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ABSTRACT

Bugs in the authorisation logic of web applications can expose the
data of one user to another. Such data disclosure vulnerabilities are
common—they can be caused by a single omitted access control
check in the application. We make the observation that, while the
implementation of the authorisation logic is complex and therefore
error-prone, most web applications only use simple access control
models, in which each piece of data is accessible by a user or a
group of users. This makes it possible to validate the correct op-
eration of the authorisation logic externally, based on the observed
data in HTTP traffic to and from an application.

We describe FlowWatcher, an HTTP proxy that mitigates data
disclosure vulnerabilities in unmodified web applications. Flow-
Watcher monitors HTTP traffic and shadows part of an applica-
tion’s access control state based on a rule-based specification of
the user-data-access (UDA) policy. The UDA policy states the in-
tended data ownership and how it changes based on observed HTTP
requests. FlowWatcher detects violations of the UDA policy by
tracking data items that are likely to be unique across HTTP re-
quests and responses of different users. We evaluate a prototype
implementation of FlowWatcher as a plug-in for the Nginx reverse
proxy and show that, with short UDA policies, it can mitigate CVE
bugs in six popular web applications.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Access Controls
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1. INTRODUCTION

Web application vulnerabilities are a major source of security
incidents on the Internet. Different types of vulnerabilities have
different mitigation strategies: e.g. data injection and validation
bugs [37] can be prevented by using templates [39] or dynamic
data tracking [28].
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Data disclosure vulnerabilities, which expose the data of one
user to another, however, are harder to protect against because they
are typically caused by semantic bugs in the authorisation logic of
web applications. In the 2013 OWASP ranking of web application
security risks [38], four out of the top ten risks are related to incor-
rectly implemented access control checks; the 2014 Website Se-
curity Statistics Report [53] states that information leakage, which
includes data disclosure, is the second most prevalent vulnerability
in web applications.

Web applications typically execute at a higher privilege level
than that of individual users, which means that they must imple-
ment their own checks for enforcing a given access control model.
Protecting against data disclosure vulnerabilities is thus difficult be-
cause a single omitted check may expose user data. While the core
components of web applications receive much scrutiny by devel-
opers, missing checks often exist in third-party plug-ins and exten-
sions. In the twelve months from August 2013, 16% of security
bugs reported in CVE [9] for Drupal [16] were related to unautho-
rised data disclosure in plug-ins.

Existing proposals to mitigate data leakage vulnerabilities have
drawbacks, and, in many cases, missing access control checks are
only discovered after the vulnerability has been exploited [34]: pro-
gram analysis techniques [50] can detect missing checks but re-
quire access to the source code, are language-specific and strug-
gle with complex applications; techniques based on input valida-
tion [25] focus on injection attacks, which may cause data disclo-
sure, but they cannot detect data disclosure due to semantic bugs
in the authorisation logic; and anomaly detection approaches [26]
can prevent unauthorised data disclosure if it constitutes a deviation
from regular application behaviour, but for many applications the
“normal” behaviour cannot be captured reliably.

Instead of establishing the correctness of all access control checks
that are dispersed throughout an application’s source code, our idea
is to adopt a “defence-in-depth” approach that validates the cor-
rect operation of the access control policy outside of the applica-
tion. This is enabled by the observation that many web applica-
tions, such as Drupal [16], WordPress [54] or DokuWiki [12], only
implement relatively simple access control models: e.g. they dis-
tinguish between users (or groups of users) that have access rights
to data objects such as web pages, posts or comments. It is thus
possible to introduce an external proxy that observes the HTTP re-
quest and response traffic of all users and, based on a specification
of the intended access control policy of the application, detects and
prevents unauthorised data disclosure.

A proxy-based approach for mitigating unauthorised data disclo-
sure has several benefits: it can be applied across a range of differ-
ent web applications, as long as the enforced policy can be tailored.



The proxy does not need to implement the full policy of the appli-
cation, but can only check a subset of it. Due to its smaller code
base and single enforcement point compared to checks scattered
throughout the application, the correct enforcement of the policy
by the proxy is easier to guarantee. Finally, a proxy should have no
performance impact and does not require modifications to the ap-
plication, making it applicable to closed-source web applications
and services.

The approach raises two challenges, however, which we over-
come in this paper: (i) how does the proxy express the access con-
trol policy of an application and keep it up-to-date as new users,
groups and data objects are added? For example, when a new post
is created by a user in WordPress, the proxy must associate this new
data object with the users and groups that are permitted to access it.
Policies should be written once by application developers who un-
derstand the intended access control model of their application; and
(i1) how does the proxy efficiently track user data across HTTP re-
quests and responses of different users in order to detect violations
of the access control policy? Data tracking should be effective at
identifying unauthorised data disclosure, be efficient to implement
and not require changes to web applications.

We describe FlowWatcher, a proxy that mitigates data disclo-
sure vulnerabilities in web applications by monitoring their HTTP
traffic and prohibiting incorrect data flows.

User-data-access policy. FlowWatcher relies on a specification
of the intended access control policy, which is written once by ap-
plication developers in a domain-specific rule-based language as a
user-data-access (UDA) policy. A UDA policy encodes the dy-
namic access control model of an application: it describes how
HTTP requests and responses change the access control state. UDA
policies are typically concise, making it easier to establish their cor-
rectness. Since FlowWatcher adds an additional layer of security,
UDA policies do not have to be complete but can capture a subset
of the application’s access control model.

Dynamic policy evolution. A UDA policy contains rules that link
HTTP requests and responses to (i) the definition of new users,
groups or data objects and to (ii) updates of the access control pol-
icy. Each rule can match an HTTP request according to its URL,
header fields or body content such as form fields. After matching,
a rule can update the current access control state, e.g. give a user
access to a data object, or add them to a group.

Data tracking. By intercepting the authentication method of the
application, FlowWatcher associates each HTTP request and re-
sponse with a user. As defined by the UDA policy, FlowWatcher
selects user data objects in HTTP requests, which may be stored
in form fields, and tracks ones that are likely to be unique due to
their length or semantics, such as social security numbers or postal
addresses. When a tracked object appears as part of another user’s
HTTP response, FlowWatcher decides if the data access is autho-
rised based on its shadow access control state.!

Evaluation. We show that UDA policies for real-world web ap-
plications are simple—the policies for Drupal [16], WordPress [54]
and DokuWiki [12] have 43, 23 and 26 lines, respectively; they are
effective—FlowWatcher can mitigate 9 data disclosure vulnerabil-
ities from the CVE database reported for 6 popular web applica-
tions; and FlowWatcher is efficient—its implementation as an Ng-
inx plug-in [35] does not have a measurable impact on application
throughput or latency.

Note that FlowWatcher relates access control decisions to exter-
nally observable dataflows of unique data—its goal is not to pre-
vent disclosure of low-entropy fields, e.g. a hometown that may be
common to multiple users

Next we motivate the problem and position our approach with re-
spect to other techniques. §3 describes our domain-specific policy
language, giving examples of how it expresses the access control
models of web applications. We present the design and implemen-
tation of FlowWatcher in §4 and the results of our experimental
evaluation in §5. The paper finishes with a comparison of Flow-
Watcher to related work (§6) and conclusions (§7).

