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Abstract

A wide range of reinforcement learning (RL) algorithms have
been proposed, in which agents learn from interactions with a
simulated environment. Executing such RL training loops is
computationally expensive, but current RL systems fail to sup-
port the training loops of different RL algorithms efficiently
on GPU clusters: they either hard-code algorithm-specific
strategies for parallelization and distribution; or they acceler-
ate only parts of the computation on GPUs (e.g., DNN policy
updates). We observe that current systems lack an abstrac-
tion that decouples the definition of an RL algorithm from its
strategy for distributed execution.

We describe MSRL, a distributed RL training system
that uses the new abstraction of a fragmented dataflow
graph (FDG) to execute RL algorithms in a flexible way.
An FDG is a heterogeneous dataflow representation of an
RL algorithm, which maps functions from the RL training
loop to independent parallel dataflow fragments. Fragments
account for the diverse nature of RL algorithms: each frag-
ment can execute on a different device using its own low-level
dataflow implementation, e.g., an operator graph of a DNN
engine, a CUDA GPU kernel, or a multi-threaded CPU pro-
cess. At deployment time, a distribution policy governs how
fragments are mapped to devices, without changes to the algo-
rithm implementation. Our experiments show that MSRL ex-
poses trade-offs between different execution strategies, while
surpassing the performance of existing RL systems.

1 Introduction

Reinforcement learning (RL) solves decision-making prob-
lems by having agents learn policies — typically represented
as deep neural networks (DNNs) — on how to act in an en-
vironment [51]. RL has achieved remarkable outcomes: in
game play, AlphaGo [49] defeated a world champion in the
Go board game; in biology, AlphaFold [21] predicts three-
dimensional structures for protein folding; in robotics, RL
allows robots to perform dexterous manipulation without hu-
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man intervention [15]; and the ChatGPT chatbot [41] uses a
reinforcement step with PPO [47] to fine-tune its model.

Such advances in RL, however, come with high computa-
tional demands: AlphaStar trained 12 agents on 384 TPUs and
1,800 CPUs for 44 days to achieve grandmaster level in Star-
Craft IT game play [54]; OpenAl Five trained to play Dota 2
games for 10 months with 1,536 GPUs and 172,800 CPUs [3].

Existing RL systems (e.g., SEED RL [8], Acme [18],
Ray [34], RLIib [25], Podracer [16]) are therefore optimized
for specific types of RL algorithms and the structure of their
RL training loops. In particular, systems hardcode a strategy
for parallelizing and distributing the RL computation:
Parallelization. Most RL systems only accelerate the DNN
computation on GPUs or TPUs [8, 18, 25] using current
DNN engines (e.g., PyTorch [42], TensorFlow [14], and Mind-
Spore [19]). Other parts of RL algorithms (e.g., action gen-
eration, environment execution, and trajectory sampling) are
executed as sequential Python functions on worker nodes,
potentially becoming performance bottlenecks.

Some systems try to accelerate more parts of RL training
loops: Podracer [16] uses the JAX [12] compilation frame-
work to vectorize Python implementations of RL algorithms;
WarpDrive [23] implement the entire RL training loop using
CUDA on a GPU; and RLIib Flow [26] uses a set of parallel
dataflow operators [58] to express an RL training loop. All of
these approaches, however, require users to rewrite the com-
plete RL algorithm (e.g., agents, learners, and environments)
using a single API with a fixed set of dataflow operators.
Distribution. When distributing computation, current RL sys-
tems allocate algorithmic components (e.g., actors and learn-
ers) to workers in a fixed way: SEED RL [8] assumes that
learners perform policy inference and training on TPUs, and
actors execute on CPUs; Acme [18] only distributes actors
and maintains a single learner; and TLeague [50] distributes
learners but co-locates environments with actors on CPU
workers. As we shown in §6, such decisions are algorithm-
specific: since different algorithms deployed on a given set
of resources exhibit diverse bottlenecks, a single distribution
strategy cannot exhibit the best performance in all cases.
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We observe that the above challenges come from a lack of
separation between the definition of an RL algorithm and
how it is executed by the system. For example, many RL sys-
tems allow users to define RL algorithms as a set of Python
functions for agents, learners, and environments. The system
then directly invokes the implementation of e.g., an agent’s
act() function to produce new actions for the environment.
While this simplifies system implementation, it removes con-
trol from the system regarding how algorithmic components
are parallelized or distributed at deployment time.

DNN training systems use intermediate representa-
tions (IRs), which are compiled to target devices for execution,
to decouple DNN definition from execution [1,6,56]. Such ap-
proaches, however, assume a homogeneous training computa-
tion (forward/backpropagation over differentiable DNNs [2]),
which can be expressed by a fixed set of computational opera-
tors over tensor types. In contrast, the space of RL algorithms
exhibits more heterogeneity in terms of the computation per-
formed by algorithmic components (agents, actors, learners,
polices, environments, leaderboards), their exchanged data
(observations, actions, policy updates) and communication
patterns (one-to-one, one-to-many, all-reduce).

Our goal is to explore a new design for an RL training
system that requires users to define an RL algorithm only
once. At deployment, the system then supports (i) the exe-
cution of arbitrary parts of the RL computation on parallel
devices (GPUs and CPUs); and (ii) the deployment of parts
of the computation on distributed workers.

We describe MSRL, a distributed RL system that achieves
this by decoupling the specification of a RL algorithm from
its execution through the abstraction of a fragmented dataflow
graph (FDG). Unlike dataflow approaches of DNN and data
analytics systems, an FDG does not enforce a single uniform
dataflow representation, which is challenging for diverse RL
algorithms. Instead, it allows different components of an RL
algorithm to have bespoke GPU or CPU implementations,
chosen by the user at deployment time.

In summary, MSRL’s design makes three contributions:
(1) Fragmented dataflow graphs (§3). From the RL algo-
rithm implementation, MSRL constructs an FDG, which con-
sists of independent fragments. Each fragment can have its
own dataflow representation (e.g., DNN operators, CUDA, or
Python) targeting GPUs or CPUs. MSRL then maps instances
of fragments to devices at deployment time.

To obtain fragments, MSRL statically analyzes the RL
algorithm implementation to group functions into fragments.
By default, the boundaries between fragments are chosen
based on the algorithmic components of the RL algorithm.
Since fragments are deployed on different devices, MSRL
synthesizes appropriate communication operators that allows
fragments to exchange data.

