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Abstract—Intelligent workload consolidation in storage sys-
tems leads to better Return On Investment (ROI), in terms of
more efficient use of data center resources, better Quality of
Service (QoS), and lower power consumption. This is particularly
significant yet challenging in a cloud environment, in which a
large set of different workloads multiplex on a shared, heteroge-
neous infrastructure. However, the increasing availability of fine-
grained workload logging facilities allows better insights to be
gained from workload profiles. As a consequence, consolidation
can be done more deeply, according to a detailed understanding
of how well given workloads mix.

We describe 10 Tetris, which takes a first look at fine-grained
consolidation in large-scale storage systems by leveraging tempo-
ral patterns found in real-world I/O traces gathered from enter-
prise storage environments. The core functionality of IO Tetris
consists of two stages. A grouping stage performs hierarchical
grouping of storage workloads to find complementary groupings
that consolidate well together over time and conflicting ones that
do not. After that, a migration stage examines the discovered
groupings to determine how to maximize resource utilization
efficiency while minimizing migration costs. Experiments based
on customer I/O traces from a high-end enterprise class IBM
storage controller show that a non-trivial number of 10 Tetris
groupings exist in real-world storage workloads, and that these
groupings can be leveraged to achieve better storage consolidation
in a cloud setting.

I. INTRODUCTION

Cloud computing [1] is quickly gaining momentum, and
many public cloud providers have sprung up to take advantage
of this growing market. Return On Investment (ROI) and
cost reduction are key incentives for adopting a utility-based
cloud model. Specifically, cloud storage is an approach for
networked data storage that allows consumers to offload their
storage infrastructure onto the cloud.

Storage consolidation, also known as storage convergence,
refers to the notion of centralizing and sharing back-end
storage resources among front-end application servers (and
their applications). Efficient solutions for storage consolidation
are essential to boosting ROI because they not only provide
hosted applications with better Quality of Service (QoS)—
thus avoiding service level agreement (SLA) penalties—but
also free up unused resources for new applications. This en-
ables more customers to be accommodated without additional
infrastructure.

Therefore, efficient consolidation becomes a key differen-
tiator for cloud providers over their competitors. In a storage

cloud provider environment, per transaction cost is around four
times higher than the storage charge. Cost per transaction [2]
involves the cost incurred due to read and write operations on
the data whereas storage cost is the cost per gigabyte. Many
storage cloud providers struggle to fend off competition in
terms of cost per gigabyte, which cannot be reduced without
relying on extremely challenging breakthroughs in disk drive
technology. Consequently, smart storage consolidation can
give them a definite edge in terms of cost per transaction.

Existing consolidation solutions are available in each indi-
vidual layer of the IT stack, such as server migration tools [3],
[4], virtual machines monitors that support migration [5],
and storage provisioning technologies built into NAS and
SAN offerings. Most of these schemes periodically migrate
workloads based on the latest maximum or average workload
intensity. For example, volumes in cloud storage are often
placed first by administrators according to a priori workload
requirements and estimates on data capacity and needs in
terms of Input/Output Operations Per Second (IOPS) [6]. As
workloads change due to dynamic behavior that cannot be
foreseen, consolidation solutions re-sort the workloads with
the goal of optimizing subsequent placements based on the
new average or maximum I[OPS [7].

The dynamic and bursty nature of cloud workloads often
renders these aforementioned consolidation approaches overly
conservative or unsuitable. For example, decisions based on
peak loads would not combine workloads that have high peaks.
However, in the cases where one’s peaks always coincide
with another workload’s troughs, they should be combined.
Figure 1 illustrates such a complementary pairing of workloads
as found in customer data. In contrast, reccommendations based
on average load would risk combining two workloads with
reoccurring, coincident high peaks, when they should be sepa-
rated across resources. Figure 2 illustrates a conflicting storage
workload pairing, also obtained from real-world customer data.