2. PREVENTING DATA DISCLOSURE

Next we discuss data disclosure vulnerabilities in web applica-
tions (§2.1), categorise existing approaches to mitigate web vulner-
abilities (§2.2), and explain the idea behind our approach, empha-
sising the differences to previously proposed techniques (§2.3).

2.1 Data disclosure in web applications

It is difficult to implement an access control model correctly in a
web application. Due to the semantic mismatch between the access
control model of the underlying platform (e.g. UNIX access con-
trol lists) and that of the application, web applications must execute
with a superset of all privileges of their users. This requires them to
guard operations that access or update user data with access control
checks to ensure their compliance with a given security policy. Ac-
cess control checks are typically sprinkled throughout the source
code of an application.

For example, the convention for Drupal modules [16] is to guard
all database queries by tagging them with the string “node_access”,
which causes an access control check to occur. The following PHP
fragment issues a query that returns the most recently modified
pages to a user:

1 $nids = $query->fields(’n’, array(’nid’))
2 ->orderBy(’n.changed’, ’DESC’)
3 ->range (@, $number)

4 ->addTag(’ node_access’)

5 ->execute()->fetchCol();

6 $nodes = node_load_multiple($nids);

The tag in line 4 filters query results based on the permissions of the
user issuing the query. Omitting the tag by accident in a complex
query would reveal private pages of other users in the result set.

More generally, a vulnerability that leads to data disclosure may
be caused by several types of bugs:

e Missing check: An attacker may access another user’s data by
exploiting the fact that no check is carried out for a particular
data object. For example, Drupal suffered from a vulnerabil-
ity in 2012 in which the Organic Groups add-on module was
missing an access check that allowed non-members to view in-
formation about private groups (CVE-2012-2081).

e Avoided check: An attacker may access data without authorisa-
tion by triggering a code path that avoids an existing check, e.g.
by inducing an error condition. For example, the phpBB [43]
application contained a bug (CVE-2010-1627) that exposed in-
formation in private forums to non-members via RSS feeds,
even if the forums were not accessible directly to the users.

e [ncorrect check: An access control check may be implemented
incorrectly—a plug-in developer may misunderstand the access
control model of the application or make an incorrect assump-
tion about an API. An example of this is an execution-after-
redirect vulnerability in which a check is performed and unau-
thorised users are redirected to an error page, but the privileged
operation is executed regardless, returning sensitive information
in the HTTP response [13].


http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2081
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1627

Types of Implemen- Execution No source Unmodified No training  Supports
Approach b . . . . . .
ugs tation time code required runtime phase  policy evolution
Missing access check detection [32, 50, 51] access control tool offline v n/a n/a v
Input validation testing [2, 3, 25, 52, 4, 49] data sanitisation tool offline X|v n/a n/a v
Execution anomaly detection [8, 21, 30] semantic interpreter  online X X X X
Traffic anomaly detection [24, 26, 29, 42] semantic proxy online v v X X
Dynamic data tracking [10, 55] access control interpreter online v X v X
FlowWatcher data disclosure  proxy online v v v v

Table 1: Existing techniques to mitigate data disclosure vulnerabilities in web applications

Protecting against the above bugs is hard because the implemen-
tation of an access control model is highly application-specific.
While authentication checks are typically performed only in a sin-
gle core component of a web application, according to a small num-
ber of valid strategies (i.e. using session cookies or authentication
HTTP headers), authorisation logic affects a/l modules of an appli-
cation, including third-party plug-ins, and can be implemented in
many different ways.

2.2 Mitigating unauthorised disclosure

The research community has investigated how to protect against
data disclosure vulnerabilities in web applications and proposed a
range of techniques (see Table 1).

Missing access check detection. Offline techniques using static
program analysis were proposed to discover application code paths
with missing access control checks [32, 50, 51]. Such techniques
require access to the source code, are language-specific and make
assumptions about the architecture of the application, such as dis-
tinct application-specific roles usually involving different program
files [50]. They also suffer from the intrinsic problems of static
analysis: the analysis is conservative, potentially reporting false
positives, and is unable to support arbitrarily complex applications.

Input validation testing. Many disclosure vulnerabilities, such
as ones triggered by cross-site scripting (XSS) and SQL injection
attacks (SQLI), are caused by the incorrect validation or sanitisa-
tion of user input data. Offline testing techniques exist that, based
on generated user input, analyse or track the propagation of user
data through the application in order to discover code paths with-
out appropriate data sanitisation. Whitebox techniques [2, 4] ex-
ploit knowledge of the application source code for targeted testing;
blackbox techniques [3, 49] are limited to observing the external
behaviour of the application to detect bugs. Since these techniques
only focus on the incorrect usage of input data, they cannot dis-
cover a more general class of bugs related to mistakes in the access
control logic.

Anomaly detection. A different class of techniques treats the de-
tection of semantic bugs as an anomaly detection problem. In a
training phase, the correct behaviour of the application is observed.
Execution-based approaches [8, 21, 30] record behaviour in terms
of internal applications states, e.g. by instrumenting the language
interpreter; network-based approaches [24, 26, 29, 42] train the
model according to observed network traffic. During an attack, the
anomalous deviation from the correct behaviour is reported.

The effectiveness of such techniques depends on how compre-
hensively the training phase captures application behaviour—new
but correct runtime behaviour leads to false positives. This makes
it hard to have realistic training workloads for many applications.
Dynamic data tracking. Recent proposals for shadow authentica-
tion and authorisation [10, 55] detect access control bugs by track-
ing data in an application. This relies on modified language inter-

preters that can record the flow of user data in order to establish
that checks are carried out correctly. Nemesis [10] maintains au-
thentication data externally, and carries out shadow checks before
operations execute on resources such as files or database tables;
Resin [55] associates data with policy objects, which then execute
shadow access control checks.

While such approaches can accurately identify data disclosure,
dynamic data tracking requires non-standard language interpreters
and runtime systems and has a performance overhead, which is
challenging in production environments [48]. In addition, these
approaches do not support the specification of dynamic access con-
trol policies in a high-level language, precluding policy evolution
based on user actions.

2.3 Proxy-based disclosure detection

As shown in Table 1, the goal of FlowWatcher is to provide a
practical approach for the mitigation of data disclosure vulnerabili-
ties in today’s web applications. Compared to previous approaches,
we explore a different point in the design space: instead of modify-
ing the source code of applications or the runtime system executing
them, we want to provide a solution that facilitates adoption be-
cause it can be applied to any black-box application. In addition,
we want to introduce a negligible performance overhead, not rely
on a brittle training phase, and support the change of access control
policy over time.

We make the observation that, for many web applications, the
underlying access control model is relatively simple, and that the
majority of usage involves no more than this simple model. Web
applications such as WordPress [54], Drupal [16], Evernote [20],
Dokuwiki [12], phpMyAdmin [44] and phpBB [43] all model ac-
cess control decisions based on access control lists: they associate
principals, such as users or groups of users, with access permissions
to data objects, such as articles, posts and comments. This makes
it possible to validate the correctness of access control checks ex-
ternally, i.e. outside of the web application, as long as the current
state of the access control model is known.

Our hypothesis is that we can provide a web proxy to detect
and prevent unauthorised data disclosure. The proxy interprets ob-
served network traffic into and out of an application based on an un-
derstanding of the application’s intended access control policy. The
benefit of a proxy-based approach is that it can be applied trans-
parently to existing deployments without changes to applications
or their language interpreters, and can support encrypted traffic by
terminating the encrypted connection. In addition, an adequately-
provisioned proxy does not impact performance.

