
Living in the Present:
On-the-fly Information Processing in

Scalable Web Architectures∗

David Eyers
University of Otago

dme@cs.otago.ac.nz

Tobias Freudenreich
Technische Universität Darmstadt

freudenreich@dvs.tu-
darmstadt.de

Alessandro Margara
Politecnico di Milano

margara@elet.polimi.it

Sebastian Frischbier
Technische Universität Darmstadt

frischbier@dvs.tu-
darmstadt.de

Peter Pietzuch
Imperial College London

prp@doc.ic.ac.uk

Patrick Eugster
Purdue University

p@cs.purdue.edu

ABSTRACT
Today’s social web platforms, such as Facebook, Twitter,
Google+, and LinkedIn, increasingly have to process large
volumes of user-generated data on the fly. As the role of
such platforms shifts from being portals for largely historic
data towards providing platforms for real-time data analyt-
ics, we observe that their architectures incrementally move
from storage-centric designs, based on distributed data man-
agement technologies, towards event-based models exploit-
ing queueing and stream processing systems.

We believe that it is time to rethink fundamentally the
software architecture for social web platforms and base them
on a content-based communication model, that is explicitly
designed to disseminate and partition incoming request flows
on a cluster of servers. A content-based publish/subscribe
system thus acts as a scalable and elastic, highly responsive
data distribution backbone. By focusing on fresh data, such
an architecture can optimize the routing of data to match the
topology of the data center, dynamically adapt data flows
to alleviate hot spots, and elastically scale to more servers
when required by computationally expensive on-the-fly data
analytics applications.

1. INTRODUCTION
Social web platforms have transformed how users inter-

act on the Internet. Services such as Facebook, Twitter,
Google+, and LinkedIn have had a profound impact on peo-
ple’s lives and have embedded themselves in the daily rou-

∗This work was supported by the LOEWE Priority Program
Dynamo PLV and the Software-Cluster project EMER-
GENT funded by the German Federal Ministry of Education
and Research under grant no. 01IC10S01.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CloudCP 2012: 2nd International Workshop on Cloud Computing Plat-
forms. Bern, Switzerland
Copyright 2012 ACM 978-1-4503-1161-8 ...$10.00.

tines of millions of users. They have become real-time social
communication platforms for people to share a rich set of in-
formation, including blog posts, photos, videos, chats, and
discussions. This has resulted in an explosive growth of the
volume of data that must be processed and managed. For
example, the number of API calls managed by Twitter has
grown from 3 billion per day in April 2010 to 6 billion in
September 2010 and the traffic of Twitter.com has grown
about 100% in 2010.1 Currently, the number of Twitter
users is growing at a rate of 11 new accounts per second.2

A key observation about the evolution of social web plat-
forms is that their focus is shifting from the management of
past data to the on-the-fly processing of fresh data. User-
contributed content such as blog posts or photos exhibit the
highest popularity when they are new, gradually experienc-
ing lower access rates with age. While in the past, social web
platforms were viewed fundamentally as storage repositories
for user-contributed content, the emerging emphasis on the
dissemination and processing of fresh data means that the
low capacity of such systems for on-the-fly information pro-
cessing is becoming a limitation. Increasingly, services like
Twitter are not just providing commentary on events in the
real-world, they are themselves changing the real-world.

This exponential increase of new data and need to support
new highly responsive services has had significant implica-
tions on the software architectures of social web platforms.
All major companies have undergone multiple iterations of
a complete redesign of their software architectures to satisfy
increasing, user-driven demands in terms of scalability, per-
formance and availability. However, often these were ad hoc
changes to solve specific problems, and did not involve the
core communication model of the entire architecture.