To overcome these weaknesses of existing consolidation
approaches, we need a technique that is aware of the temporal
shape of workloads, and only fits together shapes that jointly
leverage the resource capacity over time. An analogy here is
the computer game 7etris, in which the goal is to use various
2-D shapes to fill a rectangular container completely. For
storage consolidation, the height of the Tetris container relates
to workload intensity and the width of the container is the time
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Fig. 1. A complementary Tetris volume pair in enterprise storage /O data.
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Fig. 2. A conflicting Tetris volume pair in enterprise storage I/O data.

period of analysis. We therefore refer to these complementary
combinations of workloads as Tetris pairings (or patterns).

An observation is that many of the complementary workload
patterns exhibited are not accidental, but rather caused by
well-founded application- or infrastructure-level relationships
within the cloud system. These include correlated batch jobs,
pipelined jobs, application-level backups, and data mirroring
operations. These inter-relationships can result in Tetris work-
load patterns across the cloud stack, which includes front-end
servers, application servers and storage.

In this paper, we describe IO Tetris, a solution that leverages
complementary Tetris patterns in storage workloads for more
efficient consolidation of data volumes. 10 Tetris uses a
periodic optimizer that proposes data placement plans for con-
solidating data volumes onto cloud storage resources. It takes
into account fine-grained I/O performance history, migration
costs in terms of time and bandwidth and rules-of-thumb in the
environment. While focusing on storage in this paper, many
aspects of our approach are generally applicable to a variety
of cloud resources.

A. Challenges and Contributions

There have been several recent research efforts that attempt
to achieve greater consolidation efficiency, mostly for front-
end servers, using temporal patterns [4], [8], but we are
unaware of work that explicitly focuses on the storage layer.

In addition, previous work attempts to efficiently detect inter-
esting patterns, with less emphasis on developing an actual
consolidation framework that makes changes based on these
detected patterns.

We argue that more advanced optimization of the frame-
work may prove especially important for storage workload
consolidation, as more factors come into play than in the
server workload space. Apart from the obvious requirements
to detect Tetris patterns and leverage them in consolidation,
several challenges arise, some of which are unique to storage.
These are outlined in the following paragraphs.

Awareness of storage-specific bottlenecks. It is non-trivial to
accurately find Tetris patterns in a large set of workloads that
impact storage resource utilization and corresponding perfor-
mance. A key requirement is awareness of the spatial aspect
of the workload characteristics, in addition to the temporal
aspect. For example, IOPS patterns do not necessarily translate
into load patterns on disk arrays (the typical performance
bottleneck that would benefit most from consolidation), as
some or all of the IOPS may be handled by caches and
never reach disks. Corresponding measures need to address
this mismatch where present.

Trade-offs between benefit, migration costs and other con-
straints. It is tempting to always consolidate complementary
Tetris workloads and separate conflicting Tetris workloads,
especially when strong candidates are present. However, doing
so may have implications on other important migration factors
that cancel out the benefits. For example, aggressive consoli-
dation may result in large time and bandwidth costs that are
more significant when performing server consolidation. This
is especially the case when the storage volumes to be con-
solidated contain large amounts of data. Some environments
have “rule of thumb” requirements regarding the average or
maximum load on a physical device that must not be violated,
even when highly desirable Tetris patterns are present. Trade-
offs between IO Tetris consolidation gains and costs regarding
other migration factors must be considered and/or exposed to
system administrators in a meaningful manner.

Scalability. Scalability is an important requirement of all
cloud-related solutions. Non-trivial challenges exist in both
performing the analysis to discover Tetris workloads and
conducting migration to leverage the identified patterns. The
complex analysis must scale with regard to both the number
of workloads and the number of measurements per workload.
Larger clusters of Tetris workloads should be identified where
present, so that a single optimal migration plan may be
generated by taking a holistic view at the level of the entire
cluster, as opposed to many incremental, suboptimal plans for
each pair within that cluster. The migration heuristic itself
should also scale with the number of workloads.