(2) API with distribution policies (§4). Users specify an
RL algorithm by implementing its algorithmic components
as Python functions in a traditional way. The implementa-

tion makes no assumptions about how the algorithm will be
executed: all runtime interactions between components are
managed by calls to MSRL APIs. A separate deployment
configuration defines the devices available for execution.
Since FDGs separate algorithm implementations from ex-
ecution, MSRL can apply different distribution policies to
govern how fragments are mapped to devices. MSRL sup-
ports distribution policies, which subsume the hard-coded
distribution strategies of current RL systems: e.g., a policy
can distribute multiple actors to scale environment interaction
(like Acme [18]); distribute actors and move policy inference
to learners (like SEED RL [8]); distribute both actors and
learners (like Sebulba [16]); or represent the full RL training
loop on a GPU (like WarpDrive [23] and Anakin [16]).
When a user changes the algorithm configuration, its hyper-
parameters or deployment resources, they can also switch be-
tween distribution policy to maintain high training efficiency
without having to change the RL algorithm implementation.
(3) Heterogeneous fragment execution (§5). For execution,
MSRL deploys hardware-specific implementations of frag-
ments on CPUs and GPUs. MSRL supports different fragment
implementations: CPU implementations use regular (multi-
process) Python code, and GPU implementations are gen-
erated as compiled computational graphs for DNN engines
(e.g., MindSpore or TensorFlow) if a fragment is implemented
using operators, or are implemented directly in CUDA.
MSRL optimizes co-located fragments on the same worker:
it fuses data-parallel fragments for more efficient execution by
batching data items (e.g., tensors) and using single-instruction-
multiple-data (SIMD) execution.
We evaluate MSRL experimentally and show that MSRL’s
abstraction supports flexible training across different RL algo-
rithm without compromising training performance compared
to current hardcoded RL training systems: MSRL scales to
64 GPUs and outperforms the Ray distributed RL system [34]
by up to 3x. By switching between distribution policies,
MSRL can improve the training time of the PPO RL algo-
rithm by up to 2.4 as hyper-parameters, network properties
or hardware resources change.

2 Distributed Reinforcement Learning

Next we give background on RL algorithms (§2.1), discuss
the requirements for RL training (§2.2), and survey the design
space of existing RL systems (§2.3).

2.1 Reinforcement learning

Reinforcement learning (RL) solves a sequential decision-
making problem in which an agent operates in an environ-
ment. The agent’s goal is to learn a policy that maximizes the
cumulative reward based on the feedback from the environ-
ment (see Fig. 1). RL training performs three steps: @ policy
inference: an agent obtains an action by performing inference
on a policy; @ environment execution: the environment ex-
ecutes the action, generating frajectories of (state, reward)
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Fig. 1: RL training loop with multiple agents

pairs; and @ policy training: the agent improves the policy by
adapting it based on the reward.

RL algorithms are diverse in nature, falling into three cat-
egories: (1) value-based algorithms (e.g., DQN [33]) use a
DNN to approximate a value function that predicts the ex-
pected return of actions. Agents then select actions based
on these estimated values; (2) policy-based algorithms (e.g.,
Reinforce [55]) directly learn a parameterized policy — ap-
proximated by a DNN - for selecting actions without a value
function. Agents use batched trajectories to train the policy by
updating its parameters to maximize the reward; and (3) ac-
tor—critic algorithms (e.g., PPO [47], DDPG [27], A2C [32])
combine the two by learning a policy that selects actions and
a value function that evaluates them.

Multi-agent reinforcement learning (MARL) employs mul-
tiple agents, each optimizing its own cumulative reward when
interacting with the environment or other agents (see Fig. 1).
A3C [32] executes agents asynchronously on separate environ-
ment instances; MAPPO [57] extends PPO to a multi-agent
setting in which agents share a global parameterized policy.

2.2 Requirements for distributed RL systems

RL algorithms explore large spaces of actions, states and
DNN parameters, which grow exponentially with the number
of agents [37]. RL systems must thus exploit the parallelism
of GPUs and scale computation to many worker nodes.

Due to the diverse computational patterns exhibited by
different RL algorithms, there is no single strategy for paral-
lelization and distribution that is optimal for all RL algorithms,
e.g., in terms of both achieving the lowest iteration time and
scaling to the most workers. Bottlenecks during training de-
pend on the specific algorithm, the training workloads and
the employed hardware resources: e.g., our experiments show
that, for PPO [47], environment execution (@) takes up to
98% of execution time; for MuZero [46], a large MARL al-
gorithm with many agents, instead 97% of time is spent on
policy inference and training (@+©).

Therefore, there are many proposals how to parallelize
and distribute RL computation: e.g., in single-agent RL, envi-
ronment execution (@ in Fig. 1), policy inference and train-
ing (@+@) can be distributed across workers [8, 16,16, 18,34];
in MARL, agents can be distributed [25, 26, 34,45] and ex-
change training state [29, 39]. Environment instances can
execute in parallel [16,32] or be distributed [7].

Agent.act() Agent.act() Agent.act()

Dataflow operators

Message| & Function operator

Shared memory

Environment.step
Dataflow operator

Function call
Environment.step())
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def stepCaction

tate, renard-.
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~
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Dataflow operator:
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Fig. 2: Types of RL system designs

(c) Dataflow-based

Instead of committing to one approach for parallelizing
and distributing the RL computation, an RL system should
provide the flexibility to change its execution approach based
on the workload. This leads us to the following requirements:
(1) Execution abstraction. The system should have a flex-
ible execution abstraction for parallelizing and distributing
computation, unencumbered by how the algorithm is defined.
(2) Distribution strategies. The system should support mul-
tiple strategies for distributing RL computation. Users should
be permitted to switch between strategies based on the train-
ing workload, without changes to the algorithm.

(3) Acceleration support. The system should exploit the
parallelism of GPUs and CPUs, accelerating not just policy
training and inference (@+@) but the full RL training loop,
including environment execution (@) [23].

(4) Algorithm abstraction. The system should expose famil-
iar APIs to users for defining RL algorithms and their training
loops, structured around algorithmic components [9, 13,22],
such as agents, actors, learners, policies, environments, etc.

2.3 Design space of existing RL systems

We analyze the design space of RL systems. Existing designs
fit into three types (see Fig. 2):

(a) Function-based RL systems are the most common type.
They express RL algorithms typically as Python functions,
executed directly by workers (see Fig. 2a). The RL training
loop is implemented through direct function calls. For ex-
ample, Acme [18] and SEED RL [8] organize algorithms
as actor/learner functions; RLGraph [45] uses a component
abstraction, and users register Python callbacks to define func-
tionality. Distributed execution is delegated to backend en-
gines, e.g., TensorFlow [14], PyTorch [42], Ray [34].

(b) Actor-based RL systems execute algorithms as a set
of (programming language) actors deployed on worker
nodes (see Fig. 2b). For example, Ray [34] uses an actor
model to define tasks, which are distributed among nodes
using remote calls. Defining control flow in an actor model,
however, is burdensome. To overcome this issue, RLIib [25]
adds logically centralized control on top of Ray. Similarly,
MALIb [61] offers a higher level abstractions for population-
based MARL algorithms (e.g., PSRO [35]) on Ray.

(c) Dataflow-based RL systems define algorithms through a
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Type System (1) Execution (2) Distribution (3) Acceleration  (4) Algorithm

SEED RL [8] Python functions environment only actor/learner/env
Function-based Acme [18] Python classes DNNs only

RLGraph [45] o delegated to backend agent

Ray [34] task (stateless) Python functions
Actor-based RLIib [25] aétor (stateful) scheduler/RPC DNNs only with Ray API [34]

MALIb [61] i agent/actor/learner/env

JIT-compiled
Podracer [16] by JAX [12] hardcoded funcs/DNNs/envs  JAX [12] API
5 . predefined dataflow operators/
Dataflow-based RLIib Flow [26] dataflow operators  Ray tasks [34] DNNs only operator API
WarpDrive [23]  GPU thread blocks — CUDA kernels CUDA API
heterogeneous funcs/operators/
Fragmented dataflow MSRL fragments any fragment DNNs/envs agent/actor/learner/env

Tab. 1: Design space of distributed RL systems

set of data-parallel operators, implemented by GPU kernels
or distributed tasks (see Fig. 2c). Users must express the com-
plete RL training loop using operators APIs. For example,
Podracer [16] uses JAX [12] to compile vectorized Python to
TPU kernels. RLIib Flow [26] provides Spark-like dataflow
operators on top of Ray. WarpDrive [23] executes RL training
loops implemented in CUDA using GPU thread blocks.

