
BrowserFlow: Imprecise Data Flow Tracking to Prevent
Accidental Data Disclosure

Ioannis Papagiannis
∗

Facebook
yiannis@fb.com

Pijika Watcharapichat
Imperial College London

pw610@imperial.ac.uk

Divya Muthukumaran
Imperial College London

dmuthuku@imperial.ac.uk
Peter Pietzuch

Imperial College London
prp@doc.ic.ac.uk

ABSTRACT
With the use of external cloud services such as Google Docs
or Evernote in an enterprise setting, the loss of control over
sensitive data becomes a major concern for organisations. It
is typical for regular users to violate data disclosure policies
accidentally, e.g. when sharing text between documents in
browser tabs. Our goal is to help such users comply with data
disclosure policies: we want to alert them about potentially
unauthorised data disclosure from trusted to untrusted cloud
services. This is particularly challenging when users can
modify data in arbitrary ways, they employ multiple cloud
services, and cloud services cannot be changed.

To track the propagation of text data robustly across
cloud services, we introduce imprecise data flow tracking,
which identifies data flows implicitly by detecting and quan-
tifying the similarity between text fragments. To reason
about violations of data disclosure policies, we describe a
new text disclosure model that, based on similarity, asso-
ciates text fragments in web browsers with security tags
and identifies unauthorised data flows to untrusted services.
We demonstrate the applicability of imprecise data tracking
through BrowserFlow, a browser-based middleware that
alerts users when they expose potentially sensitive text to an
untrusted cloud service. Our experiments show that Brow-
serFlow can robustly track data flows and manage security
tags for many documents with no noticeable performance
impact.

Keywords
Data disclosure; browser-based middleware, data tracking;
cloud security

∗Work performed while at Imperial College London

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Middleware’16, December 12 - 16, 2016, Trento, Italy
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4300-8/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2988336.2988345

1. INTRODUCTION
Many organisations use their own web-based applications

for internal communication, content management, report-
ing and business processes [12], but cloud services, espe-
cially ones according to a software-as-a-service (SaaS) model,
have gained rapid adoption in enterprise settings. As pre-
vious studies have shown [24], enterprise users favour con-
sumer cloud services, such as Google Docs [25], Microsoft
Office 365 [42] and Zoho [70], over in-house solutions due to
their familiarity and ease-of-use. As a consequence, users in
their web browsers employ external cloud services alongside
internal services that may contain sensitive enterprise data.

This creates a major headache for IT departments that, for
legal and competitive reasons, must enforce data disclosure
policies that mandate how sensitive data is permitted to
propagate between services. With browser-based services,
however, users can easily move data between internal and
external services, e.g. by copying and pasting text from an
internal document to one hosted on Google Docs.

IT departments often respond to this loss of control by
limiting users to a small set of “approved” cloud services with
built-in safeguards. Users, however, bypass such restrictions—
Frost and Sullivan [24] report that over 80% of employees
admit to using unapproved SaaS applications concluding:
“Rather than attempt to restrict usage, the goal should be to
enable the freedom employees need to do their jobs better,
without compromising company security and liability.”

In this paper, our goal is to provide an automated ap-
proach that helps users comply with data disclosure policies,
e.g. we want to advise users when it is not safe to disclose
text on Google Docs. Typically enterprise users want to
safeguard their organisation’s data, and most data disclosure
happens by accident when users do not realise the results
of their actions [8]. Therefore we want to inform employees
of potential policy violations but give them the freedom to
make final disclosure decisions. Such an advisory model
does not interfere with existing business workflows and is
thus more likely to gain adoption, in particular, compared
to mandatory restrictions.

Client-side data flow tracking across cloud services raises
multiple challenges: (i) it is difficult to track data flow ro-
bustly when users can copy and modify text in arbitrary ways,
including transferring it to an external application outside
the browser. Prior approaches for data flow tracking [23, 35]
cannot reason about such data flows without a system-wide,
closed-world deployment; (ii) the tracking must also account

for decreased information disclosure, e.g. if text is modified to
the point at which it bears no resemblance to the source text,
it becomes safe to disclose. Existing data flow tracking ap-
proaches suffer from false positives in this case; and (iii) it is
unclear at what granularity data flow tracking should occur.
In different contexts, the disclosure of a whole document,
multiple paragraphs or individual sentences from different
documents may constitute a policy violation.

We address the above challenges by combining two ideas:
(i) data disclosure in the above setting can be modeled as a
decentralised information flow control (DIFC) problem [48]—
administrators set default data flow policies but employees
may declassify data as they see fit; and (ii) data flow between
cloud services can be tracked robustly using text similarity
matching [56]. Text similarity analysis can discover data
disclosure even when the data flow that led to the disclosure
is hidden from the tracking system.

We describe BrowserFlow, a practical client-side mid-
dleware for tracking the propagation of unstructured text
data across cloud services and advising users about viola-
tions of data disclosure policies. Administrators specify an
enterprise-wide data disclosure policy according to a text
disclosure model, which BrowserFlow enforces through an
imprecise data flow tracking technique:

Text Disclosure Model. To define a data disclosure pol-
icy, each cloud service is assigned a confidentiality and a
privilege label. Text segments first observed in a given cloud
service are assigned that service’s confidentiality label. When
text with a confidentiality label is observed in a service with
an incompatible privilege label, BrowserFlow generates a
warning. A user can then explicitly permit the text propaga-
tion by changing the label, or BrowserFlow intercepts the
data transfer to the cloud service.

Imprecise Data Flow Tracking. A key difference to prior
data flow tracking systems is that BrowserFlow does not
attach labels explicitly to the data, which would require
modifications to binaries and incur a high cost at runtime [35,
49]. Instead, to maintain these labels, BrowserFlow tracks
data flow implicitly : when a new text segment appears in a
document, BrowserFlow generates a fingerprint [56] that
represents its similarity to other text, and checks if a similar
fingerprint was seen previously. If so, the confidentiality label
of the new text segment is modified to reflect its origin.

Imprecise data flow tracking has two benefits: (1) positive
data flows are reported only while the text maintains signifi-
cant resemblance, which avoids false positives after the text
was modified sufficiently; and (2) there is no need to track
data flow in external applications such as text editors, which
would come at a runtime performance cost [35,68] and would
be impractical in production environments.

We implemented a prototype version of BrowserFlow
as a plug-in for the Google Chrome web browser, which sup-
ports Google Docs and other form-based cloud services. Our
evaluation shows that, across a range of different datasets,
BrowserFlow correctly identifies information disclosure
using imprecise data flow tracking. It also makes disclo-
sure decisions with negligible impact on user-perceived per-
formance because they occur asynchronously to the main
request processing in the browser.

The rest of the paper begins with the problem definition
and threat model in §2. We describe our model for text
disclosure in §3, and introduce our approach for imprecise

data flow tracking in §4. §5 reports on implementation de-
tails of BrowserFlow, in particular our experience of its
integration with current cloud services. We present our evalu-
ation results, both in terms of effectiveness and performance
overhead, in §6 and conclude in §7.

2. BACKGROUND
Our problem statement considers employees in an enter-

prise setting accessing and modifying data via web-based
services with a web browser acting as the client. The services
handle unstructured text data, e.g. following a document-
centric model as found in Google Docs, Evernote or Zoho.
For example, Figure 1 shows a user’s browser instance with
three application tabs, used as part of a workflow when in-
terviewing job applicants. Two of the applications, Interview
Tool and Wiki, are internally-hosted and may process sen-
sitive text. The user also relies on Google Docs, which is
untrusted.

The organisation’s IT department may define a data dis-
closure policy that imposes various restrictions on data prop-
agation. For example, it may dictate that transferring text
from the internal Wiki to the Interview Tool is permitted, but
not the reverse. In addition, data from either of the two
internal applications must not propagate to Google Docs. If
the employee transfers a text fragment from the Wiki tab to
Google Docs, and it is uploaded to a remote Google server,
it would constitute a policy violation.