In IO Tetris, we aim to address these challenges by opti-
mizing Tetris pattern detection and providing a consolidation
algorithm that is aware of the close interplay between storage
resources, costs and their associated workloads. We make the
following main contributions:



o a consolidation-oriented analysis of fine-grained patterns
in real-world enterprise storage /0 statistics. We confirm
not only the existence of conflicting and complementary
temporal patterns but also the sensitivity to specific
storage resources, underlying the causes of these patterns;

e a hierarchical storage workload clustering method cus-
tomized for Tetris patterns. We define a lightweight
similarity metric and sensible filtering to enhance the
scalability of our method;

e a scalable, novel migration algorithm that is aware of
identified clusters of Tetris workloads and their benefits.
The algorithm leverages the clusters to generate actions
plans more effectively for large environments. It also
makes intelligent trade-offs between the benefits and
other storage-specific factors, such as migration costs and
device data capacities.

The rest of the paper is organized as follows. Section II sets
the context of storage consolidation and analyzes enterprise
workload behaviors. Our solution inspired by this analysis,
10 Tetris, is outlined in Section III. Sections IV and V elabo-
rate on the two key components of IO Tetris—clustering and
migration—and present results based on a selected customer
data set. Section VI reviews related work, while Section VII
concludes and discusses future work.

II. ENTERPRISE STORAGE CONSOLIDATION AND TETRIS
WORKLOAD PATTERNS

An enterprise class, high-end storage subsystem typically
has a highly scalable and flexible architecture and provides
more than five-nines of availability. Each storage subsystem
contains multiple virtualized components such as extents,
pools, and volumes on a set of physical disks. A typical storage
volume is created from a set of extents in an extent pool. An
extent pool is a logical construct for managing sets of extents.
Extents themselves are typically a gigabyte in size, and have
a Fixed Block (FB) format.

A disk array is the typical logical workload container with
capacity, has a RAID level and gets assigned to an extent
pool. Based on the overall storage system hierarchy and
configuration, a disk array has a specific capacity and allows
for a given rate of IOPS. Storage consolidation concerns work-
load multiplexing at all levels of this hierarchical virtualized
component stack. It has several objectives including:

o Maximal resource utilization. Resource components

should be as highly utilized as possible over time.

o Minimal performance penalties. No component at any
level in this hierarchical virtualized component stack
should be overloaded at any point in time to avoid per-
formance degradation and consequently SLA penalties.

In this paper, we focus our discussions on workload mul-
tiplexing through the placement of volumes on disk arrays,
by examining fine-grained resource usage of workloads based
on statistics collected from live customer deployments of high-
end storage subsystems. The goal is to see if both opportunities
and hazards beyond traditional approaches exist in real-world
workloads with respect to the consolidation objectives above.

Our data collection process involved gathering overall con-
figuration and performance metrics from multiple data centers
of a large enterprise. Configuration regarding the storage
infrastructure and its associated servers and network infras-
tructure was discovered and correlated. These data centers
contained a total of 32 storage subsystems. We recorded
the average IOPS per minute for each volume for a period
of 15 days. The IOPS statistics were further broken down
into sub-dimensions including reads vs. writes, cache hits vs.
misses, and small vs. large block sizes. We focus our analysis
on the data set from a customer application, which consisted
of 246 volumes.

A. Tetris patterns

Simple visualization reveals that most workloads in the data
set are highly bursty over time, exhibiting occasional and
intense peaks and periods of idleness or extremely low activity.
Thus a desired multiplexing behavior on resource R over time
is achieved between two workloads x and y if x and y’s peaks
do not overlap. This is because the combination of x and y
would reduce the overall resource idle time without worsening
any peak load that R has to handle. By way of analogy to the
Tetris game, these workloads have complementary temporal
shapes that fill each others’ “gaps”. Conversely, two conflicting
workloads whose peaks overlap cause undesired multiplexing
behavior—they increase the peak load that the resource has to
handle without reducing idle time.

We experimented with several metrics that could classify
conflicting and complementary workload pairings, including
Pearson correlation!, mutual information? and a metric that
compares the variance of the combined load of z and y
with their respective loads. The pairing metrics were com-
pared based on their respective precision’ in identifying the
top 20 complementary/conflicting pairings, which were hand-
picked by domain experts. We found that Pearson correlation
had considerably better precision (close to 100%) and is com-
putationally less expensive than the other metrics (complexity
O(n) where n is the number of IOPS data points for a volume).