Many services in social web platforms require on-the-fly
data processing. When new content, such as a blog post, is
submitted to a social networking platform, users expect it to
be made available immediately to all interested users. In ad-
dition, the platform provider wants to perform sophisticated
on-the-fly analytical processing of the new data to associate
it with matching advertisements [4], to learn new user pref-
erences from the data [1] and to compute aggregated data

1
http://mehack.com/twitter-by-the-numbers

2
http://blog.twitter.com/2011/03/numbers.html

for subscribed third parties [15]. Due to the large incoming
volume of new data, current best practice is to perform data
analytics using periodic batch jobs [11], thus only offering a
historic, delayed view on the current data.

The requirement for advanced on-the-fly processing in so-
cial web platforms can be witnessed by the use of messag-
ing and stream processing systems that have become part
of current designs for such platforms. Facebook, Twitter,
Yahoo, and LinkedIn make use of custom-built message de-
livery infrastructures, such as Kafka [13], Storm,3 S4 [18],
and Hedwig,4 to support message-based data dissemination
between processing servers on-the-fly. However, they still
fail in providing an adequate communication infrastructure
that is able to optimize routing to the data center topology,
dynamically adapt to patterns of network traffic to allevi-
ate hot spots, and to elastically scale in and out for better
exploiting network and computational resources.

We believe that it is time to rethink fundamentally the
design of scalable architectures for social web platforms, ex-
plicitly acknowledging that they should focus on the dissem-
ination, processing and caching of fresh data as it arrives in
the system. We argue that a content-based distributed publi-
sh/subscribe infrastructure [9] should be at the core of such
architectures and act as a scalable communication backbone
for social web platforms: partitioning data processing and
caching. By removing mechanisms for the persistence of past
data from the critical path, such an architecture can realize
an efficient data-flow model.

We propose to use a publish/subscribe infrastructure that
consists of a cluster of message processing brokers, which dis-
tribute incoming request data. Message brokers transform
data and make it available to future requests through ef-
ficient in-memory caches with indexing. This reduces the
performance requirements imposed on the storage layer be-
cause requests are largely satisfied from caches.

To balance the load of requests across servers, routing
is adapted based on workload characteristics. The publi-
sh/subscribe infrastructure scales out as the workload in-
creases by routing data across a larger set of servers. The
communication topology used by the message brokers can
adapt to match the physical data center topology. This can
minimize network congestion caused by over-subscription of
aggregation switches in data centers. Beyond increased scal-
ability, elasticity, and load balancing, our architecture can
host and execute third party code directly against fresh data.

This paper is organized as follows. In Section 2, we pro-
vide an overview of the evolution of architectures of major
social web platforms. Section 3 describes our proposed ar-
chitecture based on publish/subscribe communication. We
discuss related work in Section 4. Concluding remarks are
given and future challenges are highlighted in Section 5.

2. SOCIAL WEB PLATFORMS
This section analyzes some of the main social networks,

the architectures they adopt, and how they have changed
over time. Our analysis highlights three main aspects: i.
messaging and on-the-fly data analysis are relevant, domi-
nating tasks for a social network; ii. they have been the mo-
tivations for an evolution of the inner architectures of social
networks; and iii. some of the existing social web platforms

3
http://tech.backtype.com/#post_54482583

4
https://cwiki.apache.org/ZOOKEEPER/hedwig.html

offer disparate services, usually implemented using ad hoc
components. Integration and data synchronization between
these components is a key concern.

2.1 Twitter
Twitter was launched in July 2006 and rapidly gained

worldwide popularity, with more than 300 million users in
2011, producing over 2200 tweets and over 18000 queries per
second. This is on average: significant spikes have been mea-
sured in the past, e.g.,5 during the Japanese 2011 Tohoku
earthquake and tsunami the load increased by 3× to 4×.

Twitter started as a content management platform and
underwent several changes to move to the current messaging
model, wherein the service tries to update all users with the
latest ‘tweets’ that they have expressed interest in.