2.1 Threat model
Based on conversations with companies, we adopt a practi-

cal threat model in which users are considered to be trusted-
but-careless when handling sensitive documents [60]. For
example, company employees are typically not malicious be-
cause they are bound contractually by confidentiality agree-
ments, and violations may incur legal repercussions. Nev-
ertheless a user may unintentionally disclose data during
a business workflow. We believe that such a threat model
realistically captures the risk of data disclosure in enterprise
environments with external cloud services [8].

In the above scenario, an interviewer may accidentally copy
a candidate evaluation from the Interview Tool to the internal
Wiki, which is accessible by all employees. Another user who
uses Google Docs for collaborative document editing may
paste confidential interviewing guidelines from the internal
Wiki to a Google Docs document and share this document
with an external client. Both data flows would constitute
significant, yet unintended violations of the organisation’s
data disclosure policy.

The text may also be modified during propagation. For
example, the interviewer may copy an edited version of the
candidate evaluation to the internal Wiki. They may remove
some sentences, rephrase others or alter the order in which
sentences appear in the final text. As long as the text
fragment has a given level of similarity to the original text in
the source document, it violates the data disclosure policy.

We do not assume that users or cloud service providers
are malicious and actively try to disclose data. This is an
orthogonal issue, which should be handled by access control
restrictions and governed by agreements based on trust in
third-party cloud services.

We assume that the IT department of an organisation is
able to install software in all devices used by employees and
that employees do not tamper with the software installed.

Browser
Internal Wiki

 https://xyz.com/internal/wiki

Interview Tool

https://xyz.com/internal/itool

Google Docs

https://docs.google.com….

BrowserFlow
Plug-In

Policy
Lookup

Policy
Enforcement

Interview Tool

Internal Wiki

Google Docs

Cloud Backend
Services

Figure 1: Overview of the BrowserFlow web browser plug-in

This capability is typically obtained as part of a device
provisioning process enforced in most organisations even for
employee-owned devices.

2.2 Existing approaches
Preventing unauthorised data disclosure has led to so-

lutions in a number of research areas, each with specific
limitations when applied to the above enterprise scenario.

Data leakage prevention (DLP) systems [10, 13, 41, 47,
61] protect sensitive data on client endpoints by inspect-
ing outgoing network traffic to prevent confidential data
from leaving an organisation’s network. Implementations
range from application-level firewalls [6, 16], which monitor
outgoing network traffic for confidential files, to specialised
solutions [47], which employ text similarity techniques to
detect information disclosure in network streams.

Different from the network focus of existing DLP ap-
proaches, BrowserFlow prevents disclosure of text data
in web browsers. Its Text Disclosure Model combined with
imprecise data flow tracking permits it to reason about the
transitive propagation of data across multiple cloud services.
Its realisation as part of a web browser means that it does
not require reverse-engineering of network protocols (see §5).

Data flow tracking systems [9, 17, 22, 35, 53, 57, 67–69]
attach labels to data, which is tracked while used by pro-
grams. Data derived from other sensitive data inherits the
corresponding security label. Such precise data flow tracking
systems are typically used to analyse applications handling
short confidential data such as passwords [23]. Precise data
flow tracking systems detect data flow accurately but suf-
fer from substantial performance overhead [35, 49]. More
fundamentally, data can only be tracked if all accesses are
intercepted [35], and tracking can be evaded through implicit
flows [4, 5, 54].

Given these limitations, it is not surprising that, despite
the large body of research on precise data flow tracking, such
approaches are not widely used in practice. Imprecise data
flow tracking can be regarded as a practical alternative that
uses text similarity to establish a robust link between data
and security policies specified as labels.

Static data flow analysis [1, 3, 48,55,64] tracks the data
flow of the source code using program analysis. Since this
leads to conservative results, the accuracy can be improved
by augmenting the programming language types with secu-
rity labels [55], which is infeasible for legacy programs [14,29].
Static techniques also cannot express disclosure policies that

make runtime decisions [15] unless combined with dynamic
data flow analysis [44]. While BrowserFlow is a runtime
approach, its label model for specifying policy shares the
simplicity of ones first suggested for static data flow analy-
sis [48].

Browser-side enforcement. There is prior work on pre-
venting confidential data disclosure in cloud services [18, 31].
A common assumption is that external cloud services are
untrusted, and therefore all data must be encrypted prior to
upload to an external service [28,51]. This is often infeasible,
however, because services may need to index, search, and
inspect the original data. Data encryption also becomes
impractical when cloud services support collaborative editing
with users outside of an organisation or when users require
access to documents on personal devices. BrowserFlow
provides more flexibility: users can use external applications
freely as long as they do not disclose sensitive data.

Client-side middleware [32,45,50] protects the confiden-
tiality of user’s data from the untrusted cloud service providers
by transparently managing data encryption (or obfuscation)
between user applications and cloud. Since data protection
is completely decoupled from application logic, client-side
middleware can be developed independently, is compatible
with legacy applications, and can be customised according
to organisational requirements.

COWL [59] and BFlow [66] allow untrusted JavaScript to
process confidential data without risking disclosure. Flow-
Fox [26] tracks data flows by executing JavaScript in an
isolated environment using multi-execution [19]. These (and
other similar [39, 43, 54]) approaches target either viola-
tions of the same-origin or intra-origin policy [20] within
browsers. Mowbray et al. [46] describe how policies can
be integrated with a privacy manager for controlling data
protection. BrowserFlow does not address vulnerabilities
in cloud services but instead protects against inadvertent
data disclosure by users themselves.

3. BrowserFlow DESIGN
We give an overview of BrowserFlow in Figure 1. Brow-

serFlow intercepts data from browser tabs before it is sent
to the remote servers. It is composed of two modules: (i) a
policy lookup module extracts the security label associated
with the text segment being uploaded; and (ii) a policy
enforcement module uses the security label to reason about
the compliance of the data propagation in relation to the

Figure 2: Disclosure decision by BrowserFlow for Google Docs

organisation’s data disclosure policy. BrowserFlow then
takes appropriate action, either permitting the data upload or
preventing it, e.g. by encrypting the data before transmission.

As shown in Figure 2, BrowserFlow informs the user of
a cloud service about the result of the disclosure decision by
changing the background colour of an affected text segment,
such as a paragraph. While a user edits a paragraph, the
paragraph is marked with a red background when it discloses
sensitive data from another source.

3.1 Text Disclosure Model
We express the actions of copying text from one browser tab

to another as a data flow in a Text Disclosure Model (TDM).
Data disclosure policies are specified using a decentralised
label model [14, 37, 48]. Policies are set by enterprise-wide
administrators once, but they may be refined by users.

In the TDM, security labels are associated with text in
documents and with cloud services. A label consists of a set
of tags. Each tag is a unique, human-readable string that
expresses a separate concern about data disclosure to cloud
services. Tags may be used for broad categories of sensitive
data (e.g. a tag interview-data in the Interview Tool) or be
created for specific data (e.g. a tag product-announcement-x).

An administrator assigns each cloud service a pair of la-
bels: a service privilege label Lp and a service confidentiality
label Lc. The privilege label Lp marks the highest level of
confidential data that a service is trusted to receive; the
confidentiality label Lc determines the default confidentiality
of data created within that service.

The TDM associates text segment labels to text segments.
When a text segment that has not been observed before is
created in a service, it is assigned the label Lc of that service.
The text segment label restricts how the text segment can
propagate to services. Together with service labels, text
segment labels are thus used to reason about data disclosure
to services. We discuss the different options for text segment
lengths in §4.

A text segment with label Li should be released to a
service with privilege label Lp only if Li ⊆ Lp. The policy
enforcement module ensures that this condition is satisfied
for every text segment that is uploaded to a service in plain
text.

