
Teechan: Payment Channels Using Trusted Execution
Environments

Joshua Lind1, Ittay Eyal2, Peter Pietzuch1, and Emin Gün Sirer2

1 Imperial College London
2 Cornell University and the Initiative for CryptoCurrencies and Contracts (IC3)

Abstract. Blockchain protocols are inherently limited in transaction through-
put and latency. Recent efforts to address performance and scale blockchains
have focused on off-chain payment channels. While such channels can achieve
low latency and high throughput, deploying them securely on top of the Bitcoin
blockchain has been difficult, partly because building a secure implementation
requires changes to the underlying protocol and the ecosystem.
We present Teechan, a full-duplex payment channel framework that exploits
trusted execution environments. Teechan can be deployed securely on the existing
Bitcoin blockchain without having to modify the protocol. It: (i) achieves a higher
transaction throughput and lower transaction latency than prior solutions; (ii) en-
ables unlimited full-duplex payments as long as the balance does not exceed the
channel’s credit; (iii) requires only a single message to be sent per payment in
any direction; and (iv) places at most two transactions on the blockchain under
any execution scenario.
We have built and deployed the Teechan framework using Intel SGX on the
Bitcoin network. Our experiments show that, not counting network latencies,
Teechan can achieve 2,480 transactions per second on a single channel, with sub-
millisecond latencies.

1 Introduction

Bitcoin has grown significantly in popularity since its release. The ability to transfer
funds over a trustless, decentralized and global financial network has attracted many
industries and applications. As a result, adoption has grown rapidly, leading to an expo-
nential increase in the number of transactions sent per day [3]. This growth exacerbates
a natural problem: the Nakamoto consensus protocol that underpins Bitcoin is funda-
mentally limited in transaction throughput and imposes a significant minimum transac-
tion latency [9]. Furthermore, since miners must store the history of every transaction
ever made, accumulating storage costs increase the cost of running nodes, which, in
turn, leads to centralization pressure.

The maximum transaction throughput of Bitcoin is determined by the block size and
the block interval. With a block size of 1 MB and an average block interval of 10 min-
utes, Bitcoin can support a maximum of 7 tx/s [33]. Recent proposals have suggested
either tuning these parameters, such as increasing the block size or reducing the block
interval [13, 1, 12, 37]; or modifying the protocol, for example, by incrementally creat-
ing blocks so as to avoid centralization bottlenecks and increase throughput [11]. The



2

former approach cannot scale Bitcoin by more than one order of magnitude, while the
latter requires changes to the underlying protocol, which practitioners have been reti-
cent to make. Other research suggests that hardware limits, such as the cost of signature
verification and storage latencies, cap Bitcoin to 200 tx/s [10].

To handle demanding workloads, such as credit card processing (≥ 10,000 tx/s), re-
cent proposals have focused on moving transactions off the blockchain through the use
of point-to-point payment channels [14, 10, 29]. Payment channels allow for efficient,
trustless fund transfers, in which parties can exchange transactions without having to
impact the blockchain except when the channel is established or terminated. Conse-
quently, two parties can engage in a large number of fund transfers, only settling the net
result on the blockchain. This decreases transaction confirmation latency, as only two
entities are involved, and reduces the load on the blockchain and network: throughput
scales linearly with the number of channels.

Despite the advantages of bidirectional payment channels, none have been deployed
securely on the existing Bitcoin network, as they assume modifications to the underlying
protocol. Specifically, they require transaction IDs to be set before they are signed—a
proposal to address this issue, SegWit [24], is currently mired in controversy [7].

We present Teechan, the first high-performance micropayment protocol that sup-
ports practical, secure, and efficient fund transfers on the current Bitcoin network. Sim-
ilar in design to Duplex Micropayment Channels and the Lightning Network, Teechan
uses multi-signature time-locked transactions to establish long-lived payment channels
between two mutually distrusting parties. It fundamentally differs from existing proto-
cols, however, in that it leverages trusted execution environments (TEEs) to strengthen
the guarantees provided by the framework: (i) Teechan does not require any changes to
the Bitcoin network; (ii) it enables infinite channel reuse as long as the balance does not
exceed the channel limits; and (iii) it is time- and space-efficient, requiring only one-
way messages for sending payments and two transactions to be placed on the blockchain
in total. Section 6 discusses the comparison to prior art in detail.

At a high level, current implementations of TEEs can provide confidentiality and in-
tegrity guarantees for code and data, but cannot guarantee liveness or safe termination
for a protocol. Teechan is designed in a manner that, despite these limitations, no party
can gain access to more funds than their current net balance. In particular, the TEE
ensures that the private keys that control the channel are never exposed to untrusted
software or hardware, ruling out a large class of potential attacks. These guarantees
are robust in the presence of compromised privileged software, such as the operating
system, hypervisor, and BIOS. In addition, an attacker who has full control of the hard-
ware outside of the CPU package, including the RAM, the system bus and the network,
cannot violate our security guarantees.