Initially, the entire backend was managed using a rela-
tional database based on MySQL. Between 2006 and 2010
several optimizations were introduced to meet the dramat-
ically increasing load. They were mainly based on the in-
troduction of several levels of in-memory caches that signifi-
cantly reduced the delay incurred while processing requests,
thus increasing the throughput of the system. Despite these
changes, the underlying storage model was still that of re-
lational databases.6 The limitations of the infrastructure
became evident: during the 2010 FIFA World Cup period,
Twitter had a high service rejection rate (10%-20%) and a
higher average response time7 than was desired.

The difficulties in scaling the MySQL-based system led to
completely replacing it. In late 2010, Twitter launched a
new query engine, Earlybird, which is a version of Lucene
optimized for low-latency. Earlybird is based on inverted
indexes for efficient query processing.5 This new back-end
allowed Twitter to provide users with a more customizable
search experience—launched in May 2011—including oper-
ators for tag-based, content-based, and context-based (e.g.,
location, time of tweet) search.8

A key performance factor for this new architecture is the
ability to rapidly compute indexes when new tweets en-
ter the system, in order to make new tweets available for
search as soon as possible. Recently, Twitter announced the
acquisition of Storm, a framework that supports continu-
ous, on-the-fly computations over streams of data.9 Beside
tweet indexing, Storm is currently used inside Twitter to dis-
tribute other complex computations involving large amounts
of streaming data, including trending tags.10

All these steps show the increasing importance of on-the-
fly data analysis. Not only it is the main reason for all the
architectural changes within Twitter, but it also required
them to introduce a new product, Storm, explicitly devoted
to on-the-fly computation, which is becoming one of the
core components of the entire infrastructure. As the sys-
tem evolves, new functions are being offered to users (e.g.,
today it is possible to include images into tweets, but we can
foresee the possibility of including videos, and filtering multi-
media content using customized search operators), which in
turn require new processing capabilities. As the scale of
the system grows, considering the topology of the process-

5
http://engineering.twitter.com/2010/10/#4731203862532084022

6
http://blog.evanweaver.com/2009/03/13/qcon-presentation/

7
http://en.wikipedia.org/wiki/Twitter

8
http://engineering.twitter.com/2011/05/#6301577286601580570

9
http://www.slideshare.net/nathanmarz/storm-11164672

10
http://engineering.twitter.com/2011/08/#1448345121577210449

ing network becomes more important, especially if it spans
multiple data centers for replication and high availability.

2.2 Facebook
Facebook is the most popular social web platform with

over 800 million active users and 100 billion hits per day.11

As for Twitter, most of the functionality offered by Facebook
requires on-the-fly data analysis: searches, status updates,
messages, chat, image processing for tagging, etc.

The available information about Facebook describes it as
a federated set of services. Persistence is done using MySQL,
Memcached, Cassandra (which was developed by FaceBook,
released open source, and is now an Apache project), and
Hadoop’s HBase. Offline processing is done using Hadoop
and Hive. Data such as logging, clicks and feeds transit is
performed using Scribe, and data are aggregated and stored
in HDFS using Scribe-HDFS, thus allowing extended anal-
ysis using MapReduce. Facebook Messages is using its own
architecture, which allows for automatic scaling in a cluster
of servers [3]. Chat is based on an Epoll server developed in
Erlang and accessed using Apache Thrift.12

In addition to the key challenges identified for Twitter,
integration of different applications and services (including
third party extensions) appears to be a key concern in the ar-
chitecture of Facebook. The need to integrate heterogeneous
components, written in different languages and adopting
different technologies, can be addressed by adopting event-
based infrastructure (e.g. using IBM’s MQ product series).

2.3 LinkedIn
LinkedIn, launched in 2003, is the most popular business-

related networking site, with 135 million users in 2011.13

The architecture of LinkedIn significantly changed over
the years—in a similar manner to the architectural changes
of Twitter—moving from a database-centric infrastructure
based on Oracle and MySQL with cached data, to a mes-
saging architecture.14 Currently, the back-end of LinkedIn is
based on Kafka [13], a distributed messaging system aimed
at providing a scalable, low-latency solution for log aggrega-
tion and data stream processing. Built on Apache Zookeeper
in Scala, Kafka aims at providing a unified infrastructure
for both fresh and historical data analysis.15 Once again,
this architecture highlights the increasing need for on-the-fly
data processing, as well as the adoption of a core component,
Kafka, to deal with it.

