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ABSTRACT
The nature of data in enterprises and on the Internet is
changing. Data used to be stored in a database first and
queried later. Today timely processing of new data, repre-
sented as events, is increasingly valuable. In many domains,
complex event processing (CEP) systems detect patterns of
events for decision making. Examples include processing of
environmental sensor data, trades in financial markets and
RSS web feeds. Unlike conventional database systems, most
current CEP systems pay little attention to query optimi-
sation. They do not rewrite queries to more efficient rep-
resentations or make decisions about operator distribution,
limiting their overall scalability.

This paper describes the Next CEP system that was espe-
cially designed for query rewriting and distribution. Event
patterns are specified in a high-level query language and, be-
fore being translated into event automata, are rewritten in
a more efficient form. Automata are then distributed across
a cluster of machines for detection scalability. We present
algorithms for query rewriting and distributed placement.
Our experiments on the Emulab test-bed show a significant
improvement in system scalability due to rewriting and dis-
tribution.

1. INTRODUCTION
Many application domains need timely processing of new

data [8]. For example, a financial application may moni-
tor a continuous stream of credit card transactions for fraud
patterns. In environmental sciences, sensor networks output
infinite sequences of measurements that may be processed
to respond quickly to physical events, such as an increase in
monitored pollution levels. On the Internet, RSS feeds from
weblogs generate vast amounts of real-time information that
may be analysed to infer opinions of many people. In gen-
eral, the requirement of instant processing of new data is at
odds with the conventional database model, as implemented
by database management systems (DBMSs), in which data
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is first stored and indexed and only queried afterwards.
In contrast, complex event processing (CEP) systems re-

gard new data (or updates to existing data) as a stream of
events [19]. Users can specify queries as high-level patterns
of events. The CEP system detects complex events matching
these queries and notifies clients of matches in soft real-time.
For example, a credit card processing company may monitor
fraudulent credit card use by specifying patterns that detect
concurrent transactions caused by the same credit card at
geographically distant locations.

Detecting complex patterns in high-rate event streams re-
quires substantial CPU resources. To make a CEP system
scale in the number of concurrently detectable patterns, it
needs additional computational resources by distributing de-
tection across a set of machines or use the existing resources
more efficiently through query rewriting. However, the ma-
jority of current CEP systems only support execution on a
single machine and the semantics of their query languages
make automated query rewriting challenging.

In this paper, we describe the design, implementation and
evaluation of the Next CEP system that focusses on dis-
tributed event detection with query rewriting. The system
uses an expressive automata-based approach for complex
event detection. Users specify event patterns in a high-level,
SQL-like language with six operators that are translated to
low-level event automata. The language facilitates rewriting
of expressions into equivalent ones and the automata model
eases deployment of detection operators across multiple ma-
chines. The system makes optimisation and placement deci-
sions according to cost functions derived from the resource
consumption of event automata. Guided by the cost model,
our system rewrites queries containing two commonly used
operators, “next” and “union”, to reduce their CPU con-
sumption. The system also greedily selects distributed de-
ployment plans to perform event processing on a cluster of
machines while reusing already-existing operators.

Our evaluation on the Emulab networks test-bed shows
that query rewriting increases the supported number of queries
with the“next”operator by up to 100% and with the“union”
operator of up to 20%. We also demonstrate how distribu-
tion enables the system to scale linearly.

In summary, the main contributions of this paper are:
1. A high-level event pattern language based on a new ex-

pressive event automata model that is suitable for query
rewriting and distribution (§3);

2. A cost model for queries that allows automated optimi-
sation (§4.2);



3. Algorithms for query rewriting into more efficient rep-
resentations (§4.3) and for distributed query deployment
with operator reuse (§4.4);

4. The design and implementation of a prototype CEP sys-
tem in Erlang illustrating the above techniques (§5) and
an evaluation on the Emulab test-bed (§6).

1.1 Detection of Credit Card Fraud
We describe an application scenario — the detection of

credit card fraud — that illustrates the scalability chal-
lenges in CEP and shows how efficient distribution can pro-
vide relief. Credit card fraud has been committed for many
years and remains a major problem. Just in the US alone,
9.91 million people were victims of credit card fraud in 2007
with a total loss of US$ 52.6 billion [18]. Fraud typically
happens when the credit card owner uses the card in a shop.
During the payment, an employee can easily run the card
through a card reader without the owner’s knowledge. Later
the copied credit card information is sold to other criminals
who manufacture a new card and commit the actual fraud.

There are several patterns indicating such behaviour in
credit card transaction logs, which can be detected by a
CEP system. A fast detection of suspicious patterns en-
ables banks to contact customers early in the fraud or even
automatically alert users about suspicious credit card trans-
actions by sending text messages to their mobile phones. A
typical fraud pattern is that the criminal starts by testing
the credit card with a few small purchases followed by larger
purchases. In our high-level query language described in §3,
this can be expressed as follows:

SELECT * FROM ( t S1 ; t S2 ; t L )
WHERE FILTER(S1.acc = S2.acc), FILTER(S2.acc = L.acc),

S1.amount < 100 AND S2.amount < 100 AND
L.amount > 250 AND (S1, L) OCCURS WITHIN 12 hours

Properties of data sources. We make the following as-
sumptions about the workload of a CEP system for credit
card fraud detection. The system processes transactions
from multiple sources. The sources are credit card process-
ing companies responsible for a given credit card brand in a
given region, such as Northeastern US.

