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ABSTRACT
The computation of sliding window aggregates is one of the core
functionalities of stream processing systems. Presently, there are
two classes of approaches to evaluating them. The first is non-
incremental, i.e., every window is evaluated in isolation even if
overlapping windows provide opportunities for work-sharing. While
not algorithmically efficient, this class of algorithm is usually very
CPU efficient. The other approach is incremental: to the amount
possible, the result of one window evaluation is used to help with
the evaluation of the next window. While algorithmically efficient,
the inherent control-dependencies in the CPU instruction stream
make this highly CPU inefficient.

In this paper, we analyse the state of the art in efficient incre-
mental window processing and extend the fastest known algorithm,
the Two-Stacks approach with known as well as novel optimisa-
tions. These include SIMD-parallel processing, internal data struc-
ture decomposition and data minimalism. We find that, thus opti-
mised, our incremental window aggregation algorithm outperforms
the state-of-the-art incremental algorithm by up to 11×. In ad-
dition, it is at least competitive and often significantly (up to 80%)
faster than a non-incremental algorithm. Consequently, stream pro-
cessing systems can use our proposed algorithm to cover incremen-
tal as well as non-incremental aggregation resulting in systems that
are simpler as well as faster.

1. INTRODUCTION
Stream processing has applications ranging from credit card fraud

detection [8] to click stream analytics [9, 7, 2]. A challenge in
these applications is to evaluate complex queries over a continuous
stream of input tuples (e.g. credit card transactions, or click logs) at
high throughput and low latency. One of the key operations applied
in such stream queries is window aggregation [3], i.e. the calcula-
tion of running aggregates in a FIFO buffer [2, 21]. In addition,
window aggregation is used for operations on persistent data such
as time-series computation [18, 24].
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Figure 1: Tumbling window aggregation is easy to optimise; slid-
ing window aggregation is not.

Formally, window aggregation forms a sequence of finite subsets
of a (possibly infinite) input dataset and calculates an aggregate for
each of these subsets. We refer to the rules for generating these
subsets as the window definition: its size, i.e. the number of data
items to be included in an aggregate and its slide, i.e. the “distance”
between the first tuple in the current window and the first tuple
in the next window. A window whose slide is equal to its size
is called tumbling; if the slide is less, it is called sliding. If the
slide is greater than the window, it is sampling—which we will
consider out of scope for this paper. We focus on both count-based
and time-based windows of fixed size and assume a streaming set-
up, i.e. only consider single-pass algorithms with bounded memory
requirements. We also limit ourselves to distributive and algebraic
aggregation functions (min/max, sum, average, ...) and exclude
holistic ones (like percentiles).

While conceptually similar, tumbling and sliding windows are
usually distinguished by their opportunities for intermediate re-
sult sharing: in tumbling windows, every input tuple contributes
to exactly one window aggregate; in sliding windows, a tuple con-
tributes to more than one. In other words, the amount of necessary
work per input tuple is bounded (upwards) by the maximum num-
ber of open windows. In the worst case, i.e. when the slide is one,
this is equal to the window size. As a result, the performance of
sliding window queries is typically dominated by factors other than
the memory bandwidth, which distinguishes them from tumbling
windows and classic relational aggregation.
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Figure 2: The case for incremental window computation

To illustrate this, we implement a single-threaded running aver-
age query over a window of 1024 integers and vary the slide from 1
to 1024 (at which point the query turns into a tumbling window).1

Figure 1 shows that, for the tumbling window, the query saturates
approximately a fifth of the per-core bandwidth. There is thus po-
tential to improve performance with a SIMD version of the query—
as tumbling windows are equivalent to relational aggregation, the
potential is well documented [10, 20]. More interestingly, however,
the gap between memory and processing bandwidth is more strik-
ing in the sliding window case: there is an imbalance of more than
three orders of magnitude.