Default tag assignment. Next we describe how text seg-
ment labels can be used to control data propagation. Figure 3
shows a label assignment for the example in Figure 1, in which
Interview Tool and Wiki documents must remain separate.
The administrator has created two tags, ti for the Interview
Tool and tw for the Wiki. Initially, Lp and Lc for both ser-

Internal WikiInterview Tool Google Docs
 Lp={ti}
Lc={ti}

Lp={tw}
Lc={tw}

Lp={}

Lc={}

L1={ti}

1

L2={ti}

2

L3={}L4={}

3

Figure 3: Using tags and labels to enforce data disclosure policy
between cloud services

vices are set to {ti} and {tw}, respectively. By using unique
tags for the two services, data generated by one service may
not be disclosed to the other.

In step 1 of Figure 3, text created in the Interview Tool is
assigned automatically the default confidentiality label Lc =
{ti} of that service. In step 2, the user copies the text from
the Interview Tool to the Wiki. When the text is about to be
uploaded, the policy lookup module determines the origin
of each text segment and its associated label. In this case,
the module retrieves the label L1. Next, the enforcement
mechanism compares L1 with the privilege label Lp = {tw}
of the Wiki. Since the text segment label is not a subset of
Lp, i.e. {ti} 6⊆ {tw}, BrowserFlow prevents the Wiki from
sending Interview Tool data to its servers.

In step 3, the user copies text from Google Docs to the
internal Wiki. Since Google Docs is an external untrusted
service, it is assigned no tags. Setting Lc = {} indicates
that data generated in Google Docs is public and may flow
to other services. Therefore the text segment generated in
Google Docs can be sent successfully to the Wiki.

User tag suppression. A distinctive design choice in TDM
is that it permits flexible declassification of data without sac-
rificing accountability. In contrast, previous DIFC models
require users to have explicit privileges to perform declassifi-
cation [22,37].

In TDM, users may override policy restrictions by sup-
pressing existing tags from text segment labels when they
copy that segment. A suppressed tag is ignored when doing
a subset comparison between labels, thereby allowing the
data to propagate. Figure 4 shows the scenario from Figure 3
with tag suppression. In step 1, the user suppresses ti in
the paragraph copied to the Wiki, permitting the upload to
succeed.

Tag suppression incurs an audit trail because it may result
in sensitive data disclosure. The suppressed tag remains
attached to the label of the text segment in the target service
of the data propagation. Along with a suppressed tag, we also
store an identifier of the user who initiated the suppression
and a justification to facilitate future audits. Note that tag
suppression is done on a case-by-case basis, i.e. each time a
user wishes to declassify the same text segment, they need to
explicitly perform a tag suppression; otherwise the original
source label will continue to be used for subset comparisons.

Custom tag allocation. In addition to the default tag
assignment, users may allocate custom tags and use them
freely in labels. Adding a custom tag to a text segment
label further restricts the set of services that may be used to
process the data. A user who allocates a new tag tn can add
that tag to and remove that tag from the privilege labels of
cloud services—they control which services may process data

Internal WikiInterview Tool Google Docs
 Lp={ti}
Lc={ti}

Lp={tw}
Lc={tw}

Lp={}

Lc={}

L1={ti} L2={ti}

1

L2={ti}

2

Figure 4: Suppressing tags allows users to declassify text
(Suppressed tags are crossed out.)

with tn in its label.
Figure 5 shows the same services as in Figure 3 but now

the administrator has added tw to Lp in the Interview Tool,
permitting it to access data from the Wiki. Users, however,
may use custom tags to prevent this. In step 1, a user who
creates a new text segment in the Wiki allocates a new tag tn
and adds it to the label L1 of that text segment. The label Lp

of the Wiki is updated automatically to reflect its ability to
process data protected with tn (step 2). Since the user did
not add tn to the privilege label of the Interview Tool, the
text from the Wiki may not propagate there (step 3).

Using a new custom tag to protect a text segment only
prevents access for those services that do not already store
a copy of the text segment. The TDM enforces that any
service that already stores the text segment labelled with
the new tag tn also receive tn as part of their privilege label.
In the example from Figure 5, if the text segment had been
observed first in the Interview Tool, the Interview Tool would
have required tn in LP (step 4). This ensures that if such a
text segment is seen again by a service, the TDM does not
restrict its propagation.

3.2 Tag propagation
Tags must propagate from a source text segment to a des-

tination while segments remain similar. When text is copied
between documents tag propagation is straightforward—the
source tags should become the tags of the destination text
segment. It is more challenging to propagate tags correctly
when text segments change. Once the text segment at the
source or destination changes, the two may bear little resem-
blance. Tags from the source text segment should therefore
no longer propagate to the destination text segment because
text lineage is typically less important than the current con-
tent.

Consider the example in Figure 6: the Wiki contains ti in
LP and Google Docs contains tw in LP . This allows data
propagation between the Interview Tool and the Wiki, and
text segments created by the Wiki can flow to Google Docs
(but Interview Tool text segments cannot). Consider two text
segments in this scenario: segment A labelled with {ti} and
segment B labelled with {tw}. We assume that, as B is
edited and the user appends enough text from A, B begins
to disclose significant information from A (step 1).

If all tags from A were added to B’s label permanently,
it would lead to overly conservative decisions after there is
no similarity between A and B: assume that, in step 1, B’s
label becomes {tw, ti}. In step 2, A is edited sufficiently to
lose resemblance to its original version. Consider now what
happens in step 3 when the second part of B, which came
from A, is copied to Google Docs. Labelling C with {ti, tw}
as if it originated from both the Interview Tool and the Wiki

Internal WikiInterview Tool Google Docs

Lp={ti,tw}

Lc={ti}

Lp={tw,tn}

Lc={tw}

Lp={}

Lc={}

L1={tw,tn}

4 2

3

1

Figure 5: Custom tags enable users to make data propagation
more restrictive

InternalCWikiInterviewCTool GoogleCDocs

Lp={ti,tw}

Lc={ti}

Lp={tw,ti}

Lc={tw}

Lp={tw}

Lc={}

L1={ti} L2={tw,ti}

2
3 L3={tw}

BA

1

C

Figure 6: Propagation of outdated tags occurs if tags remain
attached to segments after significant edits (We avoid this

problem with implicit tags, which appear in grey.)

would be a false positive because C discloses no sensitive
information from the current version of A. Instead, given
that the current authoritative source of C is the Wiki, C
should only be marked {tw}.

We prevent propagation of outdated tags in TDM using
implicit tags. Implicit tags indicate that a given text segment
is not the authoritative source of sensitive information.

Explicit and implicit tags. A segment label splits into
explicit and implicit tags: explicit tags are those assigned by
default due to the confidentiality label Lc of a service and
those assigned by users; implicit tags appear because the
segment was found to disclose sensitive information in the
past, i.e. these are tags copied from a source text segment to
a destination text segment. After information disclosure to
a destination text segment is detected, the explicit tags of
the source are added to the destination as implicit tags.

Implicit tags enable the TDM to reason efficiently about
the sensitivity of text segments. When editing a text segment,
BrowserFlow only updates the label of the text segment
being edited—it is not necessary to update proactively the
labels of other text segments that were found to be similar
in the past. This improves performance because it avoids
having to update labels for text segments other than the
current one—a user may never again inspect the documents
found to be similar in the past.

4. IMPRECISE DATA FLOW TRACKING
The novelty of the BrowserFlow approach is that it

casts data flow tracking to text similarity detection. Given
a database of documents db and some text t, we want to
answer the question: “what is the set of the original sources s
in db that t discloses significant information from currently?”
We call this the information disclosure problem.

This problem is closely related to the well-studied problem
of plagiarism detection [40, 56, 58]. Existing solutions [30]
can be divided into information retrieval techniques [40,58],
which directly compare the content of different documents,
e.g. by counting word frequencies, and fingerprinting tech-

niques [7, 56], which rely on hashes.
We propose an efficient fingerprinting algorithm for solving

the information disclosure problem, as an extension of the
winnowing algorithm for plagiarism detection [56].