However, using an external web proxy to detect data disclosure
introduces two challenges: (i) the dynamic access control policy of
the application must be expressed in a way that permits the proxy
to maintain the current access control state for the application (§3);
and (ii) the proxy must frack the propagation of data from one user
to another in order to detect that data was disclosed (§4).



2.4 Threat model

Our approach covers threats from both authenticated and unau-
thenticated users of an application who want to read data belonging
to other users by exploiting data disclosure vulnerabilities, as de-
scribed in §2.1.

We assume that the backend data store used by the application is
secure and not directly accessible to attackers. Our approach also
does not cover SQL injection attacks, in which the attacker can ob-
fuscate the data leaked—as discussed above, specialised techniques
for mitigation already exist.

In addition, we only focus on threats to data confidentiality and
not data integrity. For example, we cannot prevent one user from
taking advantage of an application vulnerability in order to modify
the data belonging to another user, because it is possible for the
application to make updates in the backend data store without the
proxy being aware of this. The proxy can only mediate when data
is returned to the user.

3. USER-DATA-ACCESS POLICY

To address the challenge of maintaining a dynamic access con-
trol policy, we propose a new domain-specific language, the user-
data-access (UDA) policy language. 1t allows application develop-
ers to specify the intended access control model for their applica-
tions by relating users to the data that they are permitted to access.

There are two interesting requirements for the language. First,
as the web proxy can only observe the client-server HTTP commu-
nication, the language must express the access control policy using
only the information contained in HTTP requests and responses.
The entities in the access control model, i.e. the data objects to
be protected and the identities of users and groups, must be repre-
sented in terms of HTTP request URLSs, request and response head-
ers and form field data in requests. In a UDA policy, this is done
using definition rules.

Second, the language must support dynamic evolution of access
control policy by reacting to changes in the policy, such as updates
to access control lists or group memberships. The policy language
must therefore relate HTTP requests that administer the policy to
policy changes. In a UDA policy, this is done using update rules.

We first describe the entities that are manipulated by definition
and update rules. We use a UDA policy for the Drupal [16] content
management system (version 6), which is representative for that of
other applications, as a running example.

3.1 Entities

A UDA policy stipulates that certain data objects that belong to
a given user should only be visible to a subset of other users. There
are two entities in UDA policies: (a) data objects that contain data
items, which represent the user-generated data that should be pro-
tected; and (b) users and groups of users that possess access rights
for data objects.

Data objects. A data object o; is created by the application in
response to user input. When an application creates a new data
object, we assume that it is assigned a unique application-specific
identifier /D;. For example, an article in Drupal is a data object,
and it is assigned a unique URI.

A data object o; contains a set of data items, D(0;) ={dy,da,...},
for which access control must be enforced. Data items are entered
by users in form fields of HTTP requests and should be returned in
an HTTP response to a user only if allowed by the access control
policy. For example, when creating an article in Drupal, a user en-
ters values for the title and body form fields, which are the data
items for the article data object.

We impose the constraint on each data object o; that it must have
a high likelihood of referring to a unique set of data items D(o;).
As we explain in §4.3, this permits the web proxy to track the data
items of data objects across HTTP requests and responses, thus ob-
serving the flow of data between users.

For example, a data object D(0;) = {ssn} may contain a unique
form field that stores a social security number. Alternatively, the
combination of multiple data items may be unique: a data object
may contain two data items that store a postal address, D(0;) =
{street_address, postcode}. While each data item on its own is not
unique, their combination has a high probability of being unique.

Users and groups. A user u; is a principal that can make authen-
ticated requests for data objects, i.e. they have access to a set of
data objects, {01,07,...}. Typically a web application establishes
a session into which an authenticated user’s requests are collected.

Users may also be organised into groups, which simplifies the
assignment of permissions. Each group g; has a unique identifier.
For example, the Organic Groups module [18] in Drupal allows
users to create and manage groups, each identified through a URI.
Group members can create objects of any content type that Dru-
pal supports, such as articles or pages, and share them with other
members of the group.

3.2 Rules

To link to HTTP requests and responses, UDA policies are rule-
based, similar to firewall rules. Rules are triggered based on request
URLs and constraints on values. They define identifiers for groups,
users, and data objects, thus allowing the proxy to mirror the access
control lists maintained by the web application.

Rules in UDA policies can be of one of two types:

1. Definition/removal rules (+ or -) intercept the creation or dele-
tion of entities in the policy, i.e. data objects, users or groups.
They extract required information about new entities to add them
to the access control policy, such as identifiers. The proxy can
then maintain a mapping between entities in the UDA policy
and references to these entities in HTTP requests or responses.

2. Update rules (x or -> or -/>) are related to changes of the access
control policy, such as updating an existing data object, adding
a group to the access control list of a data object, or removing a
user from a group. They refer to previously-defined entities.

Syntactically all rules have a rule preamble and a rule body:

<type> <URL spec> [if <constraint>] /x preamble =/
{ /¥ rule body %/ }

The rule preamble includes a rule type, a URL specification and
an optional constraint: the fype specifies whether it is a defini-
tion/removal or update rule; the URL specification describes the
URLs for which the rule is triggered; the constraint indicates addi-
tional conditions that must hold for the rule to trigger, such as pred-
icates on the values of form or header fields; finally, the rule body
contains a set of assignments or mapping statements that update the
access control policy maintained by the proxy. As described below,
these statements refer to fields associated with the entities from the
rule preamble.

For a received HTTP request, the proxy matches the URL spec-
ification and other request parameters against each rule preamble
and, if satisfied, executes the statements in the rule body.

Listing 1 shows part of the rules of the UDA policy for the access
control model used by Drupal.? Line 9 is a a rule preamble:
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Listing 1: Excerpt from the UDA policy for Drupal

/% Definition rules s/
user+ "/x" if (res_hdr "Set-Cookie" re"SESS.*")
{ id := formfield "name", res_hdr "Location”
— re"/?qg=user/([0-9]1+)";
token := res_hdr "Set-Cookie"” re”SESS.x"; }

group+ "/?g=node/add/group”
{ id := res_hdr "Location"” re"/?g=node/([0-91+)"; }

data+ Article re"/?qg=node/add/article”
{ id := res_hdr "Location” re"/?q=node/([0-9]1+)";
item := formfield "title"”, formfield "body”; }
data+ PrivateGroupName "/?g=node/add/group” if
<~ (formfield "og_private"="1")
{ 1id := res_hdr "Location" re"/?g=node/([0-9]+)";
item := formfield "title"; }

/% Update rules s/
datax Article re"/?q=node/[0-9]+/edit"

{ id = url re”/([0-9]+)/edit”;
item[@] = formfield "title";
item[1] = formfield "body"; }

user —-> group re"/?q=og/users/[0-9]+/add_user"”
{ user.id = formfield "og_names";
group.id = url re"/([0-9]+)/add_user”; }

user -> data re"/?q=node/add/.*" if (formfield
— "status”="0")
{ user.id = authenticated_user;
data.id = res_hdr "Location"

<~ re"/?q=node/([0-91+)"; }
group -> data re"/?q=node/add/*" if (formfield

— "status"="1")
{ group.id = formfield "og_groups"”;
data.id = res_hdr "Location”
— re"/?g=node/([0-9]1+)"; }

group -> PrivateGroupName "/?qg=node/add/group” if
— (formfield "og_private”="1")
{ group.id = res_hdr "Location”
<— re"/?g9=node/([0-9]+)";
PrivateGroupName.id = res_hdr "Location”
— re"/?qg=node/([0-9]1+)"; }

data+ PrivateGroupName "/?g=node/add/group” if
— (formfield "og_private”="1")

where data+ PrivateGroupName is the rule type (explained below),
followed by a URL specification. The URL specification is ex-
pressed as a substring that is matched against the HTTP request
URL. If the string is prefixed by re, it is executed as a regular ex-
pression. The constraint states that the request must have a form
field “og_private” with the value “1”.