We applied the Pearson correlation formula to 20,160 IOPS
measurements (per minute measurements over 15 days) of
two volumes z and y. A low score (towards —1) indicates
that = and y are highly complementary, whereas a high score
(towards 1) indicates that = and y are highly conflicting. Based
on domain experts’ input aided by side-by-side visualization
such as the ones shown in Figures 1 and 2, we set a threshold
of —0.12 to consider two volumes to be complementary, and
a score of 0.5 to indicate borderline conflict.

Any volumes exhibiting complementary and/or conflicting
patterns (with one or more other partnering volumes) are
potential candidates for Tetris-like consolidation optimization.
A complementary pairing that does not co-locate on the same

Thttp://en.wikipedia.org/wiki/Pearson_product-moment_correlation_
coefficient

Zhttp://en.wikipedia.org/wiki/Mutual_information

3http://en.wikipedia.org/wiki/Precision_and_recall



TABLE I
POTENTIAL FOR OPTIMIZATION IN SAMPLE CUSTOMER DATA.

[ [ # of volumes |

1 complementary pairing 8
Multiple complementary pairings 27
1 conflicting pairing 44
Multiple conflicting pairings 32

resource may be considered for co-location and yield a uti-
lization gain; a conflicting pairing that is co-located should be
considered for separation and can potentially lead to reduced
peak load and fewer SLA violations on the shared resource.

The more candidates there are, the stronger the optimization
potential because there is a higher likelihood that some of
these candidate volumes would satisfy other general migration
constraints (costs, not-to-move policies, etc.) and thus can be
exploited. Table I illustrates the number of potential candidates
for Tetris consolidation in our sample customer data set.
Here, 35 volumes (out of 246) have the potential to form
complementary combinations that should be co-located, and
76 volumes (out of 246) have the potential to form combina-
tions that should be separated. Of these volumes, many have
high potential in that they have multiple partnering volumes
with which to form at least one feasible pairing.

B. Pattern sensitivity to resources

Disk arrays are the most common performance bottleneck
for I/0 processing in high-end storage servers. It is there-
fore important that performance objectives are met for this
resource. Note that IOPS do not directly reflect the workload
intensity on disk arrays, as some of the I/O requests are
handled by caches and only cache misses are disk bound.
Cache miss ratios depend on both the workload and the system
configuration. As a result, Tetris patterns at the subsystem level
(IOPS) may not necessarily translate to Tetris patterns at disk
level (MISS).

In order to investigate the consistency of Tetris patterns
across resources, we compute the Pearson correlation be-
tween the IOPS and MISS measurements of each volume.
corr(IOPS, MISS) — 1 indicates minimal sensitivity (or
maximal consistency), because the IOPS and MISS ex-
hibit a linear relationship—any Tetris pattern found at the
IOPS level is likely to translate to disk arrays. In contrast,
corr(IOPS, MISS) — 0 implies maximal sensitivity (or
minimal consistency) as Tetris patterns at the IOPS level do
not translate to the disk level.

Figure 3 shows the results based on the customer data
set. While over 50% of the volumes have little sensitivity
(i.e. corr(IOPS, MISS) — 1), there are also several highly
sensitive volumes. We explain how IO Tetris copes with this
in the next section.

C. Summary

We conducted a similar stability analyses to the one in [8]
and confirmed their results. Our data also exhibits stable daily
patterns, but we do not elaborate on these findings due to the
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lack of space. Section VII summarizes our ongoing efforts that
go beyond basic stability analysis.

In summary, we have found significant potential for consoli-
dation optimization based on fine-grained Tetris-like workload
patterns in real-world data. These patterns are sensitive to
cloud storage resources, but otherwise exhibit long-term stabil-
ity. The following sections describe our proposed framework
to leverage this potential.

III. IO TETRIS OVERVIEW

In Figure 4, we show the components of the 10 Tetris
framework and how it interacts with the cloud environment.
We assume that a set of applications is hosted in the cloud.
Each application has been allocated specific resources in terms
of server, storage and network based on SLAs.