4.1 Text fingerprinting
To measure information disclosure, BrowserFlow cal-

culates a fingerprint for each text segment. When two fin-
gerprints match perfectly, the segments contain largely the
same text. A fingerprint is a set of hashes carefully chosen
from particular passages in the paragraph and is calculated
using an efficient hash function [34].

BrowserFlow uses the same strategy as the winnowing
algorithm [56] to decide which hashes to include in a text
segment’s fingerprint, which has two useful properties: first,
hashes are selected from the text segment at regular intervals,
making the fingerprint linear to the segment size. This
guarantees that if two text segments share a passage longer
than a minimum threshold, their fingerprints share at least
one hash. Provided that the location of the corresponding
source text for each hash in the fingerprint is also stored, it
becomes possible to attribute accurately which text segment
passages caused information disclosure. Second, the selected
hashes are not affected strongly by the addition or removal
of characters in different parts of the text segment, or by
shuffling the content of a document. As small modifications
of a text segment result in small changes to its fingerprint,
our proposed disclosure metric becomes robust (see §4.2).

To calculate a text segment’s fingerprint, BrowserFlow
performs four steps:

S1 It normalises the text segment by removing punctuation,
whitespace and character case. For example, "Hello
World!" is transformed to "helloworld".

S2 It calculates the hash for each n-gram of a given length. In
our example, assuming 6-grams, yields "hellow", "ellowo",
"llowor", "loworl" and "oworld". These correspond to
5 hash values, e.g. {52, 40, 53, 13, 22}.

S3 It defines overlapping windows over the set of hashes and
chooses one hash from each window. With a window
size of 3, we obtain the following windows: {52, 40, 53},
{40, 53, 13} and {53, 13, 22}.

S4 It chooses the hash with the minimum value in each
window to be added to the fingerprint. In this example,
the fingerprint becomes {40, 13}.

By choosing the minimum hash value in each window, the
same hash is likely to be found in consecutive windows and
after the input text segment is modified only slightly. This
reduces the fingerprint size and avoids large changes to the
fingerprint after small changes to the text segment.

An important decision is the granularity at which text
propagation is tracked, which determines what a text seg-
ment is. We assume that text documents are structured as
traditional paper documents, i.e. each document has multiple
paragraphs. For some documents, a significant number of
individual paragraphs can be revealed without disclosing the
document’s content, but revealing one sentence from each
paragraph would disclose the document. BrowserFlow
therefore tracks text segments at two granularities indepen-
dently, namely individual paragraphs and entire documents.

This enables BrowserFlow to report information disclosure
both when an employee discloses information from a single
paragraph and from across multiple paragraphs.

4.2 Computing information disclosure
After calculating document and paragraph fingerprints we

need to compute information disclosure. Our approach for
this extends the definition of containment [7].

We define the document disclosure of document A towards
document B as

Ddoc(A,B) =
|F (A) ∩ F (B)|
|F (A)|

where F returns the fingerprint of the entire document. Doc-
ument disclosure quantifies how much text from document A
is found in document B. It has a value in [0, 1]: 0 means no
disclosure; and 1 is full disclosure, i.e. all fingerprint hashes of
document A are also found in the fingerprint of document B.
Similarly, we define paragraph disclosure as

Dpar (Ap, B) =
|F (Ap) ∩ F (B)|
|F (Ap)|

where Ap is a paragraph of document A, and F returns its
fingerprint.

Document and paragraph disclosure offer the flexibility
to adjust the sensitivity when detecting disclosure for each
document and paragraph individually. We define a document
disclosure threshold Tdoc and a paragraph disclosure thresh-
old Tpar , set e.g. by the author of a document and paragraph,
respectively. There is significant information disclosure for
document A to document B when

Ddoc(A,B) ≥ Tdoc(A) or ∃Ap ∈ A : Dpar (Ap, B) ≥ Tpar (Ap)

We refer to these as the document and paragraph disclosure
requirements, respectively.

For example, with Tpar (Ap1) = 0 and Tpar (Ap2) = 0.8,
information disclosure is detected when any hash in the first
paragraph’s fingerprint is leaked, but only when 80% of the
hashes of the second paragraph’s fingerprint are found in
another document.

Users should adjust the paragraph and document disclosure
thresholds of the text that they generate according to their
requirements and the confidentiality of the text. In §6.1, we
explore the effect of different threshold values.

Document and paragraph disclosure thresholds express
orthogonal constraints. Given a database of a single docu-
ment A and a new document B, the document and paragraph
disclosures are calculated independently. If any of the two
constraints for detecting disclosure is satisfied, Browser-
Flow detects information disclosure.

4.3 Overlapping documents
When similar text exists in multiple text segments, this

can inadvertently boost the value of the disclosure metrics.
Our metrics only measure pairwise information disclosure
between a source and target segment. We may misreport
disclosure requirement violations if we attempt to measure
disclosure from multiple similar source text segments.

Consider Figure 7, which shows two documents A and B,
each with one paragraph. The paragraph in B is a superset
of the paragraph in A, with some additional text. A user
pastes another copy of the overlapping text to document C.
Assuming that Tpar = 0.5 for the paragraphs in A and

Dpar=0.6

Dpar=1

A B C

Figure 7: With overlap between documents, disclosure metrics
may misreport the true source of sensitive information.

B, more than 50% for the hashes in each paragraph must
appear in C for violating the pairwise paragraph disclosure
requirement. This is indeed the case, which would lead to
a report that C discloses significant information from both
paragraphs in A and B. In reality all sensitive information
in C originates only from A.

We compensate for this by (i) recording a timestamp when
observing each hash in a paragraph’s fingerprint for the
first time; and (ii) adjusting the document and paragraph
disclosure equations to ignore hashes that appear first in
fingerprints of different paragraphs or documents. Our docu-
ment and paragraph disclosure equations thus become

Ddoc(A,B) =
|Fauthoritative(A) ∩ F (B)|

|F (A)|

Dpar (Ap, B) =
|Fauthoritative(Ap) ∩ F (B)|

|F (Ap)|

where Fauthoritative returns part of a fingerprint: the authori-
tative fingerprint only contains hashes for which no earlier
associations with other text segments exist.

Calculating Dpar (B,C) in the example from Figure 7 re-
turns a value less than 0.5 because Fauthoritative(B) contains
only hashes from the new text in B.

Text disclosure algorithm. Algorithm 1 calculates the
set of paragraphs from which a given paragraph P discloses
significant information according to paragraph disclosure.

The algorithm leverages two data structures to quickly
retrieve existing paragraphs and their fingerprints given a
fingerprint hash. The first data structure (DBhash) stores as-
sociations of fingerprint hashes to paragraphs that have been
found to contain those hashes along with timestamps. The
second data structure (DBpar) stores associations of para-
graphs to the last fingerprint that has been calculated for
each paragraph. To maximise lookup performance we recom-
mend using an in-memory, hashtable-based implementation
for both DBhash and DBpar .

Given paragraph P the algorithm iterates over the hashes
in the paragraph’s fingerprint. It identifies every candi-
date paragraph p that shares at least one hash with P . It
then proceeds to calculate the pairwise paragraph disclosure
Dpar (p, P). If the result is greater than the disclosure thresh-
old t the algorithm inserts p into the result set R. Note that
the algorithm quickly discards candidate paragraphs based
on fingerprint length, i.e. short candidate paragraphs are
discarded early.

The algorithm has a time complexity that is linear to the
number of paragraphs that P shares at least one hash with.
It can operate in an incremental fashion: if a user edits
paragraph P by adding one hash h, the algorithm’s main
loop only needs to inspect h. This is an important property

Algorithm 1: Computes source paragraphs that are disclosed

by a given paragraph (A similar algorithm can be used to identify

source documents based on document disclosure.)