Overall, our paper makes the following contributions: (i) it presents Teechan, a prac-
tical framework for low-latency, high-throughput, secure off-chain Bitcoin transactions
between mutually-distrusting parties; (ii) it describes the detailed operation of a proto-
type implementation of this framework using Intel SGX as the TEE; and finally, (iii) it
presents preliminary performance measurements from our prototype implementation,
demonstrating that Teechan can achieve 2,480 tx/s on a single payment channel, thereby



3

enabling system-wide aggregate throughput that can compete with and surpass the re-
quirements of credit card payment networks.

2 Background

In this section, we provide background on the technologies that underpin Teechan. We
first give a short overview of Bitcoin, explore why it is unable to scale, and then describe
a trusted execution environment as provided by Intel SGX.

Bitcoin Bitcoin [27] is a distributed peer-to-peer network that executes a replicated
state machine. Each peer, or node, in the network maintains and updates a copy of the
Bitcoin blockchain, an append-only log that contains the transaction history of every ac-
count in the network. Users interact with the network by issuing transactions to transfer
Bitcoins (BTC). Valid transactions consume unspent transactions as inputs and create
new unspent outputs that can later be used in a new transaction. To spend an unspent
output, a condition specified by a locking script must be met. Typically, a signature
matching an address proves that the user spending the output owns the account claim-
ing the funds. More complex locking scripts can be expressed, such as m-of-n multisig
transactions, where m signatures are required out of n possible signatures to spend the
funds; and timelocked transactions, which can only be spent after a point in the future.

Transactions are appended to the Bitcoin ledger in batches known as blocks. Each
block includes a unique ID, and the ID of the preceding block, forming a chain. Peers
in the network compete to generate and append these blocks to the blockchain. This
process, known as mining, is computationally expensive and requires solving a crypto-
graphic puzzle. Miners are compensated for their efforts via the block reward as well
as the transaction fees collected from the transactions in that block. The Bitcoin pro-
tocol dynamically adjusts the difficulty of the cryptographic puzzle so that a block is
appended to the blockchain at an average rate of one block every ten minutes. In cases
in which there are multiple blocks with the same parent (forks), the network adopts the
chain with the greatest difficulty.

This protocol architecture protects against double spend attacks. In such an attack,
two conflicting transactions claim the same unspent outputs. The Bitcoin protocol will
ensure that the miners will mine at most one of these transactions, and clients of the
network will wait for additional succeeding blocks (typically, 6) to guard against forks
and reorganizations [34].

Overall, the Bitcoin protocol suffers from two fundamental limitations. First, be-
cause it limits the size of each block and the rate of block generation, the network is
fundamentally limited in throughput. Second, because the suffix of the blockchain is
subject to reorganization, users must wait until their transactions are buried sufficiently
deeply, incurring a minimum latency.

Trusted Execution Environments with Intel SGX Intel’s Software Guard Exten-
sions (SGX)[15, 18, 8] enable application code to be executed with confidentiality and
integrity guarantees. SGX provides trusted execution environments known as secure
enclaves that isolate code and data using hardware mechanisms in the CPU. Assuming



4

the physical CPU package is not breached, SGX enclaves are protected from an attacker
with physical access to the machine, including access to the memory, the system bus,
BIOS, and peripherals.

During execution, enclave code and data reside in a region of protected memory
called the enclave page cache (EPC). When enclave code and data is resident on-chip, it
is guarded by CPU access controls; when it is flushed to DRAM or disk, it is encrypted.
A memory encryption engine encrypts and decrypts cache lines in the EPC as they are
written to and fetched from DRAM. Enclave memory is also integrity-protected, en-
suring that modifications and rollbacks can be detected, and the enclave can terminate
execution. Only code executing inside the enclave is permitted to access the EPC. En-
clave code can, however, access all memory outside the enclave directly. As enclave
code is always executed in user mode, any interaction with the host OS through system
calls, e.g., for network or disk I/O, must execute outside the enclave. Invocations of the
enclave code can only be performed through well-defined entrypoints under the control
of the application programmer.

In addition, SGX supports remote attestation [19], which enables an enclave to
acquire a signed statement from the CPU that it is executing a particular enclave with
a given hash of memory, known as a quote. A third-party attestation service, e.g., as
provided by the Intel Attestation Service (IAS), can certify that these signed statements
originate from authentic CPUs conforming to the SGX specification.