2.4 Discussion
Our analysis highlights some key requirements for social

networking sites: they need to manage both historical and
fresh data. On-the-fly analysis and distribution of data con-
stitutes one of the key tasks for these applications, as exem-
plified by the processing of tweets and queries in Twitter,
and by the query, messaging, and chat services offered by
Facebook. Moreover, live and historical data are strictly
blended and integrated.

Often, social web platforms offer disparate services to
their users. These services share information, reading and

11
http://latimesblogs.latimes.com/technology/2011/09/

facebook-f8-media-features.html
12

http://www.quora.com/What-is-Facebooks-architecture
13

http://en.wikipedia.org/wiki/LinkedIn
14

http://hurvitz.org/blog/2008/06/linkedin-architecture
15

http://blog.linkedin.com/2011/01/open-source-linkedin-kafka/

modifying common data sets. As the architecture of Face-
book underlines, they are usually implemented using differ-
ent technologies, which further complicates their interaction.

The infrastructures of most social web platforms were
originally built around a traditional relational database sys-
tem. This design choice eventually showed its limitations in
terms of scalability, forcing several changes and reorganiza-
tions in the architectures of social networking sites as the
number of their users grew, putting increasing emphasis on
the on-the-fly analysis of streaming data. Often, this led to
the adoption of ad hoc solutions for on-the-fly processing,
like Twitter Storm or LinkedIn Kafka, but these are now
becoming the key components of social network platforms.

Despite these changes, current platforms still suffer from
several limitations: even when using distributed messaging
systems, or stream processing systems. Their data distri-
bution often requires manual optimization to best use the
topology of the processing network, and the coordination of
software components is often performed using logically cen-
tralized systems. We believe that these architectures will
not stand for long before requiring reengineering, when com-
pared to the potential of the inherently distributed, extensi-
ble and scalable design that we introduce in the next section.

3. RETHINKING THE ARCHITECTURE
OF SOCIAL WEB PLATFORMS

We propose an architecture that augments existing online
social web platforms with better capabilities for on-the-fly
analytical and data processing. Our approach shifts the fo-
cus of the architecture from a data storage-centric view to
a message-driven one, by exploiting a distributed content-
based publish/subscribe system as the core communication
mechanism for the entire architecture.

Different features of our architecture will benefit different
stakeholders in social web platforms, as explained below. We
identify three main types of stakeholders: (1) the end-users
of the service, e.g. who connect to the platform across the
Internet using a web browser or a client application; (2) the
application provider, who deploys and maintains the social
web platform; and (3) third party developers who extend the
social web platform to provide new features of interest to the
end users.

3.1 Contrasting Social Web Platform Archi-
tectures

We now introduce our proposed architecture by first illus-
trating a typical state-of-the-art architecture of a social web
platform and then describing our redesigned architecture.

3.1.1 Storage-centric Architecture
Figure 1(a) shows a typical architecture of a social web

platform—we refer to this as the storage-centric architecture.
We show the end-users’ connections on the left, which are
handled by a set of worker processes. The worker processes
are connected to nodes in a caching layer, aimed at mitigat-
ing the cost of reading data from persistent storage. The ex-
ample shown uses memcached, which maintains a key-value
store along with a cache replacement algorithm. On the
right hand side of the subfigure is the cluster of nodes that
provide an object store (equivalently, a relational database).