Tab. 1 considers how well these approaches satisfy the four
requirements from §2.2:

(1) Execution abstraction. Function- and actor-based sys-
tems execute RL algorithms directly through implemented
(Python) functions and user-defined language actors, respec-
tively. This prevents systems from applying optimizations
how RL algorithms are parallelized or distributed. In contrast,
dataflow-based systems execute computation using opera-
tors [16,26] or CUDA kernels [23]. This allows for execution
optimizations, but algorithm implementations are restricted
by the supported set of operators.

(2) Distribution strategies. Most function-based systems
only support a hardcoded strategy, e.g., one that distributes ac-
tors to parallelize the environment execution (@+@ in Fig. 1)
with a single learner. In actor-based systems, a scheduler as-
signs stateful actors and stateless tasks to workers, and users
have no control over the distribution approach.

Similarly, existing dataflow-based systems only support
fixed policies how dataflow operators are assigned to workers:
Anakin [16] co-hosts an environment and an agent on each
TPU core; Sebulba distributes the environment, learners and
actors on different TPUs; and RLIib Flow [26] shards dataflow
operators across distributed Ray actors.

(3) Acceleration support. Most RL systems only accelerate
DNN policy inference and training (@+@). Some dataflow-
based systems (e.g., Podracer [16] and WarpDrive [23]) also
accelerate other parts of training, requiring bespoke dataflow
implementations: e.g., Podracer accelerates environment exe-
cution (@) on TPU cores; WarpDrive executes the entire RL
training loop (@—@) on a single GPU using CUDA.

(4) Algorithm abstraction. Function-based RL systems pro-
vide intuitive actor/learner/env APIs. Actor-based RL sys-

tems exhibit harder-to-use low-level APIs for distributed
components (e.g., Ray’s get/wait/remote [34]) and must
rely on high-level libraries (e.g., RL1ib’s PolicyOptimizer
API [25]) to bridge the gap. Dataflow-based systems come
with their own dataflow operators, requiring the rewriting
of a complete RL training loop. For example, JAX [12] re-
quire users to express RL algorithms in terms of the vmap and
pmpa operators for vectorization and single-program multiple-
data (SPMD) parallelism, respectively.

We note that there is an opportunity to combine the usabil-
ity of a function-based algorithmic abstraction, which allow
users to express RL algorithms naturally using algorithmic
components, with the acceleration potential of dataflow-based
approaches. Such a design, however, requires a new execution
abstraction, which also retains the flexibility of supporting
different distribution strategies.

3 Fragmented Dataflow Graphs

We now describe the dataflow abstraction that we use to rep-
resent the heterogenous computation of RL algorithms and to
map it to various devices for execution.

3.1 Overview

Our aim is to take an arbitrary RL training loop of a single- or
multi-agent RL algorithm (Fig. 1) and translate it to a dataflow
representation. The RL system can then use the dataflow
representation to parallelize and distribute the computation
across heterogeneous devices. We observe that RL training
loops combine different types of computations: e.g., actors
decide on an action to carry out based on inference results
from the DNN policy, obtaining trajectories first; learners
update the DNN policy using a DNN training algorithm;
and environments execute steps in e.g., a physics simulator,
returning trajectories based on the current simulation state.
Unlike existing dataflow models for DNN computation [1,
6, 19], this heterogeneity of computation makes it challenging
to impose a single uniform dataflow model that prescribes a
set of computational operators and a single data representation
(e.g., tensors) between them. Instead, we adopt a heteroge-
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Fig. 3: Fragmented dataflow graph

neous dataflow model, in which independent dataflow rep-
resentations for different algorithmic components of the RL
training loop can be “stitched together” through well-defined
interfaces. We refer to this dataflow model as a fragmented
dataflow graph (FDG), shown in Fig. 3.

Fragments. Each node in an FDG is a potentially data-
parallel fragment, which is implemented using a bespoke
dataflow representation. For example, fragment A in Fig. 3
represents the action computation of an actor using the data-
parallel operators of a DNN engine [1, 6, 19], performing
model inference to decide on an action; fragment B imple-
ments the environment simulation directly as parallel Python
code; and fragment C conducts the model training, which is
implemented as CUDA kernels [11,38].

Based on the fragment allocation, FDGs support the execu-
tion of RL computation on different devices. Each fragment
is assigned to one or more devices: the DNN operator repre-
sentation of fragment A allows it to be deployed on GPUs
or CPUs; fragment B requires a Python interpreter with the
multiprocessing library [10] on CPU cores; and instances of
fragment C must run as CUDA kernels on GPUs.

In addition, it is possible to parallelize fragment execution
by having multiple instances of a fragment and assigning
each instance to a separate device. In Fig. 3, fragment A is
replicated 3 times and executed by 3 GPU devices in parallel.

Communication. To form a connected FDG of the complete
RL training loop, each fragment must support entry and exit
interfaces, allowing them to exchange data: the entry inter-
face receives data as a byte buffer, which is transformed into
a fragment-specific representation (e.g., a tensor); and the
exit interface requires a fragment to provide output, which is
serialized for consumption by the next fragment.

The implementation of these interfaces depends on how
the fragments are deployed: if two fragments are placed on
different workers, the interface must use network commu-
nication to exchange data e.g., using an RPC protocol over
Infiniband [48]; if two fragments are co-located on devices
on the same worker, they can share data structures e.g., using

inter-GPU communication links such as NVLink [40].
According to the communication method and distribution
policy (§4.2), fragment interfaces may be blocking, which
means that they only execute after all data has arrived, e.g.,
after a collective communication A11Reduce round when ag-
gregating DNN gradients. Alternatively, they can be non-
blocking, which means that they execute continuously, e.g.,
allowing actors to interact with environments asynchronously.

3.2 Trade-offs with fragmented dataflow graphs

FDGs subsume execution strategies of existing RL systems.
For example, an FDG may represent an actor and its envi-
ronment as a single CPU-based fragment, and a learner as
a GPU-based fragment, as proposed by Acme [18]. Alterna-
tively, it may create a larger GPU fragment by moving the
DNN policy to the learner, accelerating policy inference, as
proposed by SEED RL [8]. An even larger fragment may
contain the actor, learner, policy, and environment, execut-
ing the whole training loop on a single GPU, as proposed by
WarpDrive [23] and Anakin [16].

More generally, FDGs expose two dimensions that impact
execution performance:

Fragment granularity refers to the code size, which affects
device utilization: a small fragment may underutilize a GPU,
and a large one may exhaust GPU memory.

Fragment granularity also determines the ratio between
computation and communication. The frequency and amount
of data synchronization between fragments often limit scal-
ability: coarser fragments require less synchronization with
other fragments, which reduces communication overhead, but
they remove opportunities for parallelism. For example, mul-
tiple fragments may exchange trajectories frequently at each
step; alternatively, they may batch data from multiple steps
and communicate only once in each episode.