3 Model and Goals

Payment channels are applicable when two parties have long-lived financial relation-
ships that require frequent interaction with high-throughput, low latency, and privacy
guarantees. The central goal for Teechan, then, is to construct a duplex payment channel
between two such endpoints, assuming that these endpoints are equipped with trusted
execution environments.

Threat Model and Assumptions Our threat model assumes that both parties wish to
exchange funds but mutually distrust one another. Each party is potentially malicious,
i.e., they may attempt to steal funds, avoid making payments, and deviate from the
agreement if it benefits them. Any time during channel establishment, execution, and
closure, each party may drop, send, record, modify, and replay arbitrary messages in the
protocol. Either party may terminate the channel at any time, and failures are possible.

We assume that each party has a TEE-capable machine and trusts the Bitcoin
blockchain, its own environment, the local and remote TEEs, and the code that exe-
cutes the Teechan duplex channel protocol. The rest of the system, such as the network
between the parties and the other party’s software stacks (outside the TEE) and hard-
ware are untrusted. During protocol execution, any party may therefore: (i) access or
modify any data in its memory or stored on disk; (ii) view or modify its application
code; and (iii) control any aspect of its OS and other privileged software.

Our threat model does not take into account denial-of-service attacks or side-
channel attacks. In practice, these are difficult to exploit, possible to mitigate, and the
subject of separate work outside the scope of this paper.



5

Goals A payment channel should operate as follows. A channel is established with a
setup transaction in the blockchain to which each party deposits an amount as credit.
While the channel is open, each party can pay its counterparty via transaction messages
sent from the payer to the payee. A payment can only be claimed if it was granted
by a party, that is, theft should not be possible. At any point in time, the channel has a
balance that must reflect the difference between the amounts paid in each direction. The
balance should never exceed the credit in either direction. Either party can terminate
the channel at any time and settle the balance with a terminating transaction that it
places in the blockchain. The terminating transaction reflects a balance that comprises
all payments made by the terminator and all payments received by the terminator from
its counterparty. Failures should only negatively impact the party who failed.

Parties should only need to synchronize with the Bitcoin network during channel es-
tablishment and at the point of settlement. In particular, they should not need to monitor
the blockchain during the lifetime of the channel.

4 Teechan

The intuition behind Teechan is to exploit trusted execution environments (TEEs) to act
as a trusted third party between two parties, Alice and Bob.

At a high-level, Teechan works as follows. First, at setup, the TEE at each party
is securely given mutual secrets belonging to both parties. These secrets can be used
at any time to settle the channel, without needing cooperation. Next, while the chan-
nel is open, the TEEs maintain channel state internally, free from tampering due to the
guarantees of trusted execution. Updates (payments) are performed through a secure in-
terface. Finally, Teechan leverages secure execution to settle the channel at termination.
Only on termination does a TEE generate a Bitcoin transaction that can be placed in the
blockchain.

Unlike previous approaches [10, 29], Teechan does not make a settlement transac-
tion available until channel termination. The availability of such a transaction is the root
cause behind much of the complexity of today’s payment channel implementations: it
causes race conditions, requires a timely response when leaked to the network prema-
turely, and requires additional infrastructure for monitoring. This factoring of crucial
channel functionality into TEEs yields a simple and efficient approach.

Fig. 1. Teechan Duplex Channel Architecture (Entities trusted by Alice are shaded.)



6

Figure 1 shows the Teechan duplex channel architecture. Both Alice and Bob run
their own TEEs alongside a connection to the Bitcoin network. This connection is only
used during channel establishment and closure. The figure highlights the entities trusted
by Alice. An identical figure can be constructed for Bob using symmetry of the channel.
We next describe the protocol, and informally analyze its security in Section 4.2.

4.1 Protocol

The Teechan channel protocol operates in three phases: (i) channel establishment,
(ii) channel operation, and (iii) channel settlement. Figure 2 shows the messages ex-
changed during each of these phases in detail. Alice, Bob, Alice’s TEE (denoted TEEA)
and Bob’s TEE (denoted TEEB) are modeled as separate entities.

For simplicity, we ignore mining fees in our example, although they are supported in
our implementation and affect only the initial setup and the final settlement transactions.

A. Channel establishment In the first phase, Teechan establishes the duplex payment
channel between Alice and Bob. Similar to prior work [14, 10, 29], we construct a pay-
ment channel using setup and refund transactions. Both Alice and Bob deposit funds into
a 2-of-2 multisig Bitcoin address, forming a setup transaction. A refund transaction is
constructed that spends the setup transaction and returns Alice and Bob’s deposits back
to them. The refund transaction is bounded by a lock-time using the nLockTime [31]
transaction field, making it valid only starting some time in the future. The channel must
be terminated prior to this time, otherwise either party can terminate the channel as if
no transactions took place.