In terms of dataflow, the queries coming from end-users
are first distributed among several worker processes. They

pub/sub
broker

Object
store

cluster

Object
store

cluster

Object
store

cluster

Object
store

cluster
memcached

memcached

memcached

memcached

memcached

worker
process

worker
process

Workers do
application logic

heavy lifting

Broker network
does application
logic heavy lifting

worker
process

(a) before:
storage-centric
architecture

(b) after:
publish/subscribe
architecture

each unit is a
function-specific
virtual machine

KEY data flow

pub/sub broker
object
store

cacheapp
logic

topology roughly matches
 data center hierarchical network

front-end

front-end

front-end

pub/sub
broker

pub/sub
broker

pub/sub
broker

pub/sub
broker

pub/sub
broker

pub/sub
broker

pub/sub
broker

to
/fr

om
 e

nd
-u

se
rs

to
/fr

om
 e

nd
-u

se
rs

Figure 1: Two architectures for social web platforms: (a) storage centric and (b) publish/subscribe

determine the data items needed to satisfy each query, and
contact the memcached layer to access them. They typically
select the actual memcached node(s) to contact by comput-
ing a hashing function on the query. On a cache miss, a
memcached node will be updated with data retrieved from
the object store—a comparatively expensive operation, due
to the need for disk access.

This illustrates how expensive it is to enable real-time re-
sponsiveness in such storage-centric architectures. Indeed,
their pull-based nature poses a large computational overhead
on the entire infrastructure: conceptually, worker processes
have to monitor the database; the cost of this operation is
only partially reduced by the use of caches.

3.1.2 Publish/Subscribe Architecture
Figure 1(b) illustrates our suggested architecture. We

make use of a distributed content-based publish/subscribe
messaging system, enhanced with the possibility to execute
the application logic (supplied by the platform itself or third
party developers), and linked with a distributed database.
This design allows the computations that need to be per-
formed on data to be placed on the path that these data
will flow along within the system.

Again end-users are shown on the left, each connected to
a lightweight front-end process, that receives requests from
the end user’s client software (e.g. a web browser), and pro-
vides responses using appropriate communication protocols
and data presentation. To the right of the front-end pro-
cesses is an interconnected graph of publish/subscribe bro-
kers. Each front-end process forms a network connection
to a broker: any broker will do, although those “closest” on
the network will be best. As explained below, brokers co-
operate to provide a distributed content-based publish/sub-
scribe system. Moreover, each broker contains three other
functional components: (1) an engine to execute application
logic, (2) a node of a distributed object store, and (3) some
cache memory, to accelerate accesses to the object store.

The dataflow through the publish/subscribe architecture
is as follows: first, the end-users connect to the front-end
processes. These are considerably lighter-weight than the
worker processes in the storage-centric architecture, as their
computations are largely offloaded into the broker network.
Then, the front-end passes the request as a message to the

publish/subscribe system. We exploit the routing capabil-
ities offered by the publish/subscribe system to deliver the
message to all interested brokers. They will typically include
on-the-fly data analysis components working on the infor-
mation and queries submitted by end-users, e.g., the user
profiling tools and trend analyzers adopted by Facebook.
If users who express an interest in the published content
are connected, their front-end process will be notified by its
broker, and new content will be immediately pushed to that
user, e.g. by updating the web pages they are viewing.

The content-based publish/subscribe messaging system
involves each broker being connected to a number of neigh-
bor brokers, each running on a separate machine. Through
their broker, front-end processes can be producers that pub-
lish data as messages and/or consumers that subscribe to
a subset of these messages by specifying criteria that the
message content has to satisfy (e.g. price < $50 ∧ date =
tomorrow ∧ event = concert).

Content-based publish/subscribe systems build an overlay
network on top of the physical network. Routing of messages
between brokers is done using matching functions that ex-
amine the content of messages, instead of on the basis of
explicit addressing of hosts on the network [9].

As Figure 1(b) illustrates, the connections formed between
brokers should match the data center network’s hierarchical
topology as closely as possible. In addition to the physical
network tree, a second tree root is shown in the figure. This
tree does not match the physical network structure, and will
cause some inter-broker links to cross levels of the physical
network hierarchy. However, doing so will increase the auto-
matic resilience of the overlay network against traffic spikes
and equipment failure: the inter-broker overlay network will
make best possible use of the underlying physical network
links that it has access to.