Fortunately, there are many opportunities for intermediate re-
sult sharing in sliding window aggregation using incremental al-
gorithms and data structures [5, 24, 25, 11]. Considering our previ-
ous example of a running average query, an incremental algorithm
does not recompute the average over 1024 values each time the
window slides. It rather adds the new values that entered the win-
dow and subtracts those that fell out of it. Incremental algorithms,
however, commonly expose many control and data dependencies
in the CPU instruction stream. This, in turn, hinders opportunities
for efficient superscalar execution and SIMD parallelism, reducing
potential performance gains.

In this paper, we describe how to achieve significantly better
performance for state-of-the-art incremental window-aggregation
algorithms through careful, hardware-conscious optimisation. We
make the following contributions:

• We analyse the performance of the three best-performing window-
aggregation algorithms from recent literature [11]. We show how
all of them – and arguably the entire problem of streaming win-
dow aggregation – expose fundamentally different performance
patterns than classic database problems: they tend to suffer much
less from memory bandwidth starvation and much more from
L1-data cache latency and control-hazards.

• Based on that observation, we study the applicability of a num-
ber of optimisation techniques, including the design and imple-
mentation of vectorized operators, to address the identified bot-
tlenecks. Furthermore, we demonstrate how each one of these
optimisations affects the runtime of our implementation.

• Finally, we demonstrate that the best-performing incremental al-
gorithm for sliding window computation [1, 11], can, if care-
fully optimised, be competitive with a highly optimised non-
incremental algorithm, even when processing tumbling windows.
Besides the potential to simplify stream processing systems, this
also yields an implementation that is almost 2× faster than ei-
ther competitor when the slide is greater than one but less than
the window size.

1We implement in C++, compiled with gcc using -O3
-mtune=skylake.
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Figure 3: The Two-Stacks algorithm

The rest of this paper is organised as follows: we survey the
state-of-the-art in incremental window computation in Section 2.
Then, we conduct a hardware-conscious evaluation of the incre-
mental algorithms under study and, based on our findings, we de-
velop a number of optimisations in Section 3. We evaluate our
optimisations and present advise on how to select the most appro-
priate aggregation algorithm in Section 4. Finally, after presenting
related work in Section 5, we discuss future work and conclude in
Section 6.

2. BACKGROUND
Next, we provide background on window aggregation and the

best performing incremental algorithms for sliding windows.

2.1 Parallel Window Aggregation
As mentioned above, we support both count- and time-based

windows by statically pre-allocating our data structures. We de-
fine n as the window size and ` as the slide. A new window starts
after each ` tuples in the system and ends n tuples later, allowing
for the possibility of multiple open windows.

Unlike other stream operators, such as selection or projection,
window aggregation is a stateful operator. To produce an output
tuple, all of the tuples in the window must arrive and be buffered.
It is that property that makes it hard to parallelise the window ag-
gregation operator itself. A common approach is to parallelise on
top of the aggregation operator, i.e. process multiple windows in
parallel. We show this process in Figure 2: when processing tum-
bling windows in case (1), Windows 1, 2 and 3 can be processed
independently without redundant work. In case (2), the sliding win-
dows are processed independently but with redundant work: tuple
6, e.g. contributes to windows 1, 2 and 3 and thus is processed three
times. In the last case (3), the stream is broken down into fixed-size
chunks, commonly referred to as panes [16]. Panes are processed
independently and in parallel. After all contributing panes are pro-
cessed, the final window result is calculated from the result of the
processed panes. Most popular multi-core stream processing sys-
tems, e.g. SABER [14], Spark Streaming [27] and Trill [7], process
data in this manner.

In this paper, we focus on the processing that occurs within a
pane—the work-efficient production of an incremental result. Our
work naturally complements existing research on the problem of
parallel stream processing.