A1. First, Alice and Bob each provision their TEEs to construct setup and refund trans-
actions. This requires: (i) their Bitcoin private keys, kBTC ,A and kBTC ,B ; (ii) the
unspent transactions outputs sets that they wish to include in the setup transaction,
UTXOA and UTXOB ; and (iii) the amount to deposit in the setup transaction,
BTCA and BTCB .

A2. Second, TEEA and TEEB establish a secure communication channel, authenti-
cating each other through remote attestation. To achieve this, each TEE generates
an asymmetric encryption key pair and a random secret key using a secure random
number generator. TEEA binds the generated asymmetric public key to a quote,
and sends it to Bob. Using this quote, Bob can then verify that any message en-
crypted under KA can be decrypted solely by TEEA, and that TEEA is running
the desired Teechan code with the requisite binary hash. The same is done in the
reverse direction, so TEEA obtains Bob’s public key. Upon successful mutual ver-
ification, TEEA and TEEB know that any data encrypted under KA and KB can
only be read by the opposite TEE. This establishes a confidential communication
channel.

A3. TEEB then presents its random secret key (denoted IDB), along with Bob’s setup
data that it received in step A1, to TEEA. A signature over this message, under
the private key of TEEB (denoted SigkB), is also presented to ensure that it came
from TEEB . TEEA generates the signed setup and refund transactions internally,
and reveals to Alice the hash of the setup transaction, denoted SetupHash , as well
as the refund transaction. Only TEEA knows the setup transaction at this point.



7

TEEA then presents its random secret key IDA, along with Alice’s setup data that
it received in step A1 and the corresponding signature SigkA, to TEEB . TEEB

generates the setup and refund transactions internally, and reveals both to Bob. Bob
then broadcasts the setup transaction onto the blockchain, establishing the chan-
nel. Alice is notified of channel establishment by noting a transaction matching
SetupHash on the blockchain.
Note that Bob could maul the setup transaction before broadcasting it, making Al-
ice’s refund transaction invalid. In this case, Alice presents the mauled setup trans-
action to TEEA to issue a new refund transaction that closes the channel immedi-
ately. This requires that keys should never be re-used between separate channels, as
is already a recommended good practice. In Teechan, mauling the setup transaction
is equivalent to a denial-of-service attack.

At the end of this three-step handshake, a secure communication channel is estab-
lished between the two TEEs. The slight asymmetry of the handshake is critical for
achieving the termination and loss properties described in Section 4.2.

B. Channel operation Once a channel has been established between TEEA and
TEEB , Alice and Bob can begin exchanging funds. In this phase, neither Alice nor
Bob need to maintain a connection with the Bitcoin network. They can rapidly make
transactions through peer-to-peer updates. Note that in Figure 2, payments made from
Bob to Alice are shaded, but unlabeled, for illustration purposes only. These payments
exhibit the same behavior, in a symmetric fashion, to the payments sent from Alice to
Bob.

B1. To send funds to Bob, Alice sends a request locally to TEEA, specifying the
amount of Bitcoin that she wishes to transfer to Bob. These requests are denoted
A1 through AX , representing arbitrarily many payment requests.

B2. When a TEE receives a payment request from the owner, it first checks that the
current balance is greater than the amount to send. If so, it updates the balance and
generates a message authorizing the payment. The message contains the random
secret key of the paying TEE IDA and the updated monotonic counter value. The
message is encrypted under the appropriate asymmetric public key KB . Alice sends
this message to Bob.

B3. Bob receives the message and sends it to TEEB . Once the TEE receives the mes-
sage, it decrypts it and asserts that it contains the correct secret key and that the
value of the counter is greater by one than the previously presented counter. Then,
it updates the balance and the counter for incoming messages. Finally, it notifies
Bob of the new balance.

Note that each party, outside the TEE, is in charge of maintaining a reliable FIFO
channel for the payment messages. This can be achieved with standard go-back-n or
similar protocols. Tampering with the order of messages is equivalent to a denial-of-
service attack on the recipient only; the sender always processes a payment. It is there-
fore in the best interest of the receiver to ensure a reliable FIFO channel.



8

Fig. 2. Teechan Duplex Channel Protocol (For illustration purposes Bob’s payments to Alice are
shaded, but unlabeled.)

C. Channel settlement The final stage of the Teechan protocol is channel settlement.
In this phase, the payment channel is closed, and a valid transaction settling the balance
between Alice and Bob is broadcast to the Bitcoin network, thus releasing the funds in
the setup transaction.

C1. At any point during phase B, either party may send a terminate request to their
TEE.