Data: P : Paragraph
Data: t: Paragraph disclosure threshold
Data: DBhash : Hashes database
Data: DBpar : Paragraph fingerprint database
Result: R: Set of origin paragraphs O that satisfy the

paragraph disclosure requirement to paragraph P
fpar ← F (P);
R ← {};
for hash h in fpar do

p← oldestParagraphWith(h,DBhash);
if p = P then

continue;

t← p.threshold ;
forigin ← hashesOf (p,DBpar);
if count(forigin) ∗ t > count(fpar) then

continue;

fauthoritative ← {};
for hash l in forigin do

if p = oldestParagraphWith(l, DBhash) then
fauthoritative .add(l);

overlap ← fauthoritive ∩ fpar ;
if count(overlap) > count(forigin) ∗ t then

R.add(p);

because it means that only text that is close to the text
being edited may trigger disclosure calculations from other
documents.

4.4 Limitations
Imprecise data flow tracking is not effective at a finer

granularity than paragraphs due to the inability of the fin-
gerprinting technique to quantify similarity of short text
segments without a lot of false positives. Short but sensitive
text, however, is typically only relevant from a confidential-
ity perspective in specific scenarios, e.g. when the text is
used as a password. For such specific use cases, for example
password reuse prevention, specialised systems which rely on
data equality only [38] are more effective.

While many services used for document editing (e.g. Google
Docs or Zoho) or user communication (e.g. Facebook’s news-
feed or web forums) have the concept of documents and
paragraphs, some services do not. They may be supported
by BrowserFlow if there is a service-specific transformation
of the service’s data to text segments.

Imprecise data flow tracking cannot track data propagation
once users rephrase entire paragraphs. This can happen
both as part of a legitimate user workflow and as an explicit
attempt to avoid BrowserFlow. We believe that the former
is not an important limiting factor and that the latter is an
exception rather than the rule. In addition, our approach is
ineffective if cloud services explicitly try to evade the tracking.
We argue that this is an acceptable limitation—most cloud
services in the enterprise space have an incentive to cooperate
with organisations regarding the control of sensitive data.

Data processed outside the browser in native applications
introduces data propagation false positives and false nega-
tives. Imprecise data flow tracking should be extended to
be aware of data sources outside the browser. This can be
achieved by integrating with DLP systems that monitor data

flow in native applications (§2.2).
Imprecise data flow tracking may introduce privacy con-

siderations. Monitoring of all text that users edit can be
deemed unacceptable if a device is also used for personal
workflows. Such monitoring practices are, however, already
considered fair [62], e.g. in the context of phishing detection
many IT departments aggressively scan all employee email.

Imprecise data flow tracking may also introduce security
considerations. Storing fingerprints long-term to facilitate
disclosure calculations (e.g. DBpar) can introduce an addi-
tional attack target if a device gets compromised. To mitigate
this we recommend encrypting all fingerprint data at rest
and performing periodic removal of old fingerprints.

5. IMPLEMENTATION
We implemented BrowserFlow as a plug-in for the

Google Chrome web browser. An implementation of Brow-
serFlow needs the ability to (i) observe data that appears
in a cloud service; and (ii) intercept outgoing data transfers
when enforcing compliance decisions according to a TDM
policy. Our plug-in reports policy violations to the user by
changing the background colour of paragraphs and can also
encrypt confidential data before upload [18,31]. We describe
two approaches for interception: one for primarily static web
pages and one for modern, AJAX-based services [63].

5.1 Static web pages
Text extraction. We adopt an approach similar to Read-
ability [2] to extract text passages from web pages. The
BrowserFlow plug-in inspects the DOM tree of each page
after loading, searching for HTML elements with significant
text. We apply a set of heuristics to rank elements accord-
ing to how much “interesting” text they contain and select
the element with the highest score. These heuristics reward
the existence of <p> tags, text that contains commas, and
id attributes, which have known representative values such
as article. Similarly, they penalise bad class attribute
names such as footer or meta and high number of links over
text length. After identifying the most interesting elements,
BrowserFlow extracts the text from them by removing all
HTML tags. This approach can identify text in static HTML
pages, e.g. as generated by Drupal [21] and WordPress [65].

Form-based interception. BrowserFlow intercepts out-
going data transfers via HTML forms [52]. It adds an event
listener for the submit event of the <form> elements of web
pages. When a user submits a form, the listener suppresses
the outgoing web request, inspects all non-hidden <input>
elements in the form and extracts their value attributes. If
the action is not found to leak sensitive data according to
the TDM, the listener allows the submit event to trigger the
form submission. This approach is sufficient to intercept
data transfers in a wide range of cloud services, such as the
Facebook composer, forums based on vBulletin [33] and the
comments system in WordPress.

5.2 Dynamic web pages
Generic data interception in modern cloud services that

use asynchronous requests is more challenging. Such ser-
vices (i) may embed user-provided text in the DOM tree
outside of common HTML input elements such as <input>
and <textarea>; (ii) they may rely heavily on CSS for for-
matting, avoiding standard HTML elements such as <p>; and

Dataset Documents Versions
Para- Size
graphs (in KB)

Wikipedia Articles 1000 60 30

Manuals
IPhone Camera 4 40 6.1
IPhone Message 4 20 3.3
MySQL New Features 4 28 5.6
MySQL What’s

MySQL
4 8 5.0

News Articles 2 27 5.5

Ebooks Books 1 1500 470

Table 1: Datasets used for information disclosure evaluation (The
paragraph and size columns show average values across document

versions.)

(iii) they may obfuscate user input in outgoing web requests.
For example, Google Docs embeds directly into the DOM
tree, uses custom formatting to make elements form para-
graphs and pages, and communicates document mutations
via AJAX requests each time a character is added or deleted.

We describe two generic browser mechanisms to support
such cloud services, including Google Docs and Evernote.
These mechanisms can be used to support other services
with minimal effort compared to DLP systems implemented
as application firewalls, which need to understand the wire
format used by each service (see §2.2).

Mutation observers. BrowserFlow receives notifica-
tions about the existence of new data in a cloud service
via mutation observers [36]. A mutation observer is an ob-
ject that can be attached to an element in the DOM tree
and receives notifications when any change occurs in the
subtree rooted at that element. When a mutation observer
triggers, it can access information about the changes that
occurred. Mutation observers therefore simplify data inter-
ception because they do not require the service to perform
externally visible actions, such as external communication to
access data. Since interception occurs in the browser, every
modification to the DOM tree is visible.

BrowserFlow uses mutation observers to intercept Google
Docs. A document observer monitors the creation or deletion
of paragraphs, and a paragraph observer monitors changes to
paragraphs. When a user edits the document, the paragraph
observer collects the changed text and passes it to the label
lookup module for inspection.

JavaScript prototypes. BrowserFlow intercepts com-
munication to the remote back- end servers by redefining the
send method in JavaScript’s XMLHttpRequest object. JavaScript
dispatches method invocations dynamically. If an object
does not contain a method, the method call is dispatched
to its prototype object. BrowserFlow sets a custom
XMLHttpRequest.prototype.send method, exposing an inter-
ception point to observe all HTTP requests. This permits
BrowserFlow to inspect all data that gets transmitted,
allowing or preventing the request. Compared to traffic in-
terception outside the browser, this approach is applicable
when traffic is encrypted and allows for interaction with the
user if so required, e.g. to communicate policy violations.

6. EVALUATION
The goals of our experimental evaluation are to assess the

effectiveness of BrowserFlow in detecting disclosure (§6.1)

10 1000

0.2

0.4

0.6

0.8

1

Relative difference of content sizes

Pe
rc

en
ta

ge
 o

f s
am

pl
es

Figure 8: Changes in article length

and to measure its impact on performance (§6.2).

6.1 Effectiveness
BrowserFlow’s ability to detect data disclosure depends

on the effectiveness of imprecise data flow tracking. We per-
form two studies: (i) we investigate the accuracy of informa-
tion disclosure reported by BrowserFlow for two datasets
that contain documents across multiple revisions; and (ii) we
explore the behaviour of BrowserFlow under different
values for the paragraph disclosure threshold Tpar (see §4.2).