2.2 Incremental Window Computation
Depending on the aggregation function, different window ag-

gregation algorithms are appropriate. Following previous conven-
tion [11], we distinguish “sum-like” (e.g. sum, count, or average)
and “min-like” (e.g. min or max) aggregation. Sum-like functions
are invertible, i.e. the value of window n+1 can be calculated from
the value of window n and the difference between the two window
inputs (the newly entered and evicted tuples). This avoids the need
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Figure 4: AGGmin with slide 1

to scan all tuples in the window at each step. However, for non-
invertible aggregations, this does not hold. For instance, with min
aggregation, when the current minimum leaves the window, the en-
tire window must be scanned to find the new running value. Note
that, when evicting a value greater than the current minimum, the
scan can be avoided.

Based on a recent survey of stream processing algorithms [11],
we select the best-performing algorithms. All have O(1) insertion
time per tuple, and O(n) space complexity. The window computa-
tion time ranges from O(`) to O(n).

• Non-incremental. The non-incremental algorithm recalculates
the aggregate result for each window from scratch. Its time per-
tuple complexity is O(n).

• Subtract-on-Evict (SoE). This algorithm re-uses the previous win-
dow result to compute the current one by removing the expired
values and merging in the added ones. As discussed, for non-
invertible aggregates, it may still cause a rescan of the window.

• Two-Stacks. This algorithm [1], shown in Figure 3 for the case
of minimum, maintains two stacks, front and back, to store the
window: when a new value v arrives, it is pushed onto the front
stack. Besides the values themselves, each stack maintains a
second column with the following invariant: the aggregate a at
position p from the bottom of the stack is the aggregate of all
values v at positions 1 through p. Figure 3 shows that in the case
of computing the AGGmin the red column maintains the aggre-
gates at each position incrementally with every insert, while in
the blue column we store the respective value. The pop operation
removes the top from the back stack and aggregates it with the
top of the front stack. If the back stack is empty, the algorithm
flips the front onto the back, reversing the order of the values and
recalculating the aggregates in O(n). However, as the flip phase
occurs infrequently, Two-Stacks achieves O(1) amortised time
complexity.

While other tree-based algorithms [24] can support more general
aggregate functions, such as median or percentiles, we omit them
because they have an even greater maintenance overhead.

3. OPTIMISING WINDOW AGGREGATION
Let us now describe our efforts on optimising incremental win-

dow aggregation algorithms. We start with a CPU-conscious analy-
sis of the algorithms followed by a description of our optimisations.

3.1 Analysis
Having introduced the three basic algorithms, we measure their

absolute performance, after exploiting obvious opportunities for
optimisation. We evaluate them in the most challenging case: a
min aggregate (non-invertible) over a count-based window of slide 1.
We generate a stream of random integers, uniformly distributed in
[0,64), and vary the size from 8 to 2,097,152 (see Section 4.1 for
details of our hardware set-up).

Figure 4a shows the results. We observe that the Two-Stacks
algorithm is affected little by the window size; the other two algo-
rithms experience severe performance degradation as the window
size increases. For the SoE algorithm, this is expected: the cost
of computing the new minimum if the current value is evicted in-
creases with the window size. The computation is performed by
re-scanning the entire window. The decreasing performance of the
naı̈ve, non-incremental algorithm is consistent with the explanation
in Section 1. In their unoptimized form, the Two-Stacks algorithm
is thus the most efficient. However, it is unclear how efficient each
of these algorithms is from a microarchitecture view.

To answer that question, we break down the elapsed cycles by
CPU component, as described in [12]. Figure 4b shows that all
algorithms spend at least 50% of their cycles retiring instructions.
In most of the remaining cycles, the execution is back-end bound,
due to L1 cache accesses. This is consistent with our expectations
since most of the data accesses are performed to manage the win-
dow state which resides in L1 cache. Overall, we found that the
best performing algorithm, i.e., Two-Stacks, spends less than 10%
on bad speculation or front-end bound. This indicates that there
are two opportunities for performance improvement: (i) improving
CPU efficiency; and (ii) reducing the number of L1 data accesses.
Next, we discuss optimisations to both ends.