Fragment co-location is the assignment of fragments to
devices on the same worker. Co-locating fragments avoids
network communication (e.g., Ethernet or InfiniBand) and
instead uses more efficient intra-node communication (e.g.,
NVLink or PCle). Whether two fragments can be co-located
depends on the available resources on the worker, such as the
number of available GPUs.

Choosing the right trade-off between fragment granularity
and co-location is key to achieving good performance. In the
next section, we describe how FDGs allow users to define
an RL algorithm and select between different distribution
policies, which expose these trade-offs.

4 Using MSRL

MSRL is our system that implements FDGs for parallel and
distributed execution of RL algorithms based on distribution
policies. We describe the APIs supported by MSRL for users
to define RL algorithms (§4.1) and the distribution policies
supported by MSRL to deploy FDGs (§4.2).
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Type API

Agent, Actor, Learner, Trainer Abstract classes for components
Actor.act(...) Trajectory collection
Learner.learn(...) DNN policy training
Trainer.train(...) RL training loop

Description

Component MSRL.agent_act(...) Invoke actor
MSRL.agent_learn(...) Invoke learner
MSRL.env_step(...) Execute environment
MSRL.env_reset() Reset environment

Interaction MSRL.replay_buffer_insert(...) Store trajectories in buffer

MSRL.replay_buffer_sample() Sample trajectories from buffer

Tab. 2: MSRL APIs

4.1 MSRL APIs

MSRL’s APIs are designed to decouple the algorithm logic
from its deployment, while supporting familiar algorithmic
concepts (i.e., agents, actors, learners, trainers, and environ-
ments). As listed in Tab. 2, MSRL supports component and
interaction APIs:

Component APIs specify an RL algorithm by defining algo-
rithmic components derived from abstract classes. An Agent
consists of actors and learners: actors collect trajectories in
Actor.act() by invoking MSRL.env_step(); and learners im-
plement the DNN update logic in Learner.learn(). A trainer
constructs the RL training loop in Trainer.train(). It can use
MSRL.env_step() to invoke the environment implementation
and MSRL.env_reset() to reset the training episode.

Interaction APIs offer RL-specific functionality to
algorithmic components. For example, an acfor can
store collected trajectories in a replay buffer using
MSRL.replay_buffer_insert(), and a learner can sample
from that replay buffer with MSRL. replay_buffer_sample().
This avoids direct invocations between components, which
allows MSRL to distributed fragments transparently.

Alg. 1 shows a sample implementation of the multi-agent
PPO (MAPPO) algorithm [57]. (For brevity, it omits the
DNN policy definition.) The MAPPOAgent (line 1) defines
the agent behavior: it interacts with the environment
through MAPPOActor (line 6), and performs the policy train-
ing with MAPPOLearner (line 12). The agent collects trajecto-
ries (lines 8-9), and updates its DNN policy (lines 15-21).
MAPPOTrainer defines the RL training loop (line 23).
At the start of each episode, it resets the environment
(MSRL.env_reset()) and calls MSRL. agent_act() to place tra-
jectories (line 28) in a replay buffer (line 10). The trainer
invokes the learner through MSRL.agent_learn() (line 29).
To separate the algorithm’s logic from its deployment,
MSRL uses configurations, specified as Python dictionaries:
an algorithm configuration instantiates the algorithmic com-
ponents and their hyper-parameters (e.g., the number of agents
and learning rates). In the MAPPO example (lines 30-38),
the configuration requests 4 agents, each with 3 actor and
1 learner. Each actor interacts with 32 environments; and a de-
ployment configuration defines (i) the resources (e.g., GPUs,
CPUs, and worker nodes) and (ii) a distribution policy. In the

Algorithm 1: MAPPO algorithm in MSRL

1 class MAPPOAgent (Agent):

2 def act(self,state):

3 return self.actors.act(state)

4 def learn(self,sample):

5 return self.learner.learn(sample)

6 class MAPPOActor (Actor)

7 def act(state):

8 action = self.actor_net(state)

9 reward,new_state = MSRL.env_step(action)

10 MSRL.replay_buffer_insert(reward,new_state)

11 return reward,new_state

12 class MAPPOLearner (Learner):

13 def learn():

14 sample = MSRL.replay_buffer_sample()

15 action,reward,state,next_state = sample

16 last_pred = self.critic_net(next_state)

17 pred = self.critic_net(state)

18 r = discounted_reward(reward, last_pred,self.gamma)

19 adv = gae(reward,next_state,pred,last_pred,self.
gamma)

20 for i in range(self.iter):

21 loss += self.mappo_net_train(action,state,adv,r)

22 return loss / self.iter

23 class MAPPOTrainer(Trainer):

24 def train(self,episode):

25 for i in range(episode):

26 state = MSRL.env_reset()

27 for j in range(self.duration):

28 reward,new_state = MSRL.agent_act(state)

29 loss = MSRL.agent_learn()

30 mappo_algorithm_config = {

31 “agent’:{’num’:4, name’:MAPPOAgent,

32 ’actor’:MAPPOActor,’learner’:MAPPOLearner},

33 >actor’ :{’num’:3, name’ :MAPPOActor,

34 "policy’ :MAPPOActorNet,’env’:True},

35 >learner’:{’num’:1, name’ :MAPPOLearner,

36 ’policy’:[MAPPOCriticNet ,MAPPONetTrainl],

37 ’params’ :{’gamma’:0.93}},

38 >env’ :{’name’ :MPE,’num’:32,  params’:{’name’:’MPE’}}}

39 mappo_deployment_config = {

40 "workers’:[198.168.152.19, 198.168.152.20, [..],
41 ’GPUs_per_worker’:4},

42 ’distribution_policy’:’SinglelLearnerCoarse’}

example (lines 39-42), it deploys workers with 4 GPUs each,
using the SingleLearnerCoarse distribution policy.

4.2 Distribution policies

A distribution policy (DP) governs how MSRL distributes and
parallelizes an RL algorithm by allocating, replicating and
collocating fragments from the FDG to workers and devices.

In general, there exists no single DP that is optimal in all
cases: the performance and applicability of a DP depends on
the type of RL algorithm, the size and complexity of the DNN
model, its hyper-parameters, the available cluster compute
resources (i.e., CPUs and GPUs), and the network bandwidth.
MSRL allows users to easily switch between DPs, either for
the same RL algorithm or when using different algorithms.
MSRL provides six DPs, which follow widely used hard-
coded distribution strategies of existing RL systems.

Next we give an overview of the support DPs and their
trade-offs. Tab. 3 shows how three of the DPs deploy the
fragments of an RL algorithm. (We list all DPs currently
implemented by MSRL in Appendix A).
DP-SingleLearnerCoarse replicates the actor and environment
fragments but uses a single learner. The policy DNN is repli-
cated across the actors and learner, which only requires coarse
synchronization. This policy is therefore most suitable with
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Tab. 3: Sample distribution policies with deployments

computationally-expensive environments that need scaling
out, but small DNN models that can be synchronized in a
batched fashion, e.g., Acme [18], Sebulba [16].