9

C2. Once a TEE receives a terminate request from its owner, it generates a settlement
transaction signed with kBTC ,A and kBTC ,B , which spends the funds held in the
setup transaction according to the current channel balance. It returns this transaction
to the host, destroys all state held in TEE memory and halts its execution.

C3. The party then forwards this to the Bitcoin network to complete the settlement.

Similar to the Lightning Network [29], Teechan payment channels do not suffer
from channel exhaustion. Teechan enables infinite channel reuse: Alice and Bob can
send funds back and forth until channel timeout.

Termination of a channel at the end of its lifetime is also similar to prior work. When
the refund transaction becomes valid, either party can choose to broadcast the refund
transaction, or to settle the current state of the channel, as described above. Whichever
transaction is confirmed by the Bitcoin network dictates the outcome of the channel.

Note that a unilateral channel termination by Bob cannot harm Alice: he will not
be able to receive further payments from Alice, but the closed channel will accurately
reflect all payments of which Alice is aware. If Bob fails to broadcast the termination
transaction to the Bitcoin network, Alice can independently close it from her side.

Teechan is not a consensus protocol, nor is it designed to solve the Byzantine-
Generals Problem—Alice and Bob may not agree on the termination state, but Alice’s
termination state is guaranteed to be acceptable by Bob, and vice-versa.

4.2 Security
In this section, we provide the intuition behind the security properties of the protocol.
We defer formal proofs of security to the full paper.

Any time during channel establishment, execution and closure, each party may drop,
send, record, modify, and replay arbitrary messages in the protocol. As such, we infor-
mally evaluate and discuss the security of our protocol against malicious and misbe-
having parties. Note that any external adversary in the system, such as an attacker who
has compromised the network, has fewer privileges than the counterparty in the chan-
nel, and so can be subsumed by a malicious counterparty. Arguing security against the
opposite party in a channel is strong enough to protect against any external adversary.

During channel establishment, each TEE is provisioned with sensitive setup data
from both parties. This is always performed through a secure interface, encrypted with a
key internal to the TEE. Communication with the counter party’s TEE is only performed
after verifying that it is indeed a TEE executing the Teechan code. Finally, no party can
access the setup transaction before the other party has the refund transaction. Therefore,
at the end of channel establishment both parties have the refund transaction and only
the TEEs have both secrets.

During channel operation, once a party receives a payment, the sending party’s TEE
has already registered this payment. Therefore, and due to the counter encoded in each
payment message, a party cannot revert a payment that it has made when settling the
channel. Early termination can only prevent a party from receiving future payments, not
harming the other party.

Intel SGX We implement Teechan on Intel SGX. Intel SGX provides secure TEEs offer-
ing both execution integrity and confidentiality against an attacker on the same machine,



10

even one with physical access. These hardware guarantees, coupled with Teechan’s ar-
chitecture, enable the resulting system to be resilient against an array of attacks. The
tight integration of SGX with the CPU ensures that the cost to launch an attack, or
even gather enough know-how to attempt one, are orders of magnitude higher than the
value expected to be stored in payment channels. Given the current market share of In-
tel CPUs, users already implicitly trust a single hardware manufacturer with their secret
keys. We repeat, however, that nothing in the Teechan protocol is Intel specific, and our
protocol can be ported easily to, for example, a Ledger hardware security module [2].

Replay attacks are detrimental to Teechan security: if Alice could revert the system
to an old state, she could take a snapshot when the balance is in her favor, and after
sending payments to Bob, revert to that old state and settle the channel at a wrong bal-
ance. SGX protects running enclaves against replay attacks by protecting persistently
stored snapshots from rollback attacks through non-volatile hardware monotonic coun-
ters, which prevent a stale enclave snapshot from being reused.

In our Teechan prototype, if Alice fails, she can either ask Bob to settle at the current
balance, or wait until the refund transaction becomes available. It is straightforward to
extend the prototype such that the enclaves persist their state to secondary storage, en-
crypted under a key and stored with a non-replayable version number from the hardware
monotonic counter. Our current implementation, at the time of writing, does not lever-
age hardware monotonic counters, because, while the counters are fully supported by
the existing hardware under Windows [17], the current SGX Linux SDK [16] does not
expose them yet. Porting our protocol to Windows or support for monotonic counters
in the Linux SDK can address this.

Currently, the validity of an Intel SGX attestation is certified through the Intel At-
testation Service (IAS), which ensures that the quote originated from a genuine SGX-
capable Intel CPU. In our prototype, we do not use a trusted connection between the
enclave and the IAS; the quote is verified in untrusted code, executed by the owner of
the enclave during the setup phase. This is benign because misbehavior by a party at
this stage would only harm that party, as it would expose their private keys to a fraudu-
lent remote enclave. Terminating the TLS connection to the IAS inside the enclave [39]
would avoid this issue, but it is unnecessary under our trust model and would needlessly
increase the trusted computing base.