3.2 Optimisations
In this section, we discuss a number of optimisations, which will

help us to address the bottlenecks that we identified in Section 3.1.
In order to support our design decisions and evaluate their impor-
tance, we provide a graph at the end of the sub-sections to show the
effect of each optimisation on the runtime. For that purpose, we
compute the min for windows of size 1024 and slide 64.
(1) Storing data in ring buffers. Our first optimisation concerns
both the Two-Stacks and SoE algorithms. A generic implementa-
tion can allow the state of these algorithms to grow arbitrarily, of-
fering the flexibility to process windows that vary in size (e.g. time-
based windows). This flexibility comes at the cost of more complex
addressing logic and bounds checking (indexed access must per-
form two pointer dereferences). We avoid these overheads by us-
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Figure 5: Two-Stacks Implementation with Ring Buffer

ing ring buffers, allocating sufficient space to fit the entire window
in our experiments. The logic of ring buffers allows us to process
unbounded streams of data, by wrapping around to the beginning
of the underlying allocated memory, and offer a predictable access
pattern. At a hardware level, this data layout is CPU-cache-friendly
because tuples can be pre-loaded. Below, we evaluate our struc-
ture with stacks from the C++ Standard Template Library (STL),
that use deque as their standard container and require two pointer
dereferences.

We implement the ring buffers as fixed-size arrays and a modulus-
divide on the access cursors. Storing such a ”flat” sequence of tu-
ples in contiguous memory regions enables optimisations, such the
use of SIMD instructions. Thus, we decide to use these ring buffers
for all our data structures, both queues and stacks, because of their
simplicity and high efficiency.

In Figure 5, we present the implementation of the Two-Stacks
algorithm with a flat array in the case of min aggregate, for a win-
dow of size 4 and slide 1. The front and back stacks are defined by
the respective pointers of our structure, which we move according
to the window slide and size. For each phase, apart from the ring
buffer, we utilise and maintain a variable and an array for the run-
ning aggregate values of the front and the back stack respectively.
The tuples enter the system in the order: 8, 2, 1, 5, 0, 7, 9, 3, 6.

In phase (1), the front stack has already one element, while the
back stack is empty. Next, in phases (2), (3) and (4) we insert new
values, by moving the front stack’s pointer and changing the ag-
gregation value, if necessary. At this point, our window has four
elements and we are ready to emit the result, but the back stack is
still empty. Thus, we have to perform the flip phase (5) of the algo-
rithm. During this phase, we do not have to copy any of the inter-
mediate data from the front to the back stack. Instead, we traverse
the array backwards to recalculate the aggregates. This optimisa-
tion removes the unnecessary writes in the flip phase. Moreover, in

combination with the data locality of the contiguous memory, they
improve significantly the performance reducing the runtime from
286s to 153.5s.
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Finally, in phase (6), we evict the first element from the back
stack and make an insertion to the front stack. When an eviction is
triggered, we keep track of the valid aggregates of the back stack
and remove the ones that do not contribute to the current result, by
moving the Aggregates Index pointer.
(2) Decomposed intermediates & Data minimalism. The Two-
Stacks algorithm maintains two attributes in the window state: the
inserted value and the aggregate of all the values beneath it. It is
a fact that these can be stored in n-ary form (also known as struct-
of-arrays or, more colloquially, columnar format). While decom-
position does not yield an immediate performance benefit (as the
application is not memory-bandwidth bound), it enables a number
of subsequent optimisations, which we discuss in the following.

First, we observe that the front and the back stack are used differ-
ently (see Figure 3). From the front stack, only the value column
and the top element of the aggregate column are ever read. The
value column is only needed to perform the flip. From the back
stack, only the aggregates are read by the pop operation. By ex-
ploiting the decomposed format of the stacks, we can thus elide
the allocation and maintenance of the respective data buffers: in-
stead, we only store the value column and the top element of the
aggregate stack from the front stack and only the aggregates from
the back stack. This reduces the number of L1 cache misses since
fewer attributes have to be stored in cache.