10 Tetris assumes that the cloud provider is equipped with
fine-grained I/O logging facilities, which are able to capture
I/O activities in time and in I/O sub-dimensions, such as
read vs. write and/or random vs. sequential, cache hits vs.
miss. Enterprise storage subsystems typically have instru-
mentation in place that allows system management suites to
query performance information from the managed device via
proprietary or standard (CIM/SMI-S)* interfaces. For example,
the IBM Tivoli Storage Productivity Center (TPC)> product
allows storage administrators to set performance monitors

“http://www.snia.org
Shttp://www-03.ibm.com/systems/storage/software/center/



on managed storage subsystems. TPC queries performance
metrics from the managed subsystems at specified periodic
intervals for reporting, trending, planning, and so on.

Given the accurate knowledge of the cloud environment,
IO Tetris takes all the storage workload information as input.
Some volumes with near-zero workload or those explicitly
dictated by policy (e.g. a do-not-disturb list of volumes spec-
ified by administrators) are filtered out. IO Tetris computes
temporal correlation and lists n top pairs in terms of the
descending order of complementary correlation. This infor-
mation, in conjunction with the device white-box models, are
used to create groups of volumes that are complementary and
the groups that are conflicting. Each group gets tagged with
an expiry date based on the stability and sustenance of the
pairing. Migration costs and gains in terms of consolidation,
performance improvement and component utilization are de-
termined to decide on a migration strategy. Based on the expiry
date, these clusters are reevaluated for their existence. /O
Tetris then relies on the cloud providers’ migration facilities
to enforce its plans.

More specifically, 10 Tetris consists of two main workflows:
1. Workload clustering workflow. This workflow mainly
retrieves recent IOPS history, performs Pearson correlation on
each pair of data volumes’ IOPS time series, and conducts
a clustering step using the correlation values as the basis
for similarity. Storage device models are integrated into the
clustering step so that they are taken into account in the
resulting Tetris clusters.

2. Migration planning workflow. This workflow uses the
complementary and conflicting Tetris clusters to generate
migration tuples and specifies the source and destination of
all volumes to be moved. The costs and gains of executing
these tuples are estimated and input into the planner, which
formulates a final migration plan. Note the use of the migration
workflow is optional. Administrators with their migration
preferences may choose to formulate migration plans manually
or using tools specific to their environments, while leveraging
the quantification and visualization provided by IO Tetris
clustering.

These workflows are re-executed periodically when one sus-
pects existing Tetris patterns might have expired. Additional
analysis may be done to evaluate the stability of the IOPS time
series and to quantify a window of expiration automatically.

IV. 10 TETRIS CLUSTERING

Next we describe how IO Tetris workload clusters are found
given IOPS statistics similar to those in the previous section
(i.e. per volume per minute). Data volumes are first filtered to
ensure clustering is only performed on worthwhile candidates.
We then use hierarchical clustering [9] to find complementary
and conflicting clusters of volumes by customizing the clus-
tering distance metric and linkage method.

A. Filtering volumes

Hierarchical clustering is a relatively expensive process with
O(n?logn) complexity, where n is the number of volumes.

Reducing the size of n improves the scalability of 10 Tetris,
without compromising the quality of the results (see Sec-
tion VII for trade-offs between quality and scalability). Based
on the discussions in Section II, we remove the following types
of volumes from IO Tetris:

1) volumes with very few I/O activities across all measured
times (e.g. peaking at 10 to 20 IOPS);

2) volumes with very stable I/O activities because they lack
the variance to form Tetris patterns;

3) volumes marked untouchable by administrators;

4) volumes with corr(IOPS, MISS) < threshold. Al-
though one could apply IO Tetris clustering on MISS
statistics for these volumes instead, we do not recom-
mend it. MISS statistics can be highly dependent on the
dynamics of the entire environment, and may not yield
long-term complementary and conflicting clusters.

B. Hierarchical clustering

Hierarchical clustering incrementally groups objects that are
similar, i.e., objects that are close to each other in terms of
distance (as defined per domain), distance — 0.