In general, constraints (and assignments in the rule body) can use
the keyword formfield to refer to form fields in the HTTP request
body, url to refer to the request URL, and req_hdr and res_hdr
to refer to header fields in the HTTP request or response, respec-
tively. In each case, the data can be filtered with the help of reg-
ular expressions. For example, the following constraint checks if
an HTTP response has a header field “Set-Cookie” that contains a
session cookie:

if (res_hdr "Set-Cookie" re"SESS.*")

2The policy assumes that the Organic Groups module [18] is en-
abled. It omits the removal and additional object definition rules—
the complete policy is in Appendix A.

3.3 Definition and removal rules

Definition and removal rules intercept the introduction of new
users, groups and objects in the application, and their removal. The
preamble of a definition rule starts with the name of the created en-
tity followed by a “+” character (e.g. group+); analogously, removal
rules include a “-” character. The rule body has a set of assignment

statements that record more information about the entity.

User definition. For each HTTP request and response, the proxy
must know the identity of the associated user. Therefore a user def-
inition rule describes the authentication process of the application:
it specifies how to intercept an authentication request and obtain a
token for the user after the authentication has succeeded.

Listing 1 (line 1) shows the user definition rule for Drupal, with
the following rule preamble:

user+ "/x" if (res_hdr "Set-Cookie" re"SESS.x*x")

The rule is prefixed with type user+ to indicate that a new user
is added. Since a login can be attempted from any Drupal page,
the URL specification contains a wildcard. The constraint stipu-
lates that, for successful authentication, the “Set-Cookie” header
in the HTTP response must contain an entry for a session cookie
beginning with “SESS.*”.

Its rule body then contains two assignment statements:

{ id := formfield "name", res_hdr "Location"
— re"/?g=user/([0-91+)";
token := res_hdr "Set-Cookie" re"SESS.*"; }

The first assignment associates the authenticated user with two
unique application-specific identifiers: the user name, which is ex-
tracted from the request form field “name”; and an internal identifier
that Drupal assigns to the user, obtained from the redirect location
in the response header.> The second assignment collects the au-
thentication token (in this case a session cookie), which is associ-
ated with the user for a given session. The proxy thus maintains
a mapping between the user.id and user.token variables, linking
subsequent HTTP requests to that user session.

Group definition. A group definition rule links the creation of a
new access control group to the policy maintained by the proxy.

As shown in Listing 1 (line 4), it starts with group+. Its rule
body records the identifier of the new group. In this example, it is
specified in the response header “Location” as a numeric value at
the end of the URI, captured by a regular expression:

{ id := res_hdr "Location”
— re"/?g=node/([0-91+)"; }

Data object definition. Object definition rules begin with data+
and, when triggered, add a new data object to the access control
policy. Each data object has a name for referral in update rules. For
example, the UDA policy for Drupal has an object definition rule
for articles called “Article” (Listing 1, line 6):

data+ Article re"”/?g=node/add/article”

In its rule body, an object creation rule must specify the identity
assigned to that data object; and the data items of that object that
need to be tracked by the proxy.

3We configure Drupal to redirect users upon login to the user ac-
count page. Other applications may require a similar approach to
allow FlowWatcher to capture user-specific identifiers.



For Drupal, the identity is assigned in the same way as for group
creation discussed earlier; the list of data items tracked by the proxy
are defined as the values of the“title” and “body” fields in the re-
quest form:

{ id := res_hdr "Location”
— re"/?qg=node/([0-9]1+)";
item := formfield "title"”, formfield "body"”; 3}

This specification of data items assumes that the combination of
the “title” and “body” form fields has a high likelihood of con-
taining unique data (when above a minimum length, see §4.3). If
the proxy observes the same data in another HTTP response, it can
thus assume that the user-generated data came from this original
request.

3.4 Update rules

Update rules describe updates to (i) the data items tracked for a
data object; (ii) the membership of groups by adding or removing
users; and (iii) the access control lists of data objects by adding or
removing access permissions of users or groups. Updates to data
objects use the unary operator “+”; updates to group membership
and access control lists use the binary operators “->" (for addition)
or “-/>" (for removal). For such rules, the rule body links the en-
tities in the access control policy to values derived from HTTP re-
quests and responses.

Data object updates. Updates to the data items of a data object are
tracked by a rule with type data*, as shown in Listing 1, line 12.
The rule body identifies the data object using an identifier. The
list of stored data items is updated with the values specified in the
named form fields. For example, the following replaces the first
element of the data item list “item[@]” with the data in the form
field “title™

{ id = url re"/([0-91+)/edit";
item[@] = formfield "title";
item[1] = formfield "body"; }

Group membership updates. Group memberships in the policy
are maintained dynamically using a rule that begins with user ->
group, as shown in Listing 1, line 16. Its rule body identifies the
user and group in question:

{ wuser.id = formfield "og_names";
group.id = url re"/([0-9]+)/add_user"; }

The user is identified by the form field “og_names”, and the group
is specified by a numeric identifier from the request URL.
Access control updates. To limit the set of users that can access
a data object, each object maintains an access control list. Access
control list updates are prefixed with

{user | group} -> object_name

where object_name refers to a previously-defined data object, spec-
ified in one of the object definition rules. If the object_name is data,
the rule applies to all data objects without more specific rules.

For example, the following rule preamble (Listing 1, line 22) is
triggered to add a group to the access control lists of all published
data objects. In Drupal, the form field “status” is set to “1” to
denote published content:

group —-> data re"/?g=node/add/*" if (formfield
— "status”"="1")

Drupal’s policy states that published content should be visible
to the groups specified in the value of the form field “og_groups”,
and a numeric identifier in the response header field “Location”
determines the article identifier:

{ group.id = formfield "og_groups”;
data.id = res_hdr "Location"
< re"”/?q=node/([0-9]+)"; }

Unpublished content, with the form field “status” set to “@”,
should not be visible to other users. In Listing 1, line 19, the UDA
policy therefore only gives access to the authenticated user, as pro-
vided by the built-in variable authenticated_user:

{ user.id = authenticated_user;
data.id = res_hdr "Location”
< re”/?g=node/([@-91+)"; }

Since these two rules refer to the data object as data, they apply
to any Drupal content type, which has the published/unpublished
status set during creation (i.e. article, basic page, book page, etc.).
This reduces the number of required update rules, making a sepa-
rate rule for each content type unnecessary.