5 Implementation & Evaluation
We evaluate Teechan using Intel SGX on the Bitcoin testnet. Our implementation is
fully compatible with the standard Bitcoin network. We report preliminary measure-
ments from this implementation to illustrate the range of achievable performance.

Teechan Implementation The Teechan prototype has two components: a Bitcoin client
and an Intel SGX enclave application that executes the secure Teechan protocol. Each
party in the payment channel maintains and executes their own client and enclave. For
the Bitcoin client, we fork the open-source libbitcoin-explorer [22], a C++ Bit-
coin library that communicates with the Bitcoin network. libbitcoin-explorer re-
lays transactions and requests to a bitcoin-server [23], a full Bitcoin peer in the
Bitcoin network. In our experiments, we use libbitcoin-explorer version 3.0.0 and
communicate with a set of public-facing bitcoin-servers [36].



11

For the Teechan enclave application, we port a subset of Bitcoin Core ver-
sion 0.13.1 [32] to Intel SGX. Only some features of Bitcoin core are needed inside
the enclave: (i) multisig address generation; (ii) transaction creation; (iii) transaction
signing; and (iv) signature verification. For asymmetric encryption between enclaves,
we use RSA with 4096-bit keys. Both libbitcoin-explorer and the Teechan en-
clave communicate over TCP using a lightweight message queuing library (ZeroMQ ver-
sion 4.2.1 [38]).

Experimental Setup To evaluate Teechan, we run all experiments on a single machine,
which forms a channel between two parties communicating through network sockets.
We use an SGX-enabled 4-core Intel Xeon E3-1280 v5 at 3.7 GHz with 64 GB of RAM,
and Ubuntu 14.04 with Linux kernel 3.19. We deactivate hyper-threading, compile the
applications using GCC 5.4.0 with -O2 optimizations and use the Intel SGX SDK 1.7.

Performance We measure the time taken by Teechan to perform each of the three
phases of the protocol. To measure the throughput, we emulate an exchange between
two parties in which each party sends and receives payments sequentially in lock-step.
We measure the time for 10 million transactions to be exchanged. These measurements
yield an upper bound for our current implementation, as they eliminate network band-
width and latency. We defer a thorough evaluation of Teechan under varying network
conditions, enclave topologies, and transaction patterns to the full version of the paper.

Channel establishment and final settlement times are bounded by the time to place
the transactions in the blockchain. Once the channel is set up, we measure an average
latency of 0.40 ms and an average throughput of 2480 tx/s.

For the purpose of demonstration, we provide a reference to a Teechan payment
channel that was established, operated, and settled on the Bitcoin test network. Each
side deposited 50 bitcoin in the setup transaction3, and the channel was closed with a
balance of 9 bitcoin for Bob4. A fee of 0.002 bitcoin was paid on each transaction.

6 Related Work
Direct payments were proposed by Chaum [6] in ecash to achieve privacy. The ecash
assumptions are significantly weaker than those offered by payment channels. Mainly,
cheating is enforced in retrospect, through external punishment mechanisms.

Several proposals address the performance issues of the Bitcoin network, from the
GHOST protocol and alternatives to the chain structure [30, 21, 35], to alternative block
generation techniques [11, 20, 28]. Others [25, 4, 26] build on classical consensus pro-
tocols [5] or operate in permissioned settings. While they all improve on the Nakamoto
blockchain performance, none can reach the performance offered by direct channels
that do not require global system consensus for each transaction.

Unidirectional Bitcoin micropayment channels were first informally discussed by
Hearn and Spilman [14]. These could not be deployed directly as they require changes
to the Bitcoin protocol, unlike Teechan. Alternative proposals for unidirectional micro-
payment channels have been made to avoid these changes, however, all unidirectional
payment channels only operate in a single direction and suffer from channel exhaustion.

3 http://tbtc.blockr.io/tx/info/d55dcfebff45d7e4f9970edd053c87cb0b659e459f4f6360d4a2c17837e79410
4 http://tbtc.blockr.io/tx/info/1a736822a4f518eb137658030f1e11a804d64d1da48c195222f604aaf2df908e



12

Decker and Wattenhofer [10] were the first to realize duplex micropayment chan-
nels (DMC), improving the exhaustion limit. In DMC, two parties form a pair of chan-
nels, one in each direction, and re-balance them as needed, that is, when the credit in
one direction is depleted but after there have been transactions in the opposite direction.
However, the number of resets possible is limited at channel construction, depending on
the time allotted for the refund timeout and the bound on the time to place a transaction
on the blockchain. Therefore the total amount that can be sent on the channel in one
direction is bounded by the deposit amount times the maximal number of resets. DMC
also requires changes to Bitcoin.