To provide resilience against failures and overloaded bro-
ker nodes, the architecture can use reliable publish/subscribe
system techniques, such as multi-path routing of messages,
and store-and-forward protocols to ensure that messages
successfully pass between successive broker nodes.16

The cache for the database is also distributed across the
broker nodes and, as in the storage-centric architecture, mit-
igates the cost of object store disk access.

16JMS offers reliability: http://www.jcp.org/en/jsr/detail?id=914

The object store and caches are distributed across the set
of broker nodes. This allows us to integrate a distributed
column store such as Apache Cassandra [14] directly within
our architecture, exploiting the same machines that imple-
ment the publish/subscribe system.

While our aim is to try to maintain as much of the recent,
fresh data as possible in memory across the broker nodes,
it will be necessary to make requests of the object store to
satisfy queries over older, historical data.

Finally, we plan to adopt our previous work on integrated
aggregation [17] within the broker network for providing
self-monitoring capabilities to the publish/subscribe system.
This allows brokers to collect aggregated information about
critical parameters (e.g., number of subscribers connected to
each node, number of publishers, message rate, overall traf-
fic), driving possible reactions, such as dynamically changing
scale of the broker network. Also, the distributed database
could use hints about publisher and subscriber counts to
decide where best to persist messages.

3.2 Benefits of our Architecture
Overall, the publish/subscribe architecture has four key

advantages, as explored below.

1. Responsiveness. Running application logic directly on
broker nodes and pushing data to them allows for respond-
ing to new data immediately, and thus fast responses to end-
users. Due to the push-based architecture, applications do
not have to monitor the database and do expensive queries,
but are informed about insertion of fresh data and modifi-
cation of historic data quickly. For example, users could be
provided with a list of posts ordered by the number of their
friends who had started typing a comment on those posts.

2. Scalability and Elasticity. The next advantage of our
architecture is its design for scalability. If message through-
put needs to be increased, one can simply add more machines
to the broker network [2]. The publish/subscribe broker net-
work will then transparently integrate the additional nodes
(even at runtime) and adapt routing protocols. Because the
routing tables used for message dissemination are stored in
distributed broker state, scaling up the global system only
requires local broker additions. Since there is no need to
update global state to increase system scale, the scalability
provided is inherently elastic. As brokers are homogeneous,
and independent, they can be very rapidly provisioned.

This tremendously benefits application providers: they
do not have to think about running their applications in a
distributed environment—the broker network abstracts from
that, and only needs to be supplied as many machines as
needed at present, with more machines added on demand.
This is particularly useful for cloud-supported elasticity.

3. Load Balancing. When dealing with changing pat-
terns of end-user behavior, e.g. spontaneous traffic spikes
caused by flash crowds, systems must have load balancing
mechanisms. A distributed publish/subscribe architecture
inherently provides load balancing. Routing protocols for
distributed publish/subscribe systems usually process mes-
sages incrementally at different brokers, as the messages are
propagated into the network [9]. Moreover, load balancing is
simplified by the content-based nature of the system, which
provides for fine-grained classification of message data. End
users will not be disappointed by service disruptions, and ap-
plication providers can use their resources more efficiently.

The load is distributed among brokers more or less evenly,
depending on the routing protocol adopted, the topology of
the network, and on the actual workload (e.g., how subscrip-
tions are distributed among brokers). We plan to augment
the brokers’ messages with data that can help the brokers de-
tect and autonomously react to traffic changes more rapidly
than possible using only those capabilities already provided
by the overlay network. Reactions may include changes to
the topology of the broker network, as well as changes in the
connections with the front-end processes, to dynamically re-
distribute the processing load.

4. Support for Third Party Code. Social web plat-
forms such as Facebook provide end-users with the ability
to utilize third party applications, such as calendar add-ons,
data management extensions (e.g., for images), and games.