If there are exceptions to default rules, a UDA policy can include
more specific rules. For example, for groups in Drupal, we only
want the subset of private groups to be subject to access control en-
forcement. The policy thus has a specific rule group -> PrivateGroup-
Name in line 25, which overrides the generic rule in line 22.

3.5 Discussion

The UDA policy language is designed to make it easy for ap-
plication developers to express the essence of their access control
model with a small set of rules. These rules then capture the be-
haviour of the access control checks that are potentially spread
throughout the code base of the application. Since UDA policies
are dynamic, i.e. they update access control lists based on changes
to the policy from within the application, the UDA policy for a
given application must only be written once and can then be reused
across application deployments with different users, groups, data
objects and access permissions. Finally, UDA policies can be en-
hanced over time, e.g. by adding new data objects supported by
an application to achieve a more comprehensive tracking of user-
generated content.

A drawback of UDA policies is that they rely on the specific for-
mat of URLs and HTTP requests and responses. This means that
UDA policies must be updated if an application changes URLs or
fields referred to in a policy. Since such changes are often accom-
panied by changes to the application functionality itself, we believe
that is reasonable. Note that rules do not get triggered or matched
if URLSs or field names have changed, which can only lead to false
negative detections until the policy is updated.

4. FLOWWATCHER DESIGN

FlowWatcher is designed as a reverse HTTP proxy that sits in
front of an unmodified web application and observes requests from
clients to the application and responses sent back to them (see
Figure 1). It consults with the UDA policy provided by the appli-
cation developer in order to update a shadow access control policy
(or shadow policy) that mimics the access control policy imple-
mented within the application. Since web application deployments
already use reverse proxies for caching, load-balancing and moni-
toring, and such a proxy can be configured to handle HTTPS traf-
fic, it is a natural choice for incorporating a “safety net” layer for
black-box authorisation.
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Figure 1: Overview of the FlowWatcher operation

At ahigh-level, FlowWatcher works as shown in Figure 1. When
a client A sends an HTTP POST request (step 1A), FlowWatcher
intercepts the request. Based on the UDA policy rules matched
by the request parameters, FlowWatcher updates the shadow pol-
icy (step 2; described in §4.2). It then forwards the request to the
application (step 3) and waits for the response. FlowWatcher in-
tercepts the response (step 4) and consults the shadow policy to
determine if the response contains data that should not be seen by
the user who made the request (step 5; described in §4.1). If not, the
unmodified response is returned to the client (step 6A); otherwise,
if another client B sends a request that exposes a data disclosure
vulnerability (step 1B), the response is modified to remove these
data items (step 6B).

Next we describe how FlowWatcher performs the above two op-
erations, enforcing the shadow policy and updating the shadow pol-
icy, in more detail.

4.1 Policy enforcement

To enforce the shadow policy as described by the UDA policy,
FlowWatcher represents the current access control state using four
data structures (see Figure 2):

e user_auth maps users to their authentication tokens;

o group_members maps users to their groups;

e object_acl maps data objects to users/groups with access; and
e data_items maps data objects to the associated data items.

In addition, static_data contains a whitelist of data that is part
of the application and may be returned in HTTP responses to any
user. To eliminate false positive detection of data disclosure, this
data should never be tracked as unique user-generated data. The
whitelist is initialised with all localised strings, scripts and other
static content returned by the web application in HTTP responses.

Before the data in an HTTP response is returned to a user, Flow-
Watcher determines if the content of the response complies with
the shadow policy through the following steps:

(a) Identify requesting user. FlowWatcher extracts the authenti-
cation token from the associated HTTP request, and looks up the
token in user_auth to identify the user u; that made the request.

(b) Match response content. FlowWatcher matches the tracked
data items from data_items against the response header and body.
To prevent XSS attacks, all HTML tags are first stripped from the
response body. It then records all data objects o; for which the data
items D(o0;) were matched.

(c) Check access control list. It looks up each matched data ob-
ject o; in the object_acl access control list to determine if user u; is
part of the list (or a member of a group in the list by considering
the group membership mapping, group_members). If multiple data
objects refer to the same set of data items, they are not unique and
thus the most permissive access control decision is made.

(d) Consult whitelist. For matched objects without authorised ac-
cess, FlowWatcher checks if the associated data items D(o;) are
found in static_data. In this case, the data also belongs to the ap-
plication and the corresponding data object o; is ignored.

(e) Redact response. For all remaining data objects o; that user u;
is not authorised to view, Flow\Watcher redacts the data items D(o;)
from the response, and alerts the system administrator.

4.2 Policy updates

FlowWatcher infers changes to the shadow policy from the ob-
served HTTP request-response sequences. The definition and up-
date rules in the UDA policy (described in §3.2) allow FlowWatcher
to maintain the shadow policy for enforcement. As users interact
with the application and new data objects and groups are created,
the shadow policy is updated correspondingly.

Figure 2 shows how FlowWatcher updates the shadow policy
when a user that owns an article gives access rights to a new group.
When an HTTP request-response sequence is intercepted (step 1),
FlowWatcher first verifies that the response indicates a successful
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request. It then checks the request URL and request and response
parameters and looks up the definition and update rules in the UDA
policy that are triggered (step 2). After that, it invokes the rule spec-
ification for each matched rule (step 3), updating one or more of its
corresponding data structures, i.e. group_members, object_acl and
data_items (step 4). For example, if the update rule user -> group in
Listing 1, line 16 is triggered, as shown in Figure 2, FlowWatcher
adds the user user.id as a member of the group group.id to the
group_members mapping.

4.3 Data tracking

To detect data disclosure, FlowWatcher relies on the uniqueness
of tracked data objects submitted in form fields. Tracking data ob-
jects that are not unique, i.e. that were submitted independently by
multiple users in HTTP requests, is not useful in identifying data
disclosure because the origin of the data is ambiguous. In addition,
FlowWatcher must not track user-generated data that is the same
as static application data served in HTTP responses because this
would lead to false positive detection of data disclosure.

FlowWatcher adopts three strategies to reduce the number of
tracked data objects while maintaining uniqueness: (i) when writ-
ing a UDA policy, developers should select data items that are
likely to be unique (and hence useful to track) due to their seman-
tics; (ii) FlowWatcher only reports a data flow between users if all
dataitems, D(o;) = {d,,d3, ...}, that are part of a data object D(01)
are observed in an HTTP response; and (iii) FlowWatcher only
tracks the value of a data item d; if it has more characters than a
global minimum uniqueness length parameter o, i.e. |d;| > o. As
we evaluate in §5.3, in practice, the above strategies manage to
track most data that is unique to each user, while still including a
large portion of all user-generated data entered in form fields.

To reduce the amount of data that is stored as part of data_items,
as an optimisation, FlowWatcher only stores a prefix of each data

item of at most 3 characters, together with the length of the com-
plete item and its hash. The prefix of the data item is used for
matching against response content (see §4.1, step b). When con-
tent is redacted (step e), the length indicates the amount of data to
be redacted and the hash is used to verify the match.

As aresult, the size of data_items grows linearly with the number
of unique data items added to the application, but it is independent
of the size of the items. In addition, the data removal rules ensure
that FlowWatcher discards removed data.