Additionally, on disagreement, 1+ d+2 transactions have to be placed on the
blockchain, where d represents the invalidation tree’s active branch. In Teechan, there
is no limit on the total amount moving in any direction, and only two transactions are
ever placed in the blockchain.

Lightning Network (LN) [29] allows for unlimited reuse of its channels. Two parties
form a series of transaction structures, in which each update invalidates the previous
one. If a party tries to settle the channel on the blockchain with an invalidated state,
its counterpart sees this transaction on the blockchain and can redirect all the deposited
amount to itself. The performance impact of this protocol is that payments happen in a
serial fashion, one at a time. Updating the balance takes about four message exchanges
(from deciding on the new value to sending transaction signatures in a certain order).
During these exchanges, no payments can be reliably made. In Teechan, a payment is
done with a single message, and payments in both directions can be made concurrently,
making it full-duplex rather than half-duplex. On disagreement, the Lightning Network
places four transactions in the blockchain, while Teechan places only two.

Informal proposals have been sketched to potentially deploy Lightning Network on
the Bitcoin network without any changes to the Bitcoin protocol. However, these come
with various limitations: a channel can only be funded by a single party, and parties need
to monitor the blockchain in order to react to invalidated states. This is not the case for
Teechan, however, as both parties can deposit into a Teechan channel, and neither party
ever controls a transaction that reflects an old state.

Lightning Network effort aims to construct a multi-hop network of payment chan-
nels, a topic that is outside the scope of our work. We believe the LN network structure
can be made to work with Teechan channels, a challenge we defer to future work.

Towncrier [39] also uses a TEE but to provide authenticated data feeds for smart
contracts.

7 Conclusion
We presented Teechan, full-duplex payment channels based on the existing Bitcoin net-
work with trusted execution environments. The Teechan prototype, built on Intel SGX,
can achieve 2,480 tx/s and a transaction latency of 0.40 ms. It advances the state-of-
the-art by obviating the need to modify the underlying Bitcoin protocol for a practical
deployment, improving channel performance, and reducing blockchain overhead.

Acknowledgements

This project received funding from the European Unions Horizon 2020 research and
innovation programme under the SecureCloud (Grant agreement No. 690111) project.



13

References

1. ANDRESEN, G. Increase Maximum Block Size (BIP 101). https://github.com/
bitcoin/bips/blob/master/bip-0101.mediawiki. Accessed December 2016.

2. BACCA, N. Attestation Redux : Proving Code Execution on the Ledger Platform. https:
//gist.github.com/sipa/c65665fc360ca7a176a6. Accessed December 2016.

3. BLOCKCHAIN.INFO. Confirmed Transactions Per Day. https://blockchain.info/
charts/n-transactions?timespan=all. Accessed December 2016.

4. CACHIN, C. Architecture of the Hyperledger Blockchain Fabric. In Workshop on Distributed
Cryptocurrencies and Consensus Ledgers (2016).

5. CASTRO, M., LISKOV, B., ET AL. Practical Byzantine Fault Tolerance. In OSDI (1999),
vol. 99, pp. 173–186.

6. CHAUM, D. Blind Signatures for Untraceable Payments. In Advances in cryptology (1983),
Springer, pp. 199–203.

7. COINDESK.COM. Is Segregated Witness the Answer to Bitcoin’s Block Size Debate?
http://www.coindesk.com/segregated-witness-bitcoin-block-size-debate/. Ac-
cessed December 2016.

8. COSTAN, V., AND DEVADAS, S. Intel SGX Explained. IACR Cryptology ePrint Archive
(2016).

9. CROMAN, K., DECKER, C., EYAL, I., GENCER, A. E., JUELS, A., KOSBA, A., MILLER,
A., SAXENA, P., SHI, E., AND SIRER, E. G. On Scaling Decentralized Blockchains. In
Proc. 3rd Workshop on Bitcoin and Blockchain Research (BITCOIN 2016).

10. DECKER, C., AND WATTENHOFER, R. A Fast and Scalable Payment Network with Bit-
coin Duplex Micropayment Channels. In Stabilization, Safety, and Security of Distributed
Systems - 17th International Symposium, (SSS 2015).

11. EYAL, I., GENCER, A. E., SIRER, E. G., AND VAN RENESSE, R. Bitcoin-NG: A scal-
able blockchain protocol. In 13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 2016).

12. GARZIK, J. Block size increase to 2MB (BIP 102). https://github.com/bitcoin/bips/
blob/master/bip-0102.mediawiki. Accessed December 2016.

13. GARZIK, J. Making Decentralized Economic Policy. http://gtf.org/garzik/bitcoin/
BIP100-blocksizechangeproposal.pdf. Accessed December 2016.