Our architecture provides four significant benefits to stake-
holders within social web platforms that allow third party
extensions: (1) the application providers retain ownership of
their data and do not need to give it away—currently Face-
book does not run third party extensions on their servers,
instead sending out user data; (2) third-party applications
only see the data that they need to see, benefiting pri-
vacy and allowing for payment plans based on actual usage;
(3) the expressive subscription language alleviates the need
for third-party applications to do expensive data filtering;
and (4) new applications can be integrated just by adding
another message broker, ensuring the preservation of scala-
bility and elasticity even as third-party applications join the
platform. Of course hosting third party code on the applica-
tion provider’s servers will require careful security analysis.

Publish/subscribe systems have been shown to work well
for system integration, as evidenced from the commercial
software systems that apply an Enterprise Service Bus [7].
This should ease the process for third parties to supply code
that is to be plugged into the existing dataflow.

4. RELATED WORK
Event processing has been identified as a core element of

every complex information infrastructure, realizing a “ner-
vous system” to guide and control the behavior of other
sub-systems [16, 5]. Many distributed content-based pu-
blish/subscribe systems have been proposed [9]. They place
great emphasis on scalability, creating and exploiting overlay
networks to process and deliver data with low latency.

A number of dynamic adaptation protocols have been de-
scribed in the literature, which react to the changes in the
network traffic and in the load of brokers by reorganizing
the topology of the overlay network [12, 2]. Other solutions
propose to move the publishers and subscribers to better
distribute the processing load and to reduce the usage of
network resources [8]. Most of the results described can
be easily adapted to the context of social web platforms,
where the brokers are located into one, or few data cen-
ters. Our proposal goes a step further, by envisioning a pu-
blish/subscribe infrastructure that is able to monitor itself
and automatically adapt to changes in the external environ-
ment. In [17], we describe ASIA, an integrated aggregation
mechanism for distributed publish/subscribe systems: a core
building block for enabling self monitoring and adaptation.

Integration of live and historical data is performed in [20,
6], using infrastructure that merges information from event-
based systems, and database and data warehouse systems.

Many social networking platforms are now including tools
for on-the-fly data analysis in their core infrastructure (e.g.,
Twitter’s Storm, LinkedIn’s Kafka—see §2). Moreover, QoS
guarantees for low-latency computations are becoming a key
concern in the agenda of researchers and practitioners work-
ing on data centers and cloud management [10].

Finally, security is a key concern for social web platforms,
a concern that becomes even more important when third
party applications are integrated within the architecture.
Security for publish/subscribe systems has been explored
in the past by several works [19, 21].

5. CONCLUSION: OPEN CHALLENGES
In this paper we propose the adoption of a distributed pu-

blish/subscribe system as a core communication infrastruc-
ture to support social web platforms. We believe this kind
of architecture naturally satisfies the increasing demand for
fresh data processing and on-the-fly analysis within these
platforms. Moreover, it facilitates ease of optimizing the
routing strategies to the topology of the processing network
inside the data center, to alleviate hot spots, elastically scale
in and out, and evenly distribute the load among the avail-
able processing nodes. To fully support these features, the
publish/subscribe system must implement self-monitoring
mechanisms that allow it to detect changes in the exter-
nal environment and to automatically react to them. We
are currently implementing these key features as part of our
ASIA middleware [17]. Evaluating our ideas will require us
to create, in addition to our publish/subscribe architecture,
an instance of an open-source social networking platform
comparable to the storage-centric architecture, and to run a
realistic user workload against both platforms.

To realize this architectural change, there are some key
challenges that need to be addressed. (1) It is necessary to
identify the best QoS, load balancing, and adaptation poli-
cies that will allow optimization of the use of network and
processing resources while satisfying user requirements. (2)
In the context of social networks, it is fundamental to clearly
specify how to combine fresh and historic data, providing
suitable consistency guarantees for current social applica-
tions and their future extensions. This includes dealing with
replication for data safety and high availability, both inside
a single data center and across multiple data centers. (3) As
we discussed in Section 2, social networks often need to per-
form computationally expensive operations on large volumes
of data. Therefore, it is important to study how these oper-
ations can be split into simple steps and distributed among
nodes, to reduce the overall processing latency. We plan to
implement this feature by exploiting the in-network aggre-
gation capabilities of our ASIA middleware. (4) Finally, it is
important to define suitable security policies to protect user
data and to implement mechanisms to enforce them.