4.4 Threat analysis

Completeness of policies. The goal of FlowWatcher is to act as
an additional line of defence against unauthorised data disclosure.
As such, a UDA policy does not need to be complete, i.e. cover the
whole access control model of an application. If a UDA policy only
refers to a subset of all data objects, however, FlowWatcher may
exhibit false negative detections, i.e. it may miss the unauthorised
disclosure of data that is not included in the UDA policy. In addi-
tion, it may cause false positive detections if tracked user-generated
data is not unique. As we show in §5, however, tracked data items
are unique with high probability, and it is simple to write UDA
policies that cover most data objects of applications.

Correctness of policies. A benefit of UDA policies is that they are
application- and not deployment-specific and thus can be written by
application developers. A developer can ship their application with
a correct UDA policy, which does not require further changes when
the application is deployed. The declarative, rule-based nature of
the UDA policy language makes it easier to spot mistakes compared
to the implementation of the access control model as part of the
application itself.

In addition, FlowWatcher effects policy updates only when a
request is successful, so that the shadow policy does not diverge
from the application’s own access control policy. To this end, we
assume that all well-developed applications indicate unsuccessful
requests for policy changes through an appropriate error message
in the response, which can be checked by FlowWatcher.

Vulnerabilities in FlowWatcher. Since FlowWatcher acts as an
additional security layer, it cannot disclose data to unauthorised
users that is not already part of an HTTP response to be delivered to
auser. In the worst case, a bug in the FlowWatcher implementation
can lead to false negatives or positives—FlowWatcher’s small code
base makes bugs less likely.

Correctness of authentication logic. FlowWatcher assumes that
the authentication logic of the application is correct. We believe
that this is a reasonable assumption in practice: since the authenti-
cation logic is implemented typically in a single module of an appli-
cation (such as the User core module in Drupal) and, unlike access
control checks, is not part of all modules, bugs are less likely to
exist. Orthogonal to FlowWatcher, approaches that use dynamic
data tracking to track user credentials during authentication, e.g.
through a modified interpreter [10], can still be applied.

Denial-of-service attacks. A malicious user could attempt a denial-
of-service attack, in which they cause FlowWatcher to redact data
incorrectly in a response. If a malicious user creates a new data ob-
ject that overlaps with the data object of another user, FlowWatcher
notices the overlap and applies the most permissive policy, i.e. per-
mitting the original user to access their data without causing a false
positive (see §4.1, step c); if they create a new data object with pub-
lic data, which is e.g. part of the web application, FlowWatcher
only generates a false positive if the data is not part of the static
data whitelist (see §4.1, step d); finally, if they create a new ob-
ject that matches user-generated data of another user but that is not



Application Type Policy size (LoC)  Rules Bug Description
Drupal [16] Content 13 7 definition CVE-2012-2081 Exposes private group titles to non-members
P management 6 update CVE-2013-4596 Enabling extra module exposes unpublished articles
. . 4 definition CVE-2013-2043 Any user can download another user’s calendar
OwnCloud [40] File sharing 21 3 update CVE-2014-3834 Any user can download another user’s contacts
_ g 2 definition CVE-2010-0287 Directory traversal exposes private filenames
DokuWiki [12] - Wiki 26 Supdate  CVE-2009-1960 File inclusion bug leaks private page text
. Database 2 definition o - .
phpMyAdmin [44] administration 9 I update CVE-2014-4987 Unprivileged user can see MySQL user list
WordPress [54] Content 23 3 definition CVE-2010-0682 Trashed posts are exposed to other users
management 4 update
phpBB [43] Forum 18 4 definition CVE-2010-1627 RSS feeds exposed to unauthorised users
management 2 update
Dropbox [14] File sharing 14 2 definition [15] Inadvertent sharing of private links leaks data

1 update

Table 2: Data disclosure bugs in web applications mitigated by FlowWatcher

tracked by the UDA policy, FlowWatcher also reports a false pos-
itive. This can be prevented by having FlowWatcher by default
track all user-generated content and check for overlap.

In all cases, a malicious user must be authenticated to mount a
denial-of-service attack using FlowWatcher, because only authen-
ticated users can create new tracked data objects. In practice, a
system administrator will be alerted of any repeated detection of
data disclosure caused by the same user, and can block the user.

5. EVALUATION

We describe our experimental evaluation of a prototype imple-
mentation of a FlowWatcher web proxy (§5.1). Our results show
that FlowWatcher is (a) simple to use—we managed to write UDA
policies for a wide range of web applications, including Drupal,
OwnCloud, DokuWiki, phpMyAdmin and WordPress, with the lon-
gest policy having only 43 lines (§5.2); (b) effective in protecting
against real-world data disclosure vulnerabilities—we describe a
range of previously-reported CVE bugs in the above applications
that FlowWatcher mitigates (§5.2) and demonstrate that its data
tracking approach is effective in practice (§5.3); and (c) efficient—
our unoptimised implementation as part of the Nginx reverse proxy
does not impact the throughput of a Drupal deployment (§5.4).

5.1 Prototype implementation

We implemented FlowWatcher as an add-on module for the Ng-
inx [35] HTTP reverse proxy. We chose Nginx for its high perfor-
mance [46] and ease of extension through custom modules. Flow-
Watcher is designed as an Nginx filter that can read HTTP requests
and responses and manipulate responses returned to users.

The FlowWatcher implementation consists of 1834 lines of C
code, which makes it easy to conduct a security audit. It uses the
Redis in-memory store [45] for storing and looking up the shadow
access control policy. To filter HTTP responses, it uses streaming
regular expression matching over the response bodies.

To avoid re-generating the regular expressions for each request,
the implementation caches the last generated regular expression
string for each user. This is done in the Redis store because the Ng-
inx module API does not permit maintaining state across requests.
A regular expression string is reused until it is invalidated by the
creation of a new data object that should not be disclosed to a given
user. A limitation of our prototype is that it currently does not han-
dle application transformations of user-generated data items such
as HTML entity sanitisation.

5.2 Can FlowWatcher mitigate real-world data
disclosure bugs?

To determine if FlowWatcher can mitigate real-world data dis-
closure, we write UDA policies for 7 popular web applications,
specifying their core access control models. All rules were writ-
ten by us in a day. We then evaluate the policies with bugs from the
CVE database [9], which resulted in data disclosure for these appli-
cations, observing if FlowWatcher can mitigate the bugs. Table 2
lists the applications, details of the UDA policies and the bugs.

Drupal [16] is a content management framework written in PHP.
The standard release of Drupal, known as Drupal core, contains
basic features, but there is a growing set of community-contributed
add-on modules. In recent years, many security vulnerabilities have
been discovered in these add-ons [19]. Natively, Drupal only sup-
ports access control permissions for performing operations such as
reading, writing and editing different content types (i.e. articles,
pages, etc.) based on roles such as “administrator” or “authenti-
cated user”. More fine-grained access control between users can be
realised using third-party modules.

For the purpose of our evaluation, we focus on access bypass vul-
nerabilities in two contributed modules. First, the Organic Groups
module [18] supports the creation of groups that can restrict ac-
cess to content. Due to a missing access check (CVE-2012-2081),
users were able to access titles of private groups that should only
be accessible to group members. Second, the Node Access Keys
module [17] grants users temporary access permissions to selected
content types based on custom user roles: e.g. registered users for
a course can be mailed access keys allowing them to view certain
types of content such as course pages. When this module was en-
abled, unpublished nodes (of any content type without an access
key) became visible to all users (CVE-2013-4596).