The MAPPO deployment in Alg. |l wuses DP-
SingleLearnerCoarse: each agent is partitioned into
4 GPU fragments, i.e., 3 actors and 1 learner, and 3 CPU
fragments for environments. Actor and environment frag-
ments are collocated. This setting is replicated for each of the
4 MAPPO agents, as specified in the algorithm configuration.
In contrast, DP-SingleLearnerFine fuses the actor and en-
vironment into a single CPU fragment, and only deploys
the learner on a GPU. Therefore it does not communicate
policy parameters between workers, which is preferable for
large DNN models with many parameters. Compared to the
DP-SingleLearnerCoarse, it relies on fine-grained synchro-
nization: training data is exchanged at each step, instead
of being batched per episode. For good performance, DP-

SingeLearnerFine therefore requires high bandwidth connec-
tivity between workers, e.g., SEED RL [8].

DP-MultiLearner performs data-parallel training with multiple
learners. This policy is necessary when the data generated
from actors becomes too large for a single GPU, and e.g., DP-
SingleLearnerCoarse cannot be used. However, it requires the
tuning of hyper-parameters (e.g., the learning rate) to scale
due to its reliance on data parallelism. Since workers only ex-
change information about the trained policy (e.g., aggregated
DNN gradients), DP-MultiLearner is communication efficient,
supporting fully decentralized MARL training [5,43,59,62].

MSRL supports further policies: DP-GPUOnly fuses the RL
training loop into a single GPU fragment and distributes it
to multiple GPU devices. DP-Environments dedicates one
or more workers for the execution of complex or compute-
intensive environments (e.g., physics simulations). Finally,
DP-Central introduces a separate fragment for a centralized
component (e.g., policy pool [61] or parameter server [24]).

The choice of the best distribution policy depends on the
algorithm’s characteristics and available hardware resources:
single-agent RL algorithms, such as PPO/A3C, exhibit the
best performance under the DP-SingleLearnerCoarse pol-
icy, which distributes actors to speed up trajectory collec-
tion through data parallelism; multi-agent algorithms, such
as MAPPO/MADDPG, require a DP-MultiLearner policy that
distributes actors and learners separately from agents, thus
parallelizing both trajectory collection and model training; a
DP-GPUOnly policy can be used in a GPU environment to
fuse the training loop and execute it entirely on GPUs, which
offers the best performance.

Based on the hardware resources, bottlenecks shift between
DPs: the DP-SingleLearnerFine policy exchanges data be-
tween actors/environments at a fine granularity by distribut-
ing inference/training to one GPU worker and environments
across CPU workers. Despite the need for frequent commu-
nication, this policy is suitable in situations where GPUs
are scarce; in contrast, the DP-SingleLearnerCoarse policy
co-locates the GPU DNN inference with the environments,
enabling the learner to gather batched training data. With
enough GPUs, this policy accelerates trajectory collection.

5 MSRL Architecture

We describe MSRL’s architecture, explaining how FDGs are
generated (§5.1) and executed (§5.2).

MSRL follows a coordinator/worker design (see Fig. 4):
a user submits the RL algorithm implementation to the co-
ordinator @. The coordinator generates the fragments that
constitute the FDG and dispatches them to the workers @.
Each worker maintains one or more execution backends (e.g.,
a DNN engine, a CUDA job scheduler, a Python interpreter),
each managing devices (e.g., GPUs or CPU cores). After re-
ceiving fragments, the worker optimizes them @ and submits
them to a backend for execution @.
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Fig. 4: Overview of the MSRL archltecture

5.1 Generating FDGs

The coordinator has two components:

The FDG Generator partitions the RL algorithm according
to the DP specified in the deployment configuration (§4.1). It
splits the implementation at fragment boundaries and injects
code for the interface implementations between fragments.
The fragment logic is then emitted as part of a run() method
in a generated Fragment class.

The partitioning of the RL algorithm into fragments uses
the information associated with a DP. Each DP provides a set
of rules about (1) how fragments are generated and (2) how
they are distributed. The DP contains a fragment template,
which associates each fragment with a Python class that has
placeholders for class names, member functions, and other
relevant elements. These placeholders instruct the Genera-
tor where to insert specific algorithm logic, such as actor
computation, into the generated fragments. The DP also de-
fines the communication operations required by the inter-
faces. To choose appropriate implementations, the DP refers
to communication operations supported by backends (e.g.,
comms.AllGather [20] in a DNN engine). The DP also spec-
ifies which fragments are replicated into multiple instances
for parallel execution, or co-located on the same worker.

When partitioning the RL training loop, the boundaries be-
tween fragments follow the algorithmic components (actors,
learners, environments). The data to be transferred between
fragments is defined in terms of the function signatures of
the components. The partitioning is done on a dataflow rep-
resentation of the RL algorithm: nodes in the dataflow graph
are Python statements; edges represent the dataflow through
variables. Therefore, edges at the boundary of algorithmic
components describe fragment interfaces, and we refer to
them as boundary edges. MSRL creates fragments by parti-
tioning the dataflow graph at these boundary edges.

As an example, consider partitioning the MAPPO algo-
rithm (Alg. 1) into actor and learner fragments, with the
boundary between lines 28 and 29. Fig. 5a shows the sim-
plified dataflow graph obtained after static analysis, with the

Algorithm 2 Generation of fragmented dataflow graphs

function generate_FDG (alg, DP):
I: FDG «+ {}, DFG + generate_DFG(alg)
2: boundary_edges < obtain_boundary_edges(DFG)
3: interfaces < generate_interfaces(boundary_edges, DP)
4: for boundary in boundary_edges do
5. fragment_code < build_fragment(alg, boundary)
6: fragment < build_fragment(fragment_code, interfaces, DP)
7. FDG + FDG U fragment

8: return FDG

input/output data of the components shown in red. Splitting
the graph at these boundaries, partitions it into two fragments
(see Fig. 5b), which communicate through the new interface
obtained from the boundary edges (shown in red).

Alg. 2 summarizes the FDG generation. The Generator

takes the RL algorithm’s abstract syntax tree (alg) and dis-
tribution policy DP as input (line 0) and constructs its
dataflow graph (DFG) (line 1). Next, it locates the algorith-
mic components and determines the boundary edges from the
DFG (line 2). Based on the information from the DP, it con-
structs the communication interfaces (line 3). For each bound-
ary edge (line 4), it extracts the fragment code (line 5) and
builds the fragment with its interface implementation (line 6).
At the end, it returns the complete FDG (line 8).
The Fragment Dispatcher launches instances of execution
backends on each worker according to the devices from the
deployment configuration. It also sets up distributed commu-
nication, e.g., through MPI [30], as required by the fragment
interfaces. Finally, it assigns fragments to devices based on
the DP and sends the fragments to the workers.

5.2 Executing fragments

The workers use a set of execution backends to take the frag-
ment code and run it. Some backends (e.g., a DNN engine)
produce executable machine code for a given device (e.g.,
GPUs) by translating the fragment implementation into a
computational graph, which enables code optimizations.
The communication between fragments is also handled
by the execution backends. For example, a DNN engine
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MSRL RLIib WarpDrive
PPO 207 347 (+68%) 400 (+93%)
A3C 267 428 (+60%) n/a

Tab. 4: Lines of code for the RL algorithm implementations

uses communication operators as part of its computational
graph, automatically selecting suitable implementations (e.g.,
NCCL [39] for GPU collective communication).

Each worker has two components:

The Fragment Optimizer optimizes fragments that have
been received for a given execution backend. To avoid the
overhead of executing multiple instances of a replicated frag-
ment, the optimizer attempts to fuse instances represented as
computational graphs: it exploits the support of DNN engines
to process data in a SIMD fashion by batching tensors from
multiple fragment instances.