We take credit card transactions made with VisaTM in the
US as an example. According to the Visa website [26], they
processed 27.612 billion transactions in 2007. This means
an average of 875 credit transactions per second based on
a uniform distribution. Assuming that 80% of transactions
occur in the 8 hours of the day, this gives an event rate of
2100 transactions per second. To model this, we assume that
credit card transactions follow a Poisson distribution with
an average of 2100 events per second. Note that because
of the high average rate (µ = 2100), the rate does not vary
significantly (SD =

√
µ ≈ 46), i.e., the probability of it

being in the interval 1950–2250 events per second is 99.9%.
We further assume that the information in each transac-

tion event consists of an identifier and a timestamp, an ac-
count number, an amount, currency and country fields and
a short description. Given realistic field sizes, this makes the
size of transactions range from 29–292 bytes with an average
of 150 bytes. The event size can be modelled by a normal
distribution with an average of 150 bytes and a spread of
30 bytes. This gives an average data rate of approx. 300 kB
per second per source. This amount of data can easily be
handled by a fast network connection.

Case for distributed detection. As estimated above, the
data rate from a single source is relatively small. However,
if a query correlates transaction events from several differ-
ent sources, then hundreds of thousands of events have to
be processed per second. In this case, the CPU resources of
a single machine may become a bottleneck and limit system
scalability. When the system runs out of CPU resources, it
has to buffer events or discard them. Buffering events only
provides temporary relief and is only effective under tran-
sient overload conditions. A distributed CEP system with
query optimisation can distribute detection queries across
machines and reduce the cost of individual queries by rewrit-
ing them into more efficient forms.

2. RELATED WORK
A range of systems have been used to detect events us-

ing different detection approaches. This section provides an
overview of previous work, particularly focusing on propos-
als for query optimisation in event processing.

Complex event processing systems. The goal of CEP
systems is the fast detection of event patterns in streams.
Specification languages for event patterns are frequently in-
spired by regular languages and therefore have automata-
based semantics [21]. In addition to commercial CEP sys-
tems, such as ruleCore CEP Server, Coral8 Engine and Es-
per, several open research prototypes exist.

Cayuga [14, 13] is a high performance, single server CEP
system developed at Cornell University. Event streams are
infinite sequences of relational tuples with interval-based
timestamps. Its event algebra has six operators: projec-
tion, selection, renaming, union, conditional sequence and
iteration. Event algebra expressions are detected by non-
deterministic finite automata, which can detect unbounded
sequences. To achieve high performance, Cayuga uses cus-
tom heap management, indexing of operator predicates and
reuse of shared automata instances. However, Cayuga does
not support automated query rewriting and distributed de-
tection. The distribution of Cayuga automata is compli-
cated by the fact that it merges event algebra expressions
into a single automaton, which would have to be partitioned
across nodes for distribution.

The DistCED system [24] is a Java-based CEP frame-
work that uses extended, non-deterministic finite state au-
tomata. Event patterns are specified using six operators in
a simple, yet expressive core CE language: concatenation,
sequence, iteration, alternation, timing and parallelisation.
To avoid the problem of incorrect detection due to late ar-
rival of events that were delayed by the network, a guaran-
teed detection policy requires detectors to wait until events
have become stable. Although the work proposes automata
distribution, no cost model or algorithms are given.

More recently, Akdere et al. [4] describe how plan-based
optimisation can exploit temporal properties of event sources
to reduce network communication costs. Since this work fo-
cusses on network communication costs, we believe that it is
orthogonal to ours. We do not consider the cost of sending
events from event sources to source proxies in our system,
as we assume the network not to be a bottleneck.

Data stream processing systems. Systems such as Au-
rora [1], Esper [17], Stream [5] and TelegraphCQ [10] process
data streams according to relational continuous queries, e.g.,
specified in CQL [6]. Windows over streams convert infinite



sequences to finite relations for relational algebra operators.
The Stream system exploits overlap between queries through
shared state but, to our knowledge, none of these above cen-
tralised systems explore automated query rewriting.

Borealis [2] is a system that distributes queries across a
set of Aurora engines. Monitoring components collect per-
formance statistics about deployed queries. These statistics
are used by a set of hierarchically-organised query optimis-
ers that maximise the quality-of-service of queries by making
decisions about load shedding, choice of operator implemen-
tations and query reuse. A performance problem is first han-
dled by a local optimiser. If the problem cannot be resolved
at this level, it is cascaded to a neighbourhood optimiser and
eventually to a system-wide optimiser. In contrast, the focus
of our work is on query rewriting before deployment, which
is only possible by taking language semantics into account.
Query rewriting is difficult to achieve in Borealis because
of its “box and arrows” operator semantic and the fact that
operators can change at runtime.

Much previous work focussed on load-balancing and load-
shedding in distributed stream processing systems. The
Medusa [11] system uses price-based contracts for dynamic
load-balancing in a cluster deployment [7]. A proposal for
load-balancing under dynamic conditions was made by Xing
et al. [28]. Their approach minimises load variance to reduce