1 — corr(z,y) 1+ corr(z,y)
— D — @
2 2

We define two distance functions based on the correlation
between any two volumes x and y. Equations 1 and 2 are
the distance functions for finding conflicting and complemen-
tary Tetris clusters, respectively. corr(z,y) is the correlation
between the IOPS time series of volumes z and y over
time. Equation 1 results in conflicting clusters because it
ensures that the distance between x and y is 0 when they
are correlated (i.e. completely conflicting); and is 1 when they
are anti-correlated (completely complementary). As a result,
complementary volumes are grouped. Equation 1 groups com-
plementary volumes in a similar manner, even though visually
they are not linear/similar.

Figure 6 depicts the complementary and conflicting clusters
for our sample customer data set. A low horizontal distance
between any volumes or sub-clusters indicates a high degree
of conflict/complementariness between them, with the exact
degree marked by the height of the lowest shared sub-branch.
The cluster dendrograms provide effective visualization of all
“hot spots” of complementary/conflicting volumes’ subsets,
which are easily distinguishable from the rest through their
low heights.

This visualization allows migration administrators to act
quickly on high potential volumes whilst maintaining a holistic
view. For instance, if sub-cluster C is located on the same
resource R, and C shares resource R, a simple yet highly
effective optimization would be to swap some of their compos-
ing volumes. This ensures that the original conflicting clusters
are broken and new ones do not form because C; and C5 have
a large horizontal distance.
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C. Choice of clustering algorithm

We considered a total of nine clustering techniques [10] ex-
perimentally, including well-know methods such as agglomer-
ative/divisive hierarchical clustering and k-means/k-mediods.
We chose hierarchical clustering due to its superior cluster
quality and the following practical advantages:

o Along with K-mediods and fuzzy clustering, it is one of
few algorithms that can operate with customized distrance
metrics such as the Tetris distances defined in Equations 1
and 2.

o It provides dendrogram as an effective visualization of
high-dimensional data.

o Unlike methods such as K-means/K-mediods and model-
based clustering, hierarchical clustering does not require
expert input to bootstrap.

The cluster quality was measured by the Dunn score [10],
which favours cleanly separated clusters and low intra-cluster
distance. On the sample data set, hierarchical clustering yields
more consistent and higher (thus better) Dunn scores than
both K-mediods and fuzzy clustering. When used to identify
20 complementary clusters, resulting in 2-3 volumes per
cluster on average, hierarchical clustering has a Dunn score
of 0.55, as opposed to 0.36 for K-mediods and 0.46 for fuzzy
clustering.

V. 10 TETRIS MIGRATION

IO Tetris migration co-locates storage volumes within a
disk array based on complementary or conflicting groupings
produced via the Tetris clustering method. To this end, migra-
tion plans are created and orchestrated to achieve the desired
placement of storage volumes based on IO Tetris clusters. This
process involves transferring data between storage types and
storage formats. According to a recent study,® data migration

Shttp://www.incipient.com

1O Tetris hierarchical clusters for customer B.

costs $5000 per terabyte and 25% of data is moved each year
in data centers.

A. Migration decisions

IO Tetris migration seeks to make the desired trade-offs
between leveraging IO Tetris clusters to achieve resource usage
efficiency and limiting migration costs. It calculates migration
cost based on the following factors:

Offline vs. online: Offline migration incurs application down-
time as opposed to online migration, which is transparent to
applications.

Inter vs. intra storage subsystem migration: Inter subsystem
migration is done by copying the data to a different storage
volume in a different storage subsystem of the same type and
synchronizing their states (e.g. via IBM Metro Mirror or IBM
Global Mirror). In contrast, in intra subsystem migration, data
is copied to a different storage volume in the same subsystem
(e.g. via IBM Point-in-Time FlashCopy).

Inter vs. intra data center migration: Inter data center
migration involves migrating data from one storage volume
to another across data centers as compared to intra, where
data is migrated internally inside a data center without much
concern regarding bandwidth and delay.