The Optimizer performs this transformation on the frag-

ment’s AST before submitting it to the DNN engine. It locates
the AST nodes of tensors and merges their data. It then com-
putes the new tensor shape to create a single tensor that can
be processed by other data-parallel operators.
The Executor backends execute the fragments on a given
target device: a DNN engine (MindSpore) executes compu-
tational graph on GPUs or CPUs; a CUDA job scheduler
runs CUDA kernels on GPUs; a Python interpreter executes
Python fragments on CPU cores; and a container scheduler
can run arbitrary compute containers on CPU cores.

6 Evaluation

Our experimental evaluation answers the following questions:
(i) what is the training performance that MSRL with FDGs
achieves compared to existing RL systems with fixed exe-
cution strategies (§6.2)7; (ii) how does MSRL benefit from
choosing different distribution policies (§6.3)?; and (iii) how
well does MSRL scale in terms of the number of agents and
the amount of training data (§6.4)?

6.1 Experimental set-up

Implementation. We implement MSRL in 11,700 lines
of Python and C++ code. It uses CUDA 11.03,
cuDNN 8.2.1, OpenMPI 4.0.3, and the MindSpore

Cluster CPU cores GPUs Interconnects
#nodes x #per node #nodes x #per node intra-, inter-node
Azure VMs Intel Xeon ES5-2690  NVIDIA P100 PCle
NC24s_v2 16x24, 448 GB 16x4 10 GbE
Local clust Intel Xeon 8160 NVIDIA V100 NVLink
Ocal CUSIer 4096, 250 GB 4x8 100 Gbps IB

Tab. 5: Testbed configuration

DNN framework 1.8.0 [19] as a GPU-based ex-
ecution backend. The source code is available at
https://github.com/mindspore-lab/mindrl.

MSRL uses the following distribution policies from Ap-

pendix A: DP-SingleLearnerCoarse; DP-SingleLearnerFine;
DP-MultiLearner; DP-GPUOnly; and DP-Environments.
Baseline comparisons. For comparison, we use RLIib [34]
of Ray V2.0, as a representative distributed RL system, and
WarpDrive V1.6 [23], as a single-GPU system that accelerates
the full RL training loop. Note that the implementations of
RLIib Flow [26] and PodRacer [16] are unavailable.
RL algorithms. We focus on three popular algorithms:
(1) proximal policy optimization (PPO) [47]; its multi-agent
version, (2) multi-agent PPO (MAPPO) [57]; and (3) asyn-
chronous advantage actor-critic (A3C) [31].

Tab. 4 compares the lines of code for the algorithm im-
plementations. The RLLib and WarpDrive implementations
require 68% and 93% more lines than MSRL, respectively,
due to the hardcoded execution and distribution logic. This
shows a benefit of MSRL’s approach, which allows users to
focus on the algorithm logic in their implementations.

For environments, we use two games (CartPole,
HalfCheater) from the MuJoCo simulation engine [52], and
two strategies (Spread, Tag) from the multi-agent particle
environment (MPE) [28]. The policies use a 7-layer DNN.

Testbeds. We conduct experiments on a cloud and a local
cluster. The hardware details are given in Tab. 5: the cloud
cluster has 16 VMs (with 64 GPUs); the local cluster has
4 nodes (with 32 GPUs). All nodes run Ubuntu Linux 20.04.

Metrics. For PPO, we measure (i) the training time to reach
a given reward and (ii) the time per episode. For MAPPO, as
the problem size increases with agents, we report (i) training
time against the problem size and (ii) training throughput.

6.2 Performance with FDGs against baselines

We investigate the performance impact that MSRL’s FDG
abstraction incurs compared to RL systems that only support
hardcoded parallelization and distribution approaches.
Distributed training. We compare MSRL with DP-Single-
LearnerCoarse to Ray [34] using PPO and A3C on the lo-
cal cluster. For Ray, both algorithms are implemented using
RLIib-Flow [26] and tuned based on RLIlib’s public PyTorch
implementation [44]. DP-SingleLearnerCoarse is equivalent
to the distribution approach implemented by RLIib-Flow’s
PPO and A3C implementations.
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For PPO, we distribute 320 environments evenly among
the actors, i.e., each actor interacts with 320/#actors envi-
ronments. A single learner trains the DNN. For A3C, one
learner performs gradient optimization with gradients col-
lected asynchronously from actors. Each actor interacts with
one environment and computes gradients locally. We measure
the time per episode, which is dominated by actor and envi-
ronment execution. Since the DNN training/inference time
is negligible, the fact that MSRL and Ray use different DNN
frameworks (MindSpore vs. PyTorch) has low impact.

Fig. 6a shows the time per episode for PPO. MSRL’s time
with 1 GPU is 2.5 x faster than Ray’s, because Ray’s CPU ac-
tor interacts with all environments sequentially. As the number
of GPUs increases, both systems reduce episode time, because
each actor interacts with fewer environments. With 24 GPUs,
it takes 3.9 s for MSRL to execute an episode compared to
11.4 s for Ray (3 x speed-up). When actors interact with mul-
tiple environments, MSRL combines DNN inference into one
operation through FDG fusion, increasing GPU parallelism.
It also uses fragments to execute environment steps in parallel
by launching multiple processes.

Fig. 6b shows the time per episode for A3C. Both systems
exhibit constant time with more GPUs, because the workload
of each GPU executing an actor remains unchanged. MSRL
executes actors 2.2x faster than Ray: since its distribution
policy exploits customized asynchronous send/receive oper-
ations from the DL engine, it can avoid further data copies
between GPUs and CPUs. In contrast, Ray must copy data to
the CPU to communicate asynchronously.

In addition, MSRL generates the FDG that can be trans-
lated into a computational graph by the DL engine, enabling
code optimizations and efficient execution. By leveraging
code templates, MSRL generates optimized fragment code by
directly manipulating the FDG AST.
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Fig. 8: Impact of parameters on distribution policies

GPU only training. Next, we use MSRL to deploy PPO
with distribution policy DP-GPUOnly, which fuses the train-
ing loop into a single GPU fragment and replicates it for
distributed execution. We use the simple tag MPE environ-
ment [28], which simulates a predator-prey game in which
chaser agents are rewarded for catching runner agents. We
train different numbers of agents, thus increasing the number
of environments, on the local cluster and measure the training
time per episode. We compare against WarpDrive [23], which
performs single-GPU end-to-end RL training.

Fig. 7a shows the training time on 1 GPU. Compared to
WarpDrive, MSRL is 1.2-2.5x faster when ranging from
20,000 to 100,000 agents. MSRL’s DL engine (MindSpore)
compiles fragments to computational graphs, exploiting more
parallelization and optimization opportunities than Warp-
Drive’s hand-crafted CUDA implementation.

While WarpDrive cannot scale to more than 1 GPU, Fig. 7b

shows MSRL’s performance when using up to 16 GPUs (each
GPU trains 80,000 agents). Initially, training time increases
from 138 ms to 150 ms due to the increased computation on a
single worker (i.e., up to 640,000 agents). After that, training
time is stable, and it is limited by communication bandwidth
(InfiniBand, NVLink).
Conclusions: MSRL’s FDG abstraction provides distribution
policies for PPO and A3C that are tailored to their bottlenecks,
e.g., enabling parallel environment execution and aggressively
parallelizing GPU execution. Ray is limited by the distribution
approach of its RLIib library; WarpDrive’s manual CUDA im-
plementation prevents it from exploiting more sophisticated
compiler optimizations.