Based on these observations, we implement the Two-Stacks al-
gorithm as shown in Figure 5 and maintain the least possible values
that allow us to compute the aggregation result. For window slides
greater than 1, we realise that it’s sufficient to maintain one single
value per window slide for the back stack, as all the elements of a
specific slide will be evicted at the same time. These optimisations
yield an effective reduction of the runtime from 207.5s to 155.7s.
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(3) Bulk insertion & SIMD scanning. To reduce the computa-
tional cost, it is natural to use vector instructions for the insertion
of new values into the respective data structures. We do so by in-
serting the input values in bulk. For slides greater than one, which
imply reduced output granularity, we also pre-aggregate the values
upon insert. Since we have replaced the stacks with ring buffers
in the Two-Stacks approach, this optimisation naturally applies to
both algorithms. For example, in the insertion phases like (2), (3),
(4) and (6) of Figure 5, if the slide is large enough, we can apply
our aggregation functions with AVX2 intrinsics on each slide, to
compute the running value of the front stack.

The main benefit of decomposed storage is that it enables the
use of SIMD instructions for scanning the buffers when calculat-
ing aggregates. We implement a SIMD-parallel version for every
aggregation function with AVX2 compiler intrinsics for both the
SoE and Two-Stacks approaches on top of ring buffers. More pre-
cisely, in the case of the SoE algorithm, we apply these parallel
versions during the eviction phase, when we want to recompute the
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Figure 6: AGGavg with window size 1024 and variable slide

running value of the aggregation. For the Two-Stacks approach, we
utilise this optimisation within the flip phase, as we show in (5) of
Figure 5, in which we compute a single aggregate value per slide.
These optimised functions for scanning the buffers reduce the run-
time from 155.6s to 37s.
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One may assume that the use of SIMD is not contingent on de-
composed storage because shuffle or gather instructions may be
used to arrange the values of a column in a contiguous memory
region. We find, however, that the overhead of those instructions is
both high and avoidable, by using decomposed storage.

Both SIMD scanning and the bulk insertion are applicable to ag-
gregation functions, other than the ones we implement in this work.
Their combination introduces parallel processing within a pane for
single-threaded computation and is the most important improve-
ment factor among the optimisations we apply.
(4) Stack RLE compression. Referring again to Figure 3b, we
notice that the aggregate values on the back stack2 expose an ex-
ploitable pattern: since each slot contains the minimum of the slot
beneath it and its aligned value, the probability is high that the value
in a slot is equal or smaller to the value in the slot beneath it. This
data pattern is naturally amenable to run-length encoding. Instead
of inserting a new value and increasing the top pointer, only the
top count needs to be increased. This not only reduces the size of
the stack but also allows us to do fast comparisons and scan the
front-stack using SIMD instructions.

Unfortunately, we found that while this optimization reduces
the number of L1 cache accesses, it introduces additional data-
dependencies in the stack flipping code and as a result yields a
performance reduction between 9 and 18 percent.

4. EVALUATION
To evaluate the relative merits of the existing algorithms as well

as our optimisations we conduct experiments on synthetic as well
as real-world datasets. In addition to the count-based windows that
are the focus of our paper we also present a brief evaluation of
how our optimisations apply to time-based windows as long as the
maximum size of the window can be bounded.

For brevity, in this section, we only discuss all our optimisations
in combination and do not evaluate the specific contribution of each
2Technically, the front-stack as well, but we have eliminated the
aggregates from it.

 0

 500

 1000

 1500

 2000

 1  4  16  64  256  1024

T
h

ro
u

g
h

p
u

t 
(1

0
6
 t

u
p

le
s
/s

)

Window Slide

Non-incr
SoE

SoE (SIMD)
Two-Stacks

Two-Stacks (SIMD)

Figure 7: AGGmin with window size 1024 and variable slide

optimisation for every use case. We hope to be given the opportu-
nity to study this matter in more detail in an extended version of
this paper.