Homogeneous storage vs. heterogeneous storage: Migration
across two storage subsystems that are of same type, model
or vendor is considered homogeneous as opposed to heteroge-
neous, where a virtualization device (e.g. IBM SAN Volume
Controller SVC’) might have to be introduced to migrate data
between subsystems.

More formally, the IO Tetris algorithm operates over a set
of storage subsystem tuples S C C. The set of all possible

Thttp://www-03.ibm.com/systems/storage/software/virtualization/svc/
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tuples C has the following structure:®

C = Type x Vendor x Model x Location X

Capability x P(StorageVolume) x DiskArray

The above facets of migration costs can be determined by
considering independent parts of the overall C space. Whether
systems are homogeneous or heterogeneous can be deter-
mined by examining Type x Vendor x Model. Capability
states whether migration can be performed offline or online.
Location controls if migrations are inter- or intra data center.

The algorithm should optimize required capacity and re-
quired bandwidth in terms of IOPS. We define two functions to
quantify utilization: ¢ : S — Q for capacity and b : S — Q for
bandwidth. We apply the subscripts cpax and byax to denote
functions that provide the upper bounds of these metrics for a
particular configuration.

Given a set of configurations S C C, the output of the
IO Tetris algorithm is a tuple (P,Q) for P € P(C) and
Q@ € P(C). The sets of complementary configurations in P
are those from S that should be packed together if possible.
The sets of configurations in () are those from .S that should
not be placed together, and should instead be distributed across
storage infrastructure due to conflict.

In terms of the above categorization, administrators gen-
erally prefer online, intra-subsystem migrations because they
do not introduce application downtime. Homogeneous inter-
subsystem migrations inside a data center are considered as
the next best option. Data movement across heterogeneous
subsystems and across data centers is regarded as compara-
tively costly.

Migrations are performed as follows. For each complemen-
tary cluster, IO Tetris determines if the majority of the storage
volumes are already on a common disk array, making it the
target disk array for the cluster. Otherwise, a new destination
disk array is chosen.

IO Tetris avoids the formation of conflicting clusters by
considering pre-existing storage volumes on the disk array.
Decisions as to which storage volumes are to be evicted, and
what their destination disk array will be are made jointly.

B. Evaluation

Figure 6 presents the initial placement of storage volumes
over 60 disk arrays, alongside the placement after multiple

8We use P to denote the power set, i.e. the set of subsets of a set.

iterations of IO Tetris consolidation. The number of disk arrays
together with their component level percentage utilization are
shown. Consolidation is performed progressively by examin-
ing associated migration costs.

The first iteration of IO Tetris resulted in placement of
all good clusters collocated on disk arrays. 21 disk arrays
would contain four volumes based on this recommendation.
In total, 23 migration operations are required to accept the
first iteration of IO Tetris. Subsequent consolidation iterations
of bin packing can be done to pack storage volumes more
tightly. Each disk array is considered as a bin. Complementary
clusters are kept untouched but consolidation is done based
on capacity and IOPS capability of disk arrays while avoiding
conflicting clusters. However, doing this increases the number
of migration operations. The results shown in Figure 6 were
achieved through a total of 27 migrations in three iterations.

VI. RELATED WORK

The proliferation of Cloud computing has led to much in-
dustrial and academic interest, and numerous related research
projects. Workload consolidation has been studied at various
levels of infrastructure and time granularities.

In terms of coarse-grained storage workload consolidation,
Zhang et al. [11] examine balancing workloads between SSD
and spinning platter media. Their ADLAM algorithm does
adaptive lookahead to best utilize the fast but scarce and
expensive SSD media, while taking into account migration
costs, which makes their work complementary to ours. In
contrast, Mazzucco et al. [12] improve power efficiency by
intelligently switching off servers, considering more coarse-
grained time intervals than our approach.

Gupta et al. introduce the MIRAGE provisioning system [7]
for SAN management, which maximizes SAN efficiency by
providing a modular analytical engine that smoothes the
resource usage of storage system components. In contrast
to our work, MIRAGE looks at specific storage system
metrics at particular times, and reconfigures iteratively. In
addition, Gopisetty et al. examine IBM’s Provisioning and
Disaster Recovery planners [6], which assist administrators
with placement and resiliency decisions when introducing new
applications into a data center. Their review provides a good
basis on which our work builds.