6.3 Trade-offs between distribution policies

Next, we explore the trade-offs between different distribution
policies when changing RL algorithms and resources.
Actors. We measure PPO’s training time with two distribution
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policies, DP-SingleLearnerCoarse and DP-MultiLearner. We
use a reward of 3,000 with 200 environments.

Fig. 8a shows the training time with 2 to 70 actors.
DP-MultiLearner outperforms DP-SingleLearnerCoarse with
fewer than 30 actors, but DP-SingleLearnerCoarse scales bet-
ter after that, converging faster with more actors. Since DP-
SingleLearnerCoarse only has 1 learner, its training batch size
is fixed. Adding more actors therefore only distributes envi-
ronment execution. In contrast, DP-MultiLearner fuses actors
and learners into single fragments. With more actors, it also
adds learners, reducing the batch size for each learner. This
adds randomness to the training, affecting convergence [17].

Next, we compare two algorithms, PPO and A3C, under
the same distribution policy DP-SingleLearnerCoarse.

Fig. 8b shows the time per episode for up to 24 actors. For
PPO, the time decreases with the actor count; in contrast,
A3C’s time stays constant. Adding actors in PPO increases
the parallelism of environment execution, thus reducing the
workload per actor; for A3C, each actor only interacts with
one environment, which makes its workload independent of
the actor count. To reduce the episode time for A3C, a new
distribution policy could be written that distributes the actor
among multiple devices, combining data- or task-parallelism.
Environments. We explore how changing the number of en-
vironments affects the choice of distribution policy. When an
agent interacts with more environments in parallel per episode,
it trains with more data, improving training performance.

Fig. 8c shows the training time with 50 actors with 100-

600 environments under DP-SingleLearnerCoarse and DP-
MultiLearner. DP-MultiLearner scales better than DP-Single-
LearnerCoarse with more than 320 environments: DP-Single-
LearnerCoarse’s training time increases with more environ-
ments, because its actors send trajectories to the learner,
adding communication overhead; DP-MultiLearner only com-
municates gradients, having a fixed overhead.
Network latency. We examine the behavior of DP-Single-
LearnerCoarse and DP-MultiLearner with PPO under different
network latencies. We change network latency in our cloud
cluster using the Linux traffic control (tc) tool from 0.2 ms
to 6 ms. We use 400 environments and 50 actors.

As Fig. 8d shows, DP-MultiLearner is more sensitive to net-
work latency than DP-SingleLearnerCoarse, and its training
time increases with higher latency: since DP-MultiLearner
uses Mindspore’s data parallel model [19] to broadcast, ag-
gregate and update gradients, it transmits many small tensors.
This makes it a more suitable choice for cluster with low
latency (< 2 ms); DP-SingleLearnerCoarse transmits the tra-
jectory and DNN model weights as large tensors, performing
data transmissions less frequently.

Cluster size. Finally, we study the performance of PPO under
3 distribution policies when increasing the GPU count: DP-
SingleLearnerCoarse and DP-SingleLearnerFine use a single
learner but apply different synchronization granularities; DP-
MultiLearner scales to multiple learners using data-parallelism.

§ 5000 SingleLearnerCoarse 60K SingleLearnerCoarse
o 4000 SingeLearnerFine @ 50 4 SingeLearnerFine
~ MultiLearner —¥— 8 X ' MultiLearner —
[0} o) 40 SingleLearnerCoarse’
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(a) Training time vs. GPUs (b) Episode time vs. GPUs

Fig. 9: Impact of GPU count on distribution polices

We use a constant 320 Mujoco HalfCheetah [4] environments.

Fig. 9a shows the training time in the cloud cluster to reach
a reward of 4,000 with up to 64 GPUs; Fig. 9b reports the
time per episode. With 64 GPUs, DP-SingleLearnerCoarse
achieves the best speed-up in training time (5.3 ). It main-
tains local copies of the DNN model at the actor and learner,
and only actors send the batched states and rewards to the
learner at the end of each episode (i.e., after 1,000 steps).
This reduces the overhead with more GPUs compared to DP-
SingleLearnerFine, whose actor fragments must communicate
with the learner at each step.

DP-MultiLearner exhibits a different behavior: with
16 GPUs, it achieves better performance than either DP-Single-
LearnerCoarse and DP-SingleLearnerFine, because it dis-
tributes policy training: it trains smaller trajectory batches
on each GPU and aggregates the gradients from all GPUs.
Instead, DP-SingleLearnerFine and DP-SingleLearnerCoarse
gather all batches and train them using 1 learner.

With more than 16 GPUs, DP-MultiLearner performs worse
than DP-SingleLearnerCoarse: batches become smaller, mak-
ing the gradient aggregation less efficient compared to training
a large batch. Although DP-MultiLearner trains each episode
faster than DP-SingleLearnerCoarse (see Fig. 9b), it requires
more episodes to reach a similar reward value.

Note that DP-SingleLearnerCoarse and DP-SingleLearner-

Fine use the original PPO implementation with 1 learner [47],
which limits scalability due to the centralized policy train-
ing (@ in Fig. 1). To ignore this bottleneck in the algorithm,
Fig. 9b also reports only the policy training time (labelled
DP-SingleLearnerCoarse’ and DP-SingeLearnerFine’). Now,
MSRL scales better: when moving from 32 to 64 GPUs, per-
formance increases by 25%.
Conclusions: As hyper-parameters, network properties or
GPU counts change, the differences between distribution poli-
cies in terms of synchronization granularity and frequency of
impact performance. MSRL’s ability to allow users to switch
between distribution policies at deployment time means that
they can achieve the best performance in different scenarios
without changing the algorithm implementation.

6.4 Scalability

Finally, we investigate how MSRL’s design scales with the
number of deployed agents for a MARL algorithm and of en-
vironments, thus increasing training data. We want to validate
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if MSRL’s approach introduces scalability bottlenecks.
Agents. We use MAPPO with the MPE simple spread envi-
ronment [28], in which n agents learn to cover n landmarks
while avoiding collisions. Agents must also process global
observations on how far the closest agent is to each landmark.
This results in O(>) observations with n agents, quickly grow-
ing in computational cost and GPU memory usage [28]. We
deploy on the cloud cluster using DP-Environments: each
GPU trains 1 agent, and 1 worker executes all environments.
Fig. 10a shows the training time per episode for up to
64 GPUs against a sequential baseline (1 GPU). Due to its
cubic complexity, the time increases both for the baseline and
MSRL. With distributed training, MSRL’s time grows more
slowly than the baseline: with 32 agents, MSRL improves
performance by 58 x; with 64 agents, the baseline exhausts
GPU memory, while MSRL trains one episode in 23.8 mins.
Fig. 10b compares the throughput with different agent num-
bers. Throughput is measured as the amount of data trained
per second (in MB/s). Adding more agents (i.e., GPUs) signif-
icantly improves throughput, and the margin becomes larger
with more GPUs: the throughput with 64 agents is over
7,600x higher than with 2 agents, as multiple GPUs train
agents in parallel, processing more observations per GPU.
Environments. We observe the effect of more environments
on statistical efficiency, i.e., the episodes needed to reach a
given reward. We use 10 environments per CPU, adding more
workers in the cloud cluster using DP-SingleLearnerCoarse.
Fig. 11 shows the reward along with the number of episodes
for different environment counts. More environments lead to
a higher reward: as more CPUs execute environments, the
larger use of trajectories per episode yields a higher reward.
Conclusions: FDGs do not deteriorate scalability. MSRL

scales to a large number of data-intensive agents, handling
the increase in communication between fragments without
bottlenecks. A larger amount of data generated by more envi-
ronments also improves the statistical efficiency of training.