4.1 Experimental Set-up
Hardware. All experiments are performed on a server with 2 Intel
Xeon E5-2640 v3 2.60 GHz CPUs with a total of 16 physical CPU
cores, a 20MB LLC cache and 64 GB of memory. We used Ubuntu
14.04, a 4.4.0-116-generic Linux kernel and gcc version 7.3.0. We
decided to test all the algorithms with the minimum NUMA in-
terference by binding our experiments to processor 0 (on NUMA
node 0). The same applies to all our memory allocations, which
were bound on that NUMA node.
Datasets and queries.

For our microbenchmark evaluation, we generate data streams
of 32-bit integer values drawn from a uniform distribution. On this
input dataset, we evaluate minimum and average aggregates, which
are representative of the two classes of functions we study. We
identify two separate experiments: 1) we keep the slide constant
at 1 while changing the window size and 2) we keep the window
constant at 1024 and alter the window slide, starting from slide 1
until our window becomes tumbling at 1024.

For the macro-evaluation we study a workload that emulates a
cluster management scenario. The dataset represents a trace of
time-stamped measurements taken from an 11,000-machine com-
pute cluster at Google [26]. Each tuple contains information about
metrics related to tasks executed on the cluster, such as cpu utili-
sation or task’s priority. On that dataset, we evaluate a query that
expresses a common cluster monitoring task [13] and reports the
average requested CPU utilisation of submitted tasks.

4.2 The Effect of Window Slide
To study the effect of the slide on the throughput of the different

implementations, we study average- and minimum-aggregation in
Figures 6 and 7, respectively.

For both aggregation functions, we observe that the plain Two-
Stacks algorithm performs robustly but almost across the board
worst of all our studied implementations. For the average-aggregation
the plain SoE is quite competitive and outperforms the non-incremental
algorithm for slides less or equal to 64. However, we find that the
SIMD-optimised versions of both algorithms perform significantly
better than their unoptimised counterparts (up to 11× better in the
case of the Two-Stacks algorithm). For minimum-aggregation, the
SIMD-enabled Two-Stacks algorithm outperforms all others (by al-
most 80%) best for slides less than half of the window size and is
never more than 10% worse than the best algorithm. Given the in-
tricate nature of the implementation and the fact that there is no
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with window size 1024 and slide 1.
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Figure 9: AGGavg with variable window size and slide 1

potential for re-use to exploit one might expect worse behaviour
due to the complex CPU instruction stream. It turns out, however,
that our careful optimisation yielded an implementation with very
little overhead.

4.3 The Effect of Window Re-computations
When comparing the SoE to the Two-Stacks approach for min-

aggregation, the advantage of the Two-Stacks lies in the robustness
against adversarial input distributions: in the worst case every evic-
tion causes a re-computation of the window. To quantify that prob-
lem we study performance degradation of the different algorithms
with the rescan rate (i.e., the percentage of evictions that cause a
re-compute). For that purpose, we set the window size to 1024 and
the slide to 1. Further, we restrict the number of unique values in
our input distribution to force more re-computations and present the
results in Figure 8. We observe that both SoE implementations ex-
perience severe performance degradation when the re-compute rate
increases. The figure shows that all Two-Stacks implementations
are robust against that input distribution.

4.4 The Effect of Window Size
Next, we vary the size of a count-based window with a constant

slide of 1 and consider again two aggregates, AGGavg (Figure 9)
and AGGmin (Figure 10). In both cases, for all window sizes, the
two-stacks algorithm has the highest throughput at approximately
110 million tuples/s. Since the slide is 1, the optimised version of
two-stacks is slightly slower because of the overhead of checking
for opportunities to vectorise code (but in this case, there are none).