In terms of overall service migration, Zheng et al. [3]
explore wide-area VM migration in a multi-cloud environment
by considering temporal and spatial locality in a workload.
Their approach could be informed by Tetris pattern data. In
related work, Ramakrishnan et al. [13] employ a combina-
tion of server virtualization, network functions and storage
replication to move services with tight service-level deadlines.
Their cooperative orchestration of migration decisions could
be combined with our approach.

A number of research projects explore fine-grained server
workload consolidation. The PAC system [4] uses signal
processing techniques, namely Fast Fourier transforms with
dynamic time warping, to form signatures of periodic server
behavior. RUBIS, Hadoop and IBM System S workloads were



used to demonstrate that periodic server behaviors really occur,
and that by discovering them, prediction errors about coarse-
grained future resource requirements (i.e. average and peak
loads) are reduced by 50-90%. PAC considers CPU, memory
and I/O throughput when making dynamic VM placement
decisions. While its goals are similar to those presented here,
the migration and resource measurement are tied to virtual
machine infrastructure, and does not directly generalize to
hierarchical multi-layer architectures. The implicit structure
determined by PAC would complement our more semantically
rich descriptions of resources and their migration costs.

In [8], server consolidation technology is employed to
reduce energy costs in data centers. The approach aggre-
gates at near off-peak levels while restricting the performance
risks of consolidation. A key contribution of this work is a
thorough study of enterprise server workloads with respect
to the potential medium (semi-static) or long term (static)
consolidation paths available. In contrast to our work, the
authors do not explicitly consider multi-level infrastructures
and do not analyze migration costs.

Finally, Mishra et. al. [14] use clustering (k-means) to iden-
tify a small set of classes for Google cluster jobs with similar
resource consumption patterns, in terms of execution duration,
the number of CPU cores used and memory consumption.
While their high level objective is similar to IO Tetris, their
clustering approach does not consider fine-grained temporal
resource usage behaviors and how well they multiplex, and
may miss out on significant opportunities to achieve greater
consolidation efficiency.

VII. CONCLUSIONS

This paper presented 10 Tetris, an initial effort that inves-
tigates fine-grained storage workload behaviors in real-world
customer environments and leverages these to achieve more
efficient storage consolidation. Our study has found workload
combinations that are both complementary and conflicting,
which would boost and undermine consolidation objectives,
respectively. Based on these observations, we have developed
a framework to identify these patterns in clusters and migrate
storage volumes accordingly to keep complementary clusters
together and conflicting clusters apart. We have demonstrated
the applicability of our IO Tetris approach to real-world, large-
scale storage consolidation tasks. We are actively pursuing the
following future work:

Massive-scale 10 Tetris. Support for large or even massive
storage cloud deployments is essential for the practicality of
IO Tetris. To further improve scalability over the number
of volumes, we are investigating more scalable clustering
mechanisms [15]. We also plan to explore sampling methods
that require fewer data points, going beyond the current use
of computationally inexpensive correlation metrics.

3-D IO Tetris. While Section II-B has touched on the issue
of resource-bound behavior, we believe that a deeper analysis
can systematically reveal consolidation opportunities in the
spatial/resource dimension. This additional dimension could
yield 3-D (load vs. resource vs. time) Tetris patterns compared

to the predominantly 2-D (load vs. time) behaviors discussed
in this paper. Based on collected block-level I/O traces, we
want to understand the address ranges and resources of /O
accesses.

Stable 10 Tetris. We want to investigate stability windows,
within which IO Tetris patterns persist with at least a certain
probability. Such predictions can be done both along the
frequency plane by forecasting primarily frequency changes,
and along the original time plane by simply predicting the
future workload at each point in a time window [16].

Live 10 Tetris. We are working on integrating 10 Tetris with
IBM migration frameworks and on evaluating it as part of
larger-scale, live deployments.
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