command-line interaction in Demo 1

and shipping it to the client machine, which runs an owner
client to absorb and sign the stream before publishing it to the
servers. In the demonstration, the audience observes how long
it takes to complete the stream ingestion. For comparison, we
demonstrate the conventional approach of using key-ordered
Merkle tree, and the audience can see the different running
time.

Figure 4 shows a command-line interface that is used to
specify in the demonstration script (1) which signing approach
to use, be it either INCBM-TREE or key-ordered approach; and
(2) the size of the data stream, which affects the duration of the
demonstration. For example, in the figure, the first execution
with time-ordered INCBM-TREE runs in 0.6 second, while the
key-ordered Merkle tree approach takes 5.04 seconds.

B. Scenario 2: User’s verification cost

Given a VGet query, the verification costs are dominated by
the number of signatures returned from the outsource server. In
this demonstration, we show the efficiency of INCBM-TREE

in terms of verification costs. Initially, the server is preloaded
with both the INCBM-TREE and the key-ordered Merkle tree.
In the demo, the user can issue a VGet query to the server and
then inspect the number of signatures in the raw result from
the server.

For the key-ordered Merkle tree, the number of signatures
equals the number of signed Merkle root hashes that are newer
than the result version. For example, the query in Figure 5
specifies the key with k = User28646531 and the demo
issues two queries against the server, one to the INCBM-
TREE for constructing a verification proof and one to the key-
sorted Merkle tree. The result returned from INCBM-TREE

includes 24 signatures while the result from the Merkle tree
has 8956 signatures to verify. After the user’s confirmation,
the demo then continues to actually execute the verification
process. This process is implemented by using the DSA
signatures with SHA1 padding in the standard Java.security
library. With this implementation, verifying 8956 signatures
is a process with human perceivable delay, while running
24 verifications can finish without human notice, as shown
in Figure 5. In our live demo, the user can freely specify the
queried key and inspect different query results. Lower number
of signatures of INCBM-TREE is expected regardless of which
key is used in the query.

ACKNOWLEDGMENTS

This research was sponsored by the U.S. Army Research
Laboratory and the U.K. Ministry of Defense and was accom-
plished under Agreement Number W911NF-06-3-0001. The
views and conclusions contained in this document are those

Fig. 5: The command-line interaction in Demo 2

of the author(s) and should not be interpreted as representing
the official policies, either expressed or implied, of the U.S.
Army Research Laboratory, the U.S. Government, the U.K.
Ministry of Defense or the U.K. Government. The U.S. and
U.K. Governments are authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copy-
right notation hereon. Yuzhe Tang and Ling Liu were partially
funded by NSF grants under NetSE, SaTC and I/UCRC.

REFERENCES

[1] F. Li, K. Yi, M. Hadjieleftheriou, and G. Kollios, “Proof-infused streams:
Enabling authentication of sliding window queries on streams,” in VLDB,
2007, pp. 147–158.

[2] G. Cormode, A. Deligiannakis, M. Garofalakis, and S. Papadopoulos,
“Lightweight authentication of linear algebraic queries on data streams,”
in SIGMOD, 2013.

[3] D. Schröder and H. Schröder, “Verifiable data streaming,” in ACM

Conference on Computer and Communications Security, 2012, pp. 953–
964.

[4] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil, “The log-structured
merge-tree (lsm-tree),” Acta Inf., vol. 33, no. 4, pp. 351–385, 1996.

[5] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in SoCC, 2010, pp.
143–154.

[6] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks,” in OSDI, 2002.

[7] “http://hbase.apache.org/.”

[8] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. Gruber, “Bigtable: A distributed
storage system for structured data (awarded best paper!),” in OSDI, 2006,
pp. 205–218.