For AGGmin (Figure 10), the throughput of two-stacks is not af-
fected by the frequent evictions of the minimum value of the cur-
rent window, as the algorithms can recompute the result in constant
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Figure 10: AGGmin with variable window size and slide 1

 0

 100

 200

 300

 400

 500

 600

 700

 1  2  4  8  16  32  64

T
h

ro
u

g
h

p
u

t 
(1

0
6
 t

u
p

le
s
/s

)
Window Slide (sec)

Non-incr
SoE

SoE (SIMD)
Two-Stacks

Two-Stacks (SIMD)

Figure 11: AGGavg with time-based windows of size 64 seconds
and variable slide over the Google cluster stream

time. Note that the percentage of inserts that evict the current min-
imum is 6.25%. All other algorithms are affected by the growth of
the window size: the overhead of recomputing the minimum from
scratch over the entire window dominates and causes a significant
drop in throughput, up to 100×. Only the optimised SoE algorithm
can cope with that overhead, achieving only a 2× slow-down com-
pared to two-stacks when the window size is less than 4096 tuples
because it benefits from vectorised instructions to re-scan the win-
dow.

For AGGavg (Figure 9), the superior performance of Two-Stacks
over SoE is less pronounced: it is only 1.5× faster. The non-
incremental algorithm experiences a similar fall in throughput as
in the case of AGGmin. The non-incremental algorithm can be up to
300× slower than Two-Stacks when the window size is 32, 768.

4.5 Time-Based Queries on Real-World Data
Next, let us briefly examine how the presented optimizations ap-

ply to time-based window queries. For that purpose, we evaluate
a straight-forward extension of our approach that uses an a priori
known bound on the window size is but is otherwise fully func-
tional and equivalent to the presented approaches.

For this part of the evaluation, we use the Google cluster trace.
Noteworthy is that the load exposed by the trace is very spiky: the
event-rate varies from 0 to 100K events per second. It thus, signif-
icantly stresses our implementations’ ability to deal with varying
window sizes.

On that dataset we evaluate AGGavg with a time-based window
of 64 seconds and a variable window slide from 1 to 64 seconds.

Figure 11 shows that the plain Two-Stacks algorithm does not
perform well on time-based windows: its throughput, steady at
roughly 150 million tuples/s for all slides, is hindered by frequent,
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unoptimized flipping the front stack to the back. The non-incremental
algorithm, on the other hand, outperforms Two-Stacks when the
slide is greater than 1 second and matches the throughput of the
SoE approach when the slide is 16 seconds or higher. This can
be explained by the fact that slides from 16 onwards contain at
least half of the window data because the input data distribution is
skewed, thus recomputing a window result from scratch imposes
no extra computation overhead—in fact, it is even cheaper than
maintaining state for the SoE algorithm. Both optimised versions
of Two-Stacks and SoE perform best, achieving a speed-up be-
tween 1.2 − 4.3×. These benefits are not just due to vectorised
instructions: the re-design of the flip operation in Two-Stacks. Sim-
ilarly, the SoE algorithm benefitted from avoiding redundant mem-
ory copies.

4.6 Analysis & Advice
Before concluding, let us briefly discuss a final performance anal-

ysis: the by-CPU-component breakdown of all presented approaches
for tumbling windows. This breakdown allows us to assess if there
is still untapped performance potential in any of the implementa-
tions.

By analyzing the cost components of tumbling windows with
size 1024, we want to understand the difference in performance be-
tween all the algorithms. In Figure 12, we witness that the best
performing approaches (naive & vectorized) become nearly 30%
DRAM bounded, which indicates that they approach the main mem-
ory bandwidth limits. This is consistent with our observations in
Figure 7 in which the tumbling window throughput reached almost
2 billion tuples (or 8 Gigabytes) per second.

Overall our conclusion from Figure 12 is that our optimizations
have transformed the performance profile of the plain SoE and
Two-Stacks algorithms to be closer to that of the non-incremental
algorithm: strongly dominated by memory-bandwidth but only lit-
tle by computational resources (Retiring Instructions). Thus, our
optimized approaches bridge the gap between sliding and tumbling
windows and presents a significant improvement in terms of through-
put compared to the rest, with more than 1.6× greater throughput.