We discussed the UDA policy rules for Drupal in §3. The com-
plete policy, shown in Appendix A, consists of 43 lines with 8 def-
inition and 7 removal rules, and covers all content types of a de-
fault Drupal installation. It specifies that data from different con-
tent types must be tracked by the shadow access control policy, and
access must be restricted based on group membership, as defined
when content is created or updated.

Further content types from third-party modules require extra rules
to expose them to FlowWatcher. For example, the policy includes
two rules (shown in Listing 1, lines 9 and 25), to enable Flow-
Watcher to control access to a new content type, Private Groups,
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provided by the Organic Groups module. By tracking unpublished
content and Private Group data, FlowWatcher can prevent the data
disclosure caused by the two above bugs.

OwnCloud [40] is a cloud hosting software that allows users to
store files, contacts and calendars, and share these with other users
or groups. In versions before 4.5.11 and 5.0.6, the file apps/cal-
endar/ajax/events.php lacked a correct ownership check for calen-
dars, enabling users to download any calendar by manually setting
the calendar_id parameter in the request URL (CVE-2013-2043).
In versions before 6.0.3, a missing access check revealed contacts
from the address book of one user to others (CVE-2014-3834).

The UDA policy for OwnCloud encodes the group membership
policy and the data sharing behaviour with respect to calendar and
contact information with 7 rules in 21 lines. Since the rules stip-
ulate that calendars and contacts must only be visible to users and
groups that they are shared with, Flow\Watcher prevents the data
leakage caused by both reported bugs.

DokuWiki [12] is a Wiki application that does not require a database.
It has built-in support for user groups, and an access control model
that restricts access to Wiki entries (including page titles) for users
and groups. In CVE-2010-0287, a directory traversal vulnerabil-
ity was introduced due to a missing check, allowing any user to
view the titles of pages by navigating to a specially-crafted URL.
DokuWiki stores user data as files, and if files have insufficient
access control, data from one user can flow to another. A file inclu-
sion bug (CVE-2009-1960) allowed unauthorised users to access
text of any page. DokuWiki’s policy has 7 rules (26 lines), and
FlowWatcher prevents the disclosure from both vulnerabilities.

phpMyAdmin [44] is a PHP tool for the administration of databases
over the web. It provides a user interface for managing databases,
users and permissions and supports user groups. User information
is considered private, and users should not be able to see informa-
tion about other users, unless they are part of the same group. A
missing access control check in the application permitted users to
see members of all groups (CVE-2014-4987).

We create a UDA policy with 3 rules (9 lines) that models the
group membership, while tracking user names and other details,
such as passwords. Using this policy, FlowWatcher can identify
and prevent unauthorised leaks of user information between users,
including the above bug. Note that this does not constitute a com-
plete access control policy for phpMyAdmin—extra rules would be
required to control access to other data objects such as databases.

WordPress [54] is a content management system for weblogs and
websites. WordPress allows users to create posts and determine
who to share them with (i.e. public, private or password-protected).
Private posts should only be visible to the creator of the post. Posts
that are moved to the trash folder should not be visible to anyone. A
bug in WordPress versions prior to 2.9.2 (CVE-2010-0682) allowed
any user to view a trashed post by changing the value of the post
identifier (p=) in the request URL.

The UDA policy for WordPress consists of 8 rules written in
23 lines—we give the complete policy in Appendix A. It expresses
access semantics to posts in the trash through a special Null group
without users. When a post is moved to the trash, FlowWatcher
assigns the data object to the Null group, which specifies that no
other users should be able to view the post. This prevents the data
disclosure described in CVE-2010-0682. When a trashed post is
restored, it is removed from the Null group.

Another feature of WordPress are password-protected posts, which

should only be accessible to users with the correct password. In
CVE-2014-5337, a missing access check permitted a user to view
password-protected posts by navigating to export/content.php,

without entering the password. FlowWatcher is unable to defend
against this bug because the UDA policy cannot express the dy-
namic change to the access control list after the password was shared
out-of-band (i.e. without a request by a user that can be observed
by FlowWatcher).

phpBB [43] is a forum application. Forum access can be restricted
to specific groups of users. Each forum contains topics, and topics
can contain replies. Versions of phpBB prior to 3.0.7-PL1 had a
vulnerability caused by an improper permissions check for feeds,
enabling any user to access data from a private forum by requesting
its RSS feed (CVE-2010-1627).

We model the policy of phpBB with 6 rules (18 lines). A Forum-
Data data object has three data items, namely the forum name, top-
ics created under the forum, and replies on a topic. Since the cre-
ation of each data item entails a visit to a different URL, the UDA
policy has multiple data definition rules for ForumData based on the
request URL. It also has two rules to update group membership
and group access to ForumData. By tracking forum data and group
access to forums, FlowWatcher can prevent the data leak through
RSS feeds.

Dropbox [14] is a popular cloud-based file storage application that
we use to illustrate a key advantage of FlowWatcher—its ability
to prevent data disclosure for large complex, closed-source appli-
cations. In this scenario, we assume that FlowWatcher is deployed
by Dropbox as part of its back-end service.

Dropbox has several mechanisms for sharing data, one of which
is to create private links with which any user can access the asso-
ciated content. Dropbox allows to restrict access to private links
by setting an expiry date. However, inadvertent sharing of a pri-
vate link can lead to unwanted data disclosure—in particular, a bug
was reported whereby any Dropbox document shared using a pri-
vate link could leak the link through the HTTP referer header if the
document itself contained a link to a third-party website [15].

By examining Dropbox’s web interface, we create a UDA pol-
icy that enforces the expiry of private links. The policy contains
3 rules (14 lines): user and data definition rules for adding a new
user and a file, and a group update rule for tracking the creation of
a private link to a file. The group update rule uses a special any
group in combination with an expiry statement in the rule body to
allow public access to the linked content until the link expiry time
is reached.

5.3 How effective is FlowWatcher’s tracking?

Next we explore our hypothesis that it is possible to track most
of a typical application’s user data, with low false positive and neg-
ative rates, by only considering data items with a length above the
minimum uniqueness length o (see §4.3). For this, we employ a
complete HTTP request and response trace from a deployment of
GitLab [23], a web application for project and repository manage-
ment, collected at our university over a period of two months.

Table 3 summarises the properties of the trace. Most of the
HTTP POST request URLs are for group wikis and issue track-
ing, with the remainder involving user profiles and admin pages.
The number of form fields in the trace corresponds to the number
of potential data objects (assuming a single data item per object);
the number of form field values corresponds to the number of po-
tentially trackable data object instances.

We associate each form field in an HTTP POST request with a
user session, and consider the percentage of useful-to-track form
field values, i.e. ones that are only observed in the requests of a
single user (or group). A high percentage of useful-to-track values
means that tracking them through a UDA policy should lead to few
false negatives, i.e. cases in which FlowWatcher misses unautho-
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Characteristic Value

HTTP requests 85,309
HTTP POST requests 461
Distinct POST URLs 59
Users 48
Groups 10
Form fields 363

Total form field values submitted 1271

Table 3: Summary of HTTP trace dataset for GitLab
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Figure 3: Impact of minimum uniqueness length o on data
tracking for form field values submitted to GitLab

rised data disclosure because it did not track the involved user data.
We ignore form fields that are part of a static_data whitelist for
GitLab and cannot be modified by the user.