7 Related Work

DNN compilation. XLA [56] is a domain-specific compiler
that accelerates the linear algebra of DNN models. JAX [12]
uses just-in-time (JIT) compilation to transform vectorized
Python programs to GPU or TPU code. TVM [6] is an au-
tomated end-to-end optimizing compiler for DNN training.
These approaches focus on DNN training and inference work-
loads with regular computation/communication patterns. In
contrast, RL algorithms exhibit more complex control and
data flow in their training loops.

DNN auto-parallelization. Alpa [60] and Unity [53] automat-
ically parallelize and distribute DNN training using data/oper-
ator/pipeline parallelism. They search for effective distributed
execution plans using dynamic or integer linear programming.
In future work, we want to explore the use of optimization
techniques to generate an optimal distribution policy for a
given RL algorithm. Since an FDG has more heterogeneity
than DNN dataflows, the search space is substantially larger
and based on more complex cost models.

Dataflow and actor systems. Spark [58] and Naiad [36]
express programs as dataflow graphs, sharding data across
workers. They provide high-level APIs to express computa-
tion as a single homogeneous dataflow. In contrast, FDGs
allow different dataflow models to be integrated into a single
distributed computation, as governed by distribution policies.

Ray [34] offers a general actor-based platform for dis-
tributed computing. To support RL algorithms, it uses domain-
specific libraries (RLlib/RayFlow [25,26]) that hardcode dis-
tribution strategies, preventing it from switching strategies
based on e.g., hardware properties. Instead, MSRL proposes
FDG, a higher-level abstraction for parallelizing and distribut-
ing RL training loops, which decouples RL algorithms from
their execution through explicit distribution policies.

8 Conclusions

While DNN systems have mature dataflow abstractions that
improve execution performance, similar abstractions for RL
systems have been under-explored. We described MSRL, a
system that supports the flexible parallelization and distri-
bution of RL algorithms using fragmented dataflow graph.
Accounting for the heterogeneous nature of RL training loops,
MSRL separates the algorithm from its execution by using
distribution policies that allocate dataflow fragments to GPUs
and CPUs. Our experiments showed how distribution policies
generalize existing RL systems without overhead.
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A Supported Distribution Policies

Distribution policy

Deployment

Description

[DP-SingleLearnerCoarse]

replicate: (actor, env)
split: (learner)

Worker 1

Worker 2

(GPU
/Eeplay

| _buffer
Actor

(—e-e4_GPU CPU
Replay
buffer ® Environ
@ ment
L Actor

Worker 3 Broadcast

Gather Worker 4

DP-SingleLearnerCoarse replicates the actor and environ-
ment fragments: W1-W3 co-locate 1 GPU fragment with
an actor for DNN policy inference and 1 CPU fragment
for the environment execution. A single GPU fragment

E;llJmn GPU/.Emey A aru|( cpu]  witha learrle‘jr performs .p(.)hcy tralm.ng (W4), gatherllng
e.g., Acme [18], Sebulba [16] ment oel—g pluffer o\é Replay batched training data, training the policy and broadcasting
Actor Learner buffer
\ b J updates.
[DP-SingeLearnerFine] Worker 1 worker2 __ DP-SingleLearnerFine fuses the actor and environment
Cpu'/vfef[f:lay Re;)‘lN Y| into 1 fragment (W1-W3) but handles policy inference at
. : buffe . .
replicate: fused actor/env . o — tg hal - :{ﬁ —> . the learner (W4), i.e., actors do not contain DNNs. W4
. nvironmen ctor L ctor nvironment ) N . L. i
split: learner workeras_Soatter| | camer Workerd executes policy inference and training in 1 GPU fragment;
lorker h
<P0 o =7 a0\ oru) W13 only have CPU fragments. W4 scatters actions to
e.g., SEED RL [8] /&3:] o ;epla W1-W3 and gathers data for policy training.
N y
Enwronment Actor ) LLe:rnerbufferl )
-MultiLearner Worker 1 Worker 2 -MultiLearner performs data-parallel training with mul-
DP-MultiL DP-MultiL perf data-parallel t g with mul
Ecnzt’mnk_%sezlay Eef';lay\. :F:“ [, °™| tiple learners, supporting fully decentralised MARL train-
. ctor uffer uffer ctor| | | Envi . .
replicate: fused actor/learner, env | ment < s’ Loarner  [Leamerg 'd-q ] | ment | ing [5,43,59,62]. DP-MultiLearner co-locates 2 fragments:
Worker 3 Aredice Wo,,:e, . aGPU fragment that fuses the actor and learner, accelerat-
cru ) PN ,R/p,ay,\ cPU]  ing policy inference, training and replay buffer manage-
E,",.“;’n‘:"" A°‘°’ 5ufte] getor [[Tenviron|  ent, and a CPU fragment for environment execution.
k. .<_. ® Learner Learnev. 0+0 o )
[DP-GPUOnly] Worker 1 o MWoter2 DP-GPUOnly fuses the training loop into 1 GPU fragment.
CPU GPU Environment nvironment Pl Pl . .
nctor T*:\A:mr To enable communication among GPU fragments, DP-
. L ] . .
replicate: fused actor/learner/env oy Loamer] (Leamers” s g o GPUOnly uses Allreduce operators compiled into the
Worker 1 Alreduc, Worker computational graph with NCCL2 [39]. DP-GPUOnly is
e o 5",‘::“"'“9" E"Vimmff%::r ] adistributed implementation of the single-node systems
Fo i) |t (e.g., WarpDrive [23]).
[DP-Environments] Worker 1 Worker 2 DP-Environments has a dedicated worker for environment
o on Environ o gReplay| [CPU)  execution. W1 has CPU fragments to execute environment
ment1 ! ment 2 ©<

replicate: fused actor/learner
split: env

e.g., MALIb [61]

.’\ de

[ ]
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Gather orker3\Scatter \ﬁather Scatter Worker 4

cpu)\GPU Replay\GPU “5__ Replay)
Actor huffer Actor T buffer
[ [ ]
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CPU

instances on multiple CPU cores; W2—-W4 fuse the actor
and learner to accelerate policy inference and training. W1
gathers the inferred actions and scatters the states and
rewards.

[DP-Central]
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split: param server/policy pool

Worker 1

Worker 2

CPU
Policy pool

BN

Parameter

GPU

'.—>..

I Actor Enwron

CPU

ment

Gather
Worker 2

Scatter Worker

4

CPU

Environg
ment 6.

Replay|

GPU \ o]
Actor buffer
[ ]

o -0

© Learner)

Learner®

GPU
Actor |- Environ
| N nt
*—0 &

CPU

mel

DP-Central supports a central policy pool [61] or param-
eter server [24] on a separate worker (W1). W2-W4 co-
locate GPU fragments for policy inference and training
and CPU fragments for environment execution.
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