14. HEARN, M., AND SPILMAN, J. Bitcoin Contracts. https://en.bitcoin.it/wiki/
Contracts. Accessed December 2016.

15. INTEL. Product Change Notification. https://qdms.intel.com/dm/i.aspx/5A160770-
FC47-47A0-BF8A-062540456F0A/PCN114074-00.pdf, 2015.

16. INTEL. Intel Software Guard Extensions (Intel SGX) SDK. https://software.intel.
com/sgx-sdk, 2016.

17. INTEL. Intel Software Guard Extensions (Intel SGX) Windows SDK. https:
//software.intel.com/sites/default/files/managed/b4/cf/Intel-SGX-SDK-
Developer-Reference-for-Windows-OS.pdf, 2016.

18. INTEL CORP. Software Guard Extensions Programming Reference, Ref. 329298-002US.
https://software.intel.com/sites/default/files/managed/48/88/329298-
002.pdf, 2014.

19. JOHNSON, SIMON ET AL. Intel® Software Guard Extensions: EPID Provisioning and Attes-
tation Services. https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-
epid-provisioning-and-attestation-services, 2016.



14

20. KOGIAS, E. K., JOVANOVIC, P., GAILLY, N., KHOFFI, I., GASSER, L., AND FORD, B. En-
hancing Bitcoin Security and Performance with Strong Consistency via Collective Signing.
In 25th USENIX Security Symposium (USENIX Security 16).

21. LEWENBERG, Y., SOMPOLINSKY, Y., AND ZOHAR, A. Inclusive Block Chain Protocols.
In Financial Cryptography (Puerto Rico, 2015).

22. LIBBITCOIN COMMUNITY. Bitcoin Explorer. https://github.com/libbitcoin/
libbitcoin-explorer. Accessed December 2016.

23. LIBBITCOIN COMMUNITY. Obelisk: Bitcoin Full Node and Query Server. https://
github.com/libbitcoin/libbitcoin-explorer. Accessed December 2016.

24. LOMBROZO, E., LAU, J., AND WUILLE, P. BIP141: Segregated Witness (Consensus layer).
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki, 2015.

25. MAZIERES, D. The Stellar Consensus Protocol: A Federated Model for Internet-level Con-
sensus. https://www.stellar.org/papers/stellar-consensus-protocol.pdf. 2015.

26. MILLER, A., XIA, Y., CROMAN, K., SHI, E., AND SONG, D. The Honey Badger of
BFT Protocols. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (CCS 2016).

27. NAKAMOTO, S. Bitcoin: A Peer-to-Peer Electronic Cash System. http://www.bitcoin.
org/bitcoin.pdf, 2008.

28. PASS, R., AND SHI, E. Hybrid Consensus: Efficient Consensus in the Permissionless Model.
Cryptology ePrint Archive, Report 2016/917.

29. POON, J., AND DRYJA, T. The Bitcoin Lightning Network: Scalable off-chain instant pay-
ments. Technical Report (draft 0.5.9.1). https://lightning.network. Accessed Decem-
ber 2016.

30. SOMPOLINSKY, Y., AND ZOHAR, A. Accelerating Bitcoin’s Transaction Processing. Fast
Money Grows on Trees, Not Chains. In Financial Cryptography (Puerto Rico, 2015).

31. THE BITCOIN COMMUNITY. nLockTime. https://en.bitcoin.it/wiki/NLockTime.
Accessed December 2016.

32. THE BITCOIN COMMUNITY. Open Source Bitcoin Client Software. https://github.
com/bitcoin/bitcoin.

33. THE BITCOIN COMMUNITY. Scalability. https://en.bitcoin.it/wiki/Scalability.
Accessed December 2016.

34. THE BITCOIN COMMUNITY. Some Things You Need to Know. https://bitcoin.org/
en/you-need-to-know. Accessed December 2016.

35. THE ETHEREUM COMMUNITY. Ethereum White Paper. https://github.com/ethereum/
wiki/wiki/White-Paper. Accessed December 2016.

36. THE UNSYSTEM COMMUNITY. Public Obelisk Servers. https://wiki.unsystem.net/
en/index.php/Obelisk/Servers. Accessed December 2016.

37. WUILLE, P. Block Size following Technological Growth (BIP-sipa). https://gist.
github.com/sipa/c65665fc360ca7a176a6. Accessed December 2016.

38. ZEROMQ.ORG. Distributed Messaging library. https://github.com/zeromq/libzmq. Ac-
cessed December 2016.

39. ZHANG, F., CECCHETTI, E., CROMAN, K., JUELS, A., AND SHI, E. Town crier: An
Authenticated Data Feed for Smart Contracts. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS 2016).