We configure BrowserFlow to calculate 32-bit hashes
over n-grams of 15 characters with a window size of 30 char-
acters. We focus on the paragraph tracking granularity; the
results for the document granularity are similar. We set the
paragraph disclosure threshold to Tpar = 0.5, according to
the results of the analysis below.

Information disclosure detection. To evaluate the accu-
racy of BrowserFlow in detecting information disclosure,
we need a corpus of documents that evolves over time while
maintaining overlap between revisions. We also need to have
a ground truth to decide if the disclosure decisions made by
BrowserFlow are appropriate.

As summarised in Table 1, we conduct experiments with
two datasets of documents: (i) a corpus of 100 Wikipedia
articles that contains the last 1000 revisions for each arti-
cle (Wikipedia); and (ii) two chapters from two technical man-
uals that include the past 4 versions of each chapter (Manuals).
Since the Wikipedia dataset is large, we use a heuristic to
obtain the ground truth about disclosure between paragraphs
across revisions (see below); for the smaller Manuals dataset,
the ground truth is given by a human expert.
Wikipedia dataset. We collect articles for popular topics

such as “Chicago” and “Chemotherapy”. The length of the
articles varies across different revisions. Figure 8 shows the
cumulative distribution of the changes of article lengths be-
tween the oldest and most recent revision derived by additive
comparison. We make the assumption that articles that
retain similar lengths between two revisions remain largely
unchanged and are only subject to minor modifications. In
contrast, we consider articles with large article-length differ-
ences to change more substantially. We use this measure as a
heuristic to estimate the amount of data disclosure between
article versions.

Figures 9a and 9b show the percentage of paragraphs from
the oldest article revision that BrowserFlow detects to be
disclosed by newer revisions. They focus on articles with the
minimum and the maximum length changes from Figure 8,
respectively.

Figure 9a shows that BrowserFlow reports disclosure
for almost all paragraphs across revisions in articles with
stable lengths. Indeed, those articles are on subjects that
remain largely the same over time and have mature con-
tent (e.g. “Chicago” or “C++”). In contrast, the articles in
Figure 9b with large length variations show that the text
from the original version cannot always be found in later re-
visions. This includes articles on controversial or less mature
topics (e.g. “Dow Jones” or “Dementia”). For both types of
articles, BrowserFlow reports paragraph disclosure that
follows our intuition.
Manuals dataset. We conduct a small-scale experiment

where a human expert provides ground truth for two chapters
from the iPhone and MySQL manuals. We use a set of differ-
ent manual versions, in which some chapters have changed
significantly (e.g. iPhone “Message” chapter), whereas others
have largely stayed unaltered across versions (e.g. MySQL
“What’s MySQL”). We use the oldest version of each chapter
as the base, and calculate how many of its paragraphs are
disclosed by updated versions. The human expert reports
disclosure when similar content or concepts are mentioned,
regardless of the actual words used in the disclosing para-
graphs.

Figures 10a–10d show BrowserFlow’s results and those
from the human inspection for our four chapters. Over-
all BrowserFlow’s disclosure decisions match the human
expert. Both chapters of the iPhone manual change sig-
nificantly over time. The latest document version (iOS7)
discloses almost no information from the base version (iOS3).
For the MySQL manual, the“New Features”chapter shows re-
duced disclosure after version 4.1, while the “What’s MySQL”
chapter remains unchanged across versions.

We observe a systematic, small number of false negatives
for short paragraphs without enough characters to fill a
fingerprinting window. In addition, paragraphs rephrased
extensively only get reported by the human expert.

Paragraph disclosure threshold. Next we explore the
choice of the paragraph disclosure threshold Tpar . For the
Manuals dataset, we vary Tpar and observe how it affects false
positives and negatives. To reduce the impact of systematic
errors, we ignore paragraphs for which the fingerprint set is
empty.

Figure 11 shows the ratio of the total number of para-
graphs that BrowserFlow reports as being disclosed in
newer chapter versions over the number reported by the
human expert: a value 1 indicates that there is agreement;
values above or below 1 indicate false positives and negatives,
respectively.

We observe that, for values of Tpar between 0.2 and 0.8,
BrowserFlow agrees with the ground truth for more than
90% of the paragraphs. The value of Tpar has less impact
when paragraphs share almost all content, or none at all. In
such cases, Dpar has either a small or large value compared
to Tpar . As a result, BrowserFlow can detect information
disclosure robustly, independently of Tpar , if the text overlap
is low (e.g. paragraphs with no shared text) or high (e.g.
identical paragraphs due to copy and paste). Based on these
results, we adopt a default value of Tpar = 0.5, i.e. disclosure
is reported when at least 50% of an original paragraph is
found in another paragraph.

6.2 Performance overhead
We evaluate the performance of BrowserFlow in terms

0 200 400 600 800 1000

20

40

60

80

100
D

is
cl

os
in

g
pa

ra
gr

ap
hs

 (%
)

Number of revisions away from base version

Chicago
C++
IP address
Liverpool FC

(a) Articles with low length variations

0 200 400 600 800 1000

20

40

60

80

100

D
is

cl
os

in
g

pa
ra

gr
ap

hs
 (%

)

Number of revisions away from base version

Chemotherapy
Dementia
Dow Jones
Radiotherapy

(b) Articles with high length variations

Figure 9: Paragraph disclosure (Wikipedia dataset)

iOS3 iOS4 iOS5 iOS70

20

40

60

80

100

Version

D
is

cl
os

in
g

pa
ra

gr
ap

hs
 (%

)

Ground truth
BrowserFlow

(a) IPhone Camera

iOS3 iOS4 iOS5 iOS70

20

40

60

80

100

Version
D

is
cl

os
in

g
pa

ra
gr

ap
hs

 (%
)

Ground truth
BrowserFlow

(b) IPhone Message

4.0 4.1 5.0 5.10

20

40

60

80

100

Version

D
is

cl
os

in
g

pa
ra

gr
ap

hs
 (%

)

Ground truth
BrowserFlow

(c) MySQL New Features

4.0 4.1 5.0 5.10

20

40

60

80

100

D
is

cl
os

in
g

pa
ra

gr
ap

hs
 (%

)

Version
(d) MySQL What’s MySQL

Figure 10: Paragraph disclosure (Manuals dataset)

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

R
at

io
 o

f d
et

ec
te

d
di

sc
lo

su
re

ov

er
 g

ro
un

d
tru

th

Paragraph disclosure threshold

Figure 11: Impact of paragraph disclosure threshold

of its response time, i.e. how quickly information disclosure
decisions are made when editing documents in Google Docs.
When a user modifies a document in Google Docs, Brow-
serFlow is triggered asynchronously on each key press.
This means that users do not perceive any additional delay

when typing—independently of BrowserFlow’s response
time—because the disclosure calculation occurs in a different
process [11]. The response time should be low, however, oth-
erwise the delay in disclosure decisions would be noticeable
to the cloud services, e.g. triggering “limited connectivity”
error messages by Google Docs.

We use a large dataset of e-books from Project Guten-
berg [27], which includes 180 e-books with sizes ranging
between 300 KB and 5.5 MB. The total size is 90 MB. We
load the dataset into BrowserFlow, creating 10 million dis-
tinct hashes in the fingerprint database. The experiments
are performed on a 3.4 GHz Intel Core i7 machine with
16 GB of RAM, running Ubuntu 13.04 and Google Chrome
version 33.0.1712.2.

Response time. We edit the documents in three different
workflows:

W1 A user creates a new document and enters a single page
from an existing e-book;

W2 A user enters an article that does not share text with

20 50 100 200 500 10000

0.2

0.4

0.6

0.8

1

Response time (in ms)

Pe
rc

en
ta

ge
 o

f s
am

pl
es

Creation−with−overlap
Creation−without−overlap
Modification

Figure 12: Distribution of response times for disclosure decisions

any of the existing e-books;

W3 A user edits a previously-modified version of an e-book
page to make it match the original version.