We have to note that even though we do not consider latency as
a performance measure in the above experiments, both Two-Stacks
implementations exhibit average latency lower than 15 nanosec-
onds. Even though they maintain such a low average latency, we
observe periodic latency spikes caused by the flip phase, as we ex-
pected. Finally, the SoE algorithm has comparable latency in the
case of invertible functions. For non-invertible functions, the la-
tency is affected by the number of evictions (see Section 4.3).

5. RELATED WORK
DABA [25] is an alternative to Two-Stacks that ensures lower

standard deviation in latency compared to the original algorithm.
Each time the front stack is empty, the Two-Stacks algorithm has
to perform a flip from the back stack onto the front stack. This high-
cost operation introduces latency spikes. DABA, instead, gradually
flips the back stack to the front stack with every push and pop op-
eration. Thus it removes this heavy step and reduces the latency
spikes, with a small throughput overhead.

FlatFIT [22], and its successor SlickDeque [23] were designed
to support efficient sharing between different windows on the same
stream simultaneously. In this work, we do not focus on multi-
query execution. Fundamentally, the approach of SlickDeque for
invertible functions considering a single query is equivalent to the
SoE algorithm. When it comes to non-invertible functions in a sin-
gle query, the approach of maintaining the positions of current par-
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Figure 12: Cost Breakdown by CPU components for a tumbling
window of size 1024.

tial aggregates is orthogonal to our solution of scanning the buffers
with AVX2 compiler intrinsics.

Incremental computation for holistic aggregation operators (e.g.
median-like functions) requires a tree-based data structure. The
B-Int [4] algorithm supports multi-query execution with a B-tree,
sharing the intermediate results of small-time overlapping inter-
vals among multiple windows. FlatFAT [24] is a pre-allocated
pointer-less tree implementation that, in contrast to the previous
approaches, does not require FIFO windows (stream data items are
not ordered by timestamp). We omit these tree-based approaches
because we focus on distributive and algebraic aggregation func-
tions.

In addition, Lies et al. [15] proposed a general algorithm for a
window operator, in order to efficiently partition the computation
per key across multiple cores, along with a specialized data struc-
ture, the Segment Tree. This structure enables the parallel compu-
tation of aggregates. Our work is about optimising the computation
of a single key in a core.

6. SUMMARY AND FUTURE WORK
In this paper, we studied the efficient implementation of stream-

ing window aggregation. We conducted an in-depth study of the
best performing algorithms for sliding as well as tumbling win-
dows and concluded that incremental algorithms, while work ef-
ficient, are highly CPU-inefficient. To address that problem, we
developed a set of optimization techniques, some known, some
new, and applied them to the two fastest incremental aggregation
algorithms, i.e., Subtract-on-Evict and Two-Stacks. The result is
incremental window-aggregation algorithms that are highly CPU-
efficient and introduce parallel processing within a pane. In fact,
they are competitive with non-incremental algorithms for tumbling
windows and up to 80 percent faster for sliding windows. This ob-
viates the need for non-incremental streaming window aggregation
and, thus, holds the potential to not only make stream processing
systems faster but simpler as well. Our algorithms can be inte-
grated into JVM-based stream processing systems, such as Apache
Flink [6], Spark Streaming [27] or SABER [14], by utilising the
Java Native Interface (JNI) calls and the Java NIO Direct Buffers.

We consider the presented study the first step towards a highly
CPU efficient stream processing system. Naturally, many compo-
nents of that system are still missing. For example, we will develop
a complete set of highly efficient streaming operators on a vari-
ety of computer architectures. Already previous work considered
porting sliding window aggregate operators on an FPGA [17] or a
GPU [14]. For performance portability, however, we believe that
the just-in-time generation of platform-specific, executable code
is essential. To that end, we envision a set of hardware-oblivious
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primitives in line with recent work in the field of relational data pro-
cessing [19]. This way, a compiler can generate query implemen-
tations that match the performance of the presented, pre-generated
implementations. Moreover, we want to take into consideration the
non-uniform memory access (NUMA) [28] introduced by multiple
sockets on modern scale-up architectures for our system’s design.
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