6. REFERENCES
[1] E. Agichtein, E. Brill, S. Dumais, and R. Ragno.

Learning user interaction models for predicting web
search result preferences. In SIGIR ’06.

[2] R. Baldoni, R. Beraldi, L. Querzoni, and A. Virgillito.
Efficient publish/subscribe through a self-organizing
broker overlay and its application to SIENA. Comput.
J., 50:444–459, July 2007.

[3] D. Borthakur, J. Gray, J. S. Sarma,
K. Muthukkaruppan, N. Spiegelberg, H. Kuang,

K. Ranganathan, D. Molkov, A. Menon, S. Rash,
R. Schmidt, and A. Aiyer. Apache Hadoop goes
realtime at Facebook. In SIGMOD ’11.

[4] A. Broder. An introduction to online targeted
advertising: principles, implementation, controversies.
In IUI ’11.

[5] A. Buchmann, H. Pfohl, S. Appel, T. Freudenreich,
S. Frischbier, I. Petrov, and C. Zuber. Event-Driven
services: Integrating production, logistics and
transportation. In SOC-LOG’10.

[6] S. Chandrasekaran. Query processing over live and
archived data streams. PhD thesis, University of
California at Berkeley, 2005. AAI3210530.

[7] D. A. Chappell. Enterprise service bus. O’Reilly
Media, 2004.

[8] A. K. Y. Cheung and H.-A. Jacobsen. Publisher
placement algorithms in content-based
publish/subscribe. In ICDCS ’10.

[9] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec. The many faces of publish/subscribe.
ACM Comput. Surv., 35:114–131, 2003.

[10] S. Ferretti, V. Ghini, F. Panzieri, M. Pellegrini, and
E. Turrini. QoS-aware clouds. In CLOUD ’10.

[11] M. J. Franklin, S. Krishnamurthy, N. Conway, A. Li,
A. Russakovsky, and N. Thombre. Continuous
analytics: Rethinking query processing in a
network-effect world. In CIDR ’09.

[12] M. A. Jaeger, H. Parzyjegla, G. Mühl, and
K. Herrmann. Self-organizing broker topologies for
publish/subscribe systems. In SAC ’07.

[13] J. Kreps, N. Narkhede, and J. Rao. Kafka: a
distributed messaging system for log processing.
NetDB’11.

[14] A. Lakshman and P. Malik. Cassandra: a
decentralized structured storage system. Oper. Syst.
Rev., 44:35–40, April 2010.

[15] K. Lerman. Social information processing in news
aggregation. IEEE Internet Computing, 11:16–28,
November 2007.

[16] D. C. Luckham. The Power of Events: An
Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley
Longman Publishing Co., Inc., 2001.

[17] A. Margara, S. Frischbier, T. Freudenreich,
P. Eugster, D. Eyers, and P. Pietzuch. ASIA:
Application-specific integrated aggregation for
publish/subscribe systems. Technical report, 2012.
http://www.cs.otago.ac.nz/staffpriv/dme/asia/ASIA2011.pdf.

[18] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4:
Distributed stream computing platform. In ICDMW
’10.

[19] L. Opyrchal and A. Prakash. Secure distribution of
events in content-based publish subscribe systems. In
SSYM ’01.

[20] F. Reiss, K. Stockinger, A. Wu, K.and Shoshani, and
J. M. Hellerstein. Enabling real-time querying of live
and historical stream data. In SSDBM ’07.

[21] C. Wang, A. Carzaniga, D. Evans, and A. Wolf.
Security issues and requirements for internet-scale
publish-subscribe systems. In HICSS ’02.