Figure 12 shows the distribution of response times for each
of the above workflows measured as the time between the
request and the disclosure decision. Response times are low:
BrowserFlow is able to respond within 200 ms for 99% of
the requests, and 85% of these responses arrive in less than
30 ms.

The response time depends on (i) caching and (ii) whether
the edited text has significant overlap with other text in
the system. Caching affects the majority of requests, which
exhibit the lowest latencies (less than 30 ms). Requests are
served quickly because one keystroke typically does not al-
ter the winnowing fingerprint of a paragraph, permitting
BrowserFlow to reuse its previous response. Requests
that trigger disclosure calculation have higher latencies (90–
200 ms). The impact of overlapping text is seen when com-
paring response times of W1 and W3 with W2—response
times in the former are typically higher. As described in §4.2,
when a paragraph overlaps with others, the hashes of every
overlapping paragraph have to be inspected to calculate Dpar .

In conclusion, the HTTP traffic interception that Brow-
serFlow performs is not noticeable by users. Browser-
Flow only blocks data exchange between the main appli-
cation window and the remote back-end servers for short
periods of time, thus not affecting functions such as spell-
checking or document synchronisation across multiple devices.
Overall the use of BrowserFlow is similar to experiencing
slightly increased network latency—a scenario which cloud
services are designed to tolerate.

Scalability. We investigate how the number of hashes main-
tained by BrowserFlow affects performance. We vary the
number of documents loaded into BrowserFlow from 5 MB
(1 million hashes) to 90 MB (10 million hashes). For each
size of the hashes database, we create a new empty document
and paste a 500-character long paragraph from an existing
book to trigger the disclosure calculation.

Figure 13 shows the 95th percentile of response times with
an increasing number of hashes. The response time scales
sub-linearly with the size of the hashes database, remaining
typically below 200 ms. This is due to the use of index data
structures in the BrowserFlow implementation to improve
the lookup performance.

We conclude that, in practice, the size of the hashes
database is not the limiting factor for scaling to larger doc-
ument numbers. Performance is determined primarily by
how many popular text passages appear in multiple different

1 2 3 4 5 6 7 8 9 100

100

200

300

Number of distinct hashes (in million)

R
es

po
ns

e
tim

e
(in

 m
s)

Figure 13: Response time when varying the size of the hashes
database

paragraphs.

7. CONCLUSIONS
Cloud services increasingly replace desktop applications in

organisations and this makes accidental disclosure of sensitive
data common. We suggested imprecise data flow tracking,
a robust and practical technique for tracking sensitive data
in the browser. We also introduced the Text Disclosure
Model (TDM) that enables organisations and users to collab-
oratively specify data disclosure policies. We demonstrated
the feasibility of our ideas through BrowserFlow, a pro-
totype plug-in for Chrome that intercepts document editing
in Google Docs and prevents policy violations. Based on
an experimental evaluation, we showed that BrowserFlow
can prevent sensitive data disclosure before it occurs, while
having a negligible performance impact on user experience.

8. ACKNOWLEDGEMENT
This work was supported by CloudFilter (EP/J020370/1)

and CloudSafetyNet (EP/K008129/1) grants from the UK
Engineering and Physical Sciences Research Council (EP-
SRC).

9. REFERENCES
[1] A. Aho, M. Lam, R. Sethi, and J. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley,
2007.

[2] Arc90labs. Readability.
code.google.com/p/arc90labs-readability/, 2016.

[3] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,
J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel.
Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In
Programming Language Design and Implementation
(PLDI), Edinburgh, UK, 2014. ACM.

[4] T. Austin and C. Flanagan. Efficient Purely-Dynamic
Information Flow Analysis. In Programming Languages
and Analysis for Security (PLAS), Dublin, Ireland,
2009. ACM.

[5] T. Austin and C. Flanagan. Permissive Dynamic
Information Flow Analysis. In Programming Languages
and Analysis for Security (PLAS), Toronto, Canada,
2010. ACM.

[6] Barracuda. Web application firewall.
www.barracuda.com/products/webapplicationfirewall, 2011.

[7] A. Broder. On the Resemblance and Containment of
Documents. Compression and Complexity of
SEQUENCES, 1997.

[8] B. Burke and C. Christiansen. Insider Risk
Management: A Framework Approach to Internal
Security. Technical report, RSA, 2009.

[9] J. Burket, P. Mutchler, M. Weaver, M. Zaveri, and
D. Evans. GuardRails: A Data-centric Web Application
Security Framework. In Web Application Development
(WebApps), Portland, OR, 2011. USENIX.

[10] C. Coles. What are the Top Data Loss Prevention
Tools?
https://www.skyhighnetworks.com/cloud-security-blog/

what-are-the-top-data-loss-prevention-tools/, May 2016.

[11] N. Carlini, A. Felt, and D. Wagner. An Evaluation of
the Google Chrome Extension Security Architecture. In
Security Symposium, Bellevue, WA, 2012. USENIX.

[12] CDW. State of the cloud report.
www.cdwnewsroom.com/wp-content/uploads/2013/02/CDW_2013_

State_of_The_Cloud_Report_021113_FINAL.pdf, 2013.

[13] Check Point. DLP Software Blade.
www.checkpoint.com/products/dlp-software-blade/, 2015.

[14] W. Cheng, D. Ports, D. Schultz, V. Popic,
A. Blankstein, J. Cowling, D. Curtis, L. Shrira, and
B. Liskov. Abstractions for Usable Information Flow
Control in Aeolus. In Annual Technical Conference
(ATC), Boston, MA, 2012. USENIX.

[15] S. Chong, K. Vikram, and A. Myers. SIF: Enforcing
Confidentiality and Integrity in Web Applications. In
Security Symposium, Boston, MA, 2007. USENIX.

[16] Citrix. NetScaler.
www.citrix.com/products/netscaler-appfirewall/, 2011.

[17] M. Dalton, C. Kozyrakis, and N. Zeldovich. Nemesis:
Preventing Authentication and Access Control
Vulnerabilities in Web Applications. In Security
Symposium, Montreal, Canada, 2009. USENIX.

[18] G. D’Angelo, F. Vitali, and S. Zacchiroli. Content
Cloaking: Preserving Privacy with Google Docs and
Other Web Applications. In Symposium on Applied
Computing (SAC), Sierre, Switzerland, 2010. ACM.

[19] D. Devriese and F. Piessens. Noninterference through
Secure Multi-execution. In Symposium on Security and
Privacy, Oakland, CA, 2010. IEEE.

[20] X. Dong, Z. Chen, H. Siadati, S. Tople, P. Saxena, and
Z. Liang. Protecting Sensitive Web Content from
Client-side Vulnerabilities with CRYPTONS. In
Computer and Communications Security (CCS), Berlin,
Germany, 2013. ACM.

[21] Drupal. www.drupal.org, 2016.

[22] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey,
D. Ziegler, E. Kohler, D. Mazières, F. Kaashoek, and
R. Morris. Labels and Event Processes in the Asbestos
Operating System. In Symposium on Operating
Systems Principles (SOSP), Brighton, United Kingdom,
2005. ACM.

[23] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An
Information Flow Tracking System for Real-time
Privacy Monitoring on Smartphones. Communications
of the ACM, 57(3), 2014.

[24] Frost and Sullivan. The hidden truth behind shadow
IT. www.mcafee.com/us/resources/reports/

rp-six-trends-security.pdf, November 2013.

[25] Google. Google Docs. docs.google.com, 2016.

[26] W. D. Groef, D. Devriese, N. Nikiforakis, and
F. Piessens. FlowFox: A Web Browser With Flexible
and Precise Information Flow Control. In Computer
and Communications Security (CCS), Raleigh, NC,
2012. ACM.

[27] Project Gutenberg. www.gutenberg.org/, 2016.