Figure 3 shows the percentage of useful-to-track form field val-
ues as we increase the minimum uniqueness length o. It also shows
the percentage of form field values with lengths of more than oc. We
can see that, as o increases, the form field values become useful-to-
track quickly: over 99% of values with lengths greater than 4 char-
acters are specific to a given user or group; all form field values
with more than 7 characters are useful-to-track. With o¢ = 4, over
90% of all form field values remain trackable by FlowWatcher;
even with oo = 7, over 85% of form field values are included.

This analysis shows that, even when a UDA policy includes all
form fields used by GitLab as tracked data items, Flow\Watcher can
achieve a substantial coverage of form field values for a short min-
imum uniqueness length «. In addition, since tracked data items
quickly become unique, FlowWatcher does not exhibit false pos-
itives when it does not track all user-generated data due to an in-
complete UDA policy.

The data stored by FlowWatcher is enumerated at the beginning
of §4.1. Assuming that the number of groups remains largely un-
changed over the application’s lifetime, the user_auth map and the
group_member map grow linearly with the number of users of the
application. As described at the end of §4.3, the object_acl and
data_items maps, which are conflated into a single data structure
for the implementation, grow linearly with the number of unique
data items added to the application, but are independent of the size
of the data items. For our two-month deployment of GitLab, Flow-
Watcher requires less than 100 KB of memory.

5.4 What is the performance impact?

We explore the performance impact that FlowWatcher has on
request throughput and response latency in a realistic web appli-
cation deployment. We use Drupal [16] (version 6.31) with an
Apache HTTP server and a MySQL database, which are both de-
ployed on a server with an Intel Xeon E5-2690 CPU with 32 GB of
RAM. FlowWatcher runs with Nginx as a reverse proxy, forward-
ing requests and responses from and to clients. The Nginx proxy
executes on a machine with an Intel Xeon E5-4620 with 64 GB of
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Figure 4: Request throughput with and without FlowWatcher
under an increasing client workload
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Figure 5: Latency with and without FlowWatcher under an
increasing client workload

RAM. FlowWatcher uses the Drupal UDA policy from Listing 1,
tracking article titles and bodies for access control enforcement.

We preload the Drupal installation with 6000 users and 60 user
groups, with each user assigned to one group. For a realistic work-
load, we use Apache JMeter [1] to generate HTTP requests based
on the following workflow: each client (1) visits the main page and
goes to the log-in page; (2) logs in and is redirected to the main
page with a list of recent posts; (3) accesses the “Add post” page
and creates a new post; (4) visits the new post; and (5) logs out.

We evaluate the performance of FlowWatcher with 1 to 60 con-
current clients. Each time a client performs the above workflow, it
logs in as a different user. A fraction of the posts (5%) are assigned
to the access-restricted group of the user making that request. This
is below the read/write ratio of the GitLab trace described in §5.3,
reflecting the nature of real-world deployments. Access-restricting
some of the posts ensures that FlowWatcher must redact the re-
sponse to a subset of all read requests. As for a production en-
vironment, we enable both PHP intermediate code caching and
Drupal’s page cache for improved performance. We execute five
runs for two experiments—one with FlowWatcher and one with-
out. Throughout the experiments, the CPU utilisation on the proxy
machine never exceeds 10%.

Figure 4 shows the measured throughput with and without Flow-
Watcher. As can be seen, FlowWatcher has no discernible impact
on throughput. In both deployments, the throughput flattens out
after 20 concurrent clients when the web server becomes saturated.
As all responses contain dynamic content, the reported throughput
represents a worst case scenario for Drupal because it cannot serve
cached content. Figure 5 shows the average response latency with
an increasing client workload. Even with 60 clients, there is no
statistically significant latency increase due to FlowWatcher. The
high latency variance for both deployments is due to the different
costs of requests in the executed workflow.

6. RELATED WORK



In addition to the related approaches discussed in §2.2, we dis-
cuss further related work, contrasting with FlowWatcher in terms
of scope and effect.

Data flow tracking enforces access control throughout an appli-
cation by associating access control state with data flows [10, 55].
CloudFence [41] uses binary rewriting and byte-level taint tracking
to give data flow guarantees. SilverLine [33] provides even stronger
containment using Information Flow Control to guarantee isolation
of both data and control flows. It propagates taint information into
the application database, but cannot effectively support valid infor-
mation flows between users. However, the significant performance
overheads and tight language binding limit the broad adoption of
data flow tracking approaches. In contrast, FlowWatcher protects
unmodified applications with low overhead but, as a black-box ap-
proach, it does not detect data disclosure when the application mod-
ifies the data.

Web application firewalls (WAFs) monitor and potentially block
data passed to/from web applications. ModSecurity [31] acts as a
reverse proxy and has rules to detect certain classes of data, such
as credit card number patterns. However, this approach is prone to
false positives, and, unlike FlowWatcher, cannot detect leakage of
specific user data. WAFs also support other types of data disclosure
protection [27], such as traffic anomaly detection, and HTTP re-
quest sanitising techniques to prevent injection attacks. We regard
this as complementary to FlowWatcher, which could be integrated
with existing proxy-based WAFs.

Secure web frameworks aim to offer comprehensive enforcement
of access control policies. They are typically tied to a particular de-
velopment framework, such as the model-policy-view-controller of
the Hails architecture [22]. The Passe framework [5] executes iso-
lated server processes in sandboxes, ensuring that each web page
view runs with the minimum required privileges. Here again, a
learning phase is needed to identify the associations between views,
database queries, and data flow. Similarly, GuardRails [6] modifies
an annotated Ruby-on-Rails web application, to add secondary ac-
cess control checks on sensitive data. Unlike FlowWatcher, all of
these approaches require specifically written or annotated applica-
tion code within a given framework.

Policy languages. A large number of policy languages exist for dif-
ferent access control models [36, 11]. Existing policy languages fo-
cus on expressiveness, e.g. through role-based access control mod-
els [47], or on the needs of specific domains, such as data pri-
vacy. For example, to restrict data dissemination in online social
networks, the UURAC model [7] allows individual users, and the
social network itself, to specify which users should be allowed to
access which data. In contrast, the goal of our UDA policy lan-
guage is to express a dynamic access control model with access
control lists in terms of observed HTTP requests and responses.

7. CONCLUSIONS

As web applications support richer functionality, it becomes chal-
lenging for developers to ensure that all application components
perform access control checks correctly. The rise of data disclosure
vulnerabilities in web applications shows that existing techniques
to detect and mitigate bugs in the authorisation logic of applications
lack widespread adoption.

We described FlowWatcher, a practical approach to mitigate
unauthorised data disclosure in web applications due to bugs in
the authorization logic. FlowWatcher operates externally to the
application: developers specify the intended dynamic access con-
trol policy in a rule-based policy language, as a UDA policy, which
enables the FlowWatcher web proxy to detect unauthorised data

disclosure by tracking the propagation of data between HTTP re-
quests and responses across users. As our experimental evaluation
demonstrates, UDA policies are simple to write, can protect against
a wide range of data disclosure bugs and can be enforced with low
overhead.
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21 group -/> data re"/wp-admin/post\.php.*action=untrash” if
— (res_status="302")

22 { group.id = Null;

23 data.id = res_hdr "Location” re"/?post=([0-9]+)"; }
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