[28] W. He, D. Akhawe, S. Jain, E. Shi, and D. Song.
ShadowCrypt: Encrypted Web Applications for
Everyone. In Computer and Communications Security
(CCS), Scottsdale, Arizona, 2014. ACM.

[29] B. Hicks, K. Ahmadizadeh, and P. McDaniel. From
Languages to Systems: Understanding Practical
Application Development in Security-typed Languages.
In Annual Computer Security Applications Conference
(ACSAC), Miami Beach, FL, 2006. IEEE.

[30] T. Hoad and J. Zobel. Methods for Identifying
Versioned and Plagiarised Documents. Journal of the
American Society for Information Science and
Technology, 54, 2003.

[31] Y. Huang and D. Evans. Private Editing Using
Untrusted Cloud Services. In International Conference
on Distributed Computing Systems Workshops
(ICDCSW), Minneapolis, MN, 2011. IEEE.

[32] R. C. Jammalamadaka, R. Gamboni, S. Mehrotra,
K. Seamons, and N. Venkatasubramanian. A
Middleware Approach for Outsourcing Data Securely.
Elsevier Computers & Security, 32, 2013.

[33] vBulletin Connect. www.vbulletin.com/, 2016.

[34] R. Karp and M. Rabin. Efficient Randomized
Pattern-Matching Algorithms. IBM Journal of
Research and Development, 31(2), 1987.

[35] V. Kemerlis, P. Georgios, K. Jee, and A. Keromytis.
libdft: Practical Dynamic Data Flow Tracking for
Commodity Systems. In Virtual Excecution
Environments (VEE), London, UK, 2012. ACM.

[36] A. Kesteren, A. Gregor, Ms2ger, A. Russell, and
R. Berjon. W3C DOM4. Technical report, W3C, 2014.

[37] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, F. Kaashoek,
E. Kohler, and R. Morris. Information Flow Control for
Standard OS Abstractions. In Symposium on Operating
Systems Principles (SOSP), Stevenson, WA, 2007.
ACM.

[38] LastPass. www.lastpass.com, 2016.

[39] S. Maffeis, J. C. Mitchell, and A. Taly. Object
Capabilities and Isolation of Untrusted Web
Applications. In Symposium on Security and Privacy,
Oakland, CA, 2010. IEEE.

[40] G. S. Manku, A. Jain, and A. Das Sarma. Detecting
Near-Duplicates for Web Crawling. In World Wide
Web (WWW), Banku, Canada, 2007. ACM.

[41] McAfee. Total Protection for Data Loss Prevention.
www.mcafee.com/us/products/

total-protection-for-data-loss-prevention.aspx, 2016.

[42] Microsoft. Office 365. portal.microsoftonline.com, 2016.

[43] M. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay.
Caja: Safe Active Content in Sanitized JavaScript.
Technical report, Google, 2007.

[44] M. Mongiov̀ı, G. Giannone, A. Fornaia, G. Pappalardo,
and E. Tramontana. Combining Static and Dynamic
Data Flow Analysis: A Hybrid Approach for Detecting
Data Leaks in Java Applications. In Symposium on
Applied Computing (SAC), Salamanca, Spain, 2015.
ACM.

[45] M. Mowbray and S. Pearson. A Client-based Privacy
Manager for Cloud Computing. In Communication
System Software and Middleware (COMSWARE),
Dublin, Ireland, 2009. ACM.

[46] M. Mowbray, S. Pearson, and Y. Shen. Enhancing
Privacy in Cloud Computing via Policy-based
Obfuscation. Springer Journal of Supercomputing,
61(2), 2012.

[47] MyDLP. www.mydlp.com/, 2016.

[48] A. Myers and B. Liskov. Protecting Privacy Using the
Decentralized Label Model. ACM Transactions on
Software Engineering and Methodology, 9(4), Oct. 2000.

[49] I. Papagiannis, M. Migliavacca, and P. Pietzuch. PHP
Aspis: Using Partial Taint Tracking to Protect Against
Injection Attacks. In Web Application Development
(WebApps), Portland, OR, 2011. USENIX.

[50] S. Pearson, Y. Shen, and A. Mowbray. A Privacy
Manager for Cloud Computing. In International
Conference on Cloud Computing. IEEE, 2009.

[51] R. A. Popa, E. Stark, S. Valdez, J. Helfer, N. Zeldovich,
and H. Balakrishnan. Building Web Applications on
Top of Encrypted Data Using Mylar. In Networked
Systems Design and Implementation (NSDI), Seattle,
WA, 2014. USENIX.

[52] D. Raggett, A. Le Hors, and I. Jacobs. HTML 4.01
Specification. Technical report, W3C, 1999.

[53] V. Rajani, A. Bichhawat, D. Garg, and C. Hammer.
Information Flow Control for Event Handling and the
DOM in Web Browsers. In Computer Security
Foundations Symposium (CSF), Verona, Italy, 2015.
IEEE.

[54] A. Russo, A. Sabelfeld, and A. Chudnov. Tracking
Information Fow in Dynamic Tree Structures. In
European Symposium on Research in Computer
Security (ESORICS), Saint Malo, France, 2009.

[55] A. Sabelfeld and A. Myers. Language-based
Information-Flow Security. IEEE Journal on Selected
Areas in Communications, 21(1), Jan. 2003.

[56] S. Schleimer, D. Wilkerson, and A. Aiken. Winnowing:
Local Algorithms for Document Fingerprinting. In
International Conference Management of Data
(SIGMOD), San Diego, CA, 2003. ACM.

[57] E. Schwartz, T. Avgerinos, and D. Brumley. All You
Ever Wanted to Know About Dynamic Taint Analysis
and Forward Symbolic Execution (But Might Have
Been Afraid to Ask). In Symposium on Security and
Privacy, Berkeley, CA, 2010. IEEE.

[58] N. Shivakumar and H. Garcia-molina. SCAM: A Copy
Detection Mechanism for Digital Documents. In
International Conference in Theory and Practice of
Digital Libraries, 1995.

[59] D. Stefan, E. Z. Yang, P. Marchenko, A. Russo,
D. Herman, B. Karp, and D. Mazières. Protecting
Users by Confining JavaScript with COWL. In
Operating Systems Design and Implementation (OSDI),
Broomfield, CO, 2014. USENIX.

[60] Symantec. What risks are employees taking with
information? www.symantec.com/connect/blogs/

what-risks-are-employees-taking-information, 2011.

[61] Symantec. Data Loss Prevention.
www.symantec.com/data-loss-prevention/, 2016.

[62] Your Right to Privacy At Work. https://www.tuc.org.uk/

sites/default/files/tuc/privacyatwork.pdf/, 2016.

[63] C. Ullman and L. Dykes. Begining Ajax. Wrox, 2007.

[64] F. Wei, S. Roy, X. Ou, and Robby. Amandroid: A
Precise and General Inter-component Data Flow
Analysis Framework for Security Vetting of Android
Apps. In Computer and Communications Security
(CCS), Scottsdale, Arizona, USA, 2014. ACM.

[65] Wordpress. www.wordpress.org, 2016.

[66] A. Yip, N. Narula, M. Krohn, and R. Morris.
Privacy-Preserving Browser-Side Scripting with BFlow.
In European Conference on Computer Systems
(EuroSys), Nuremberg, Germany, 2009. ACM.

[67] A. Yip, X. Wang, N. Zeldovich, and F. Kaashoek.
Improving Application Security with Data Flow
Assertions. In Symposium on Operating Systems
Principles (SOSP), Big Sky, MT, 2009. ACM.

[68] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazieres. Making Information Flow Explicit in
HiStar. In Operating Systems Design and
Implementation (OSDI), Seattle, WA, 2006. USENIX.

[69] D. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall.
TaintEraser: Protecting Sensitive Data Leaks Using
Application-Level Taint Tracking. ACM Operating
Systems Review, 45(1), 2011.

[70] Zoho. Zoho docs. www.zoho.com/docs, 2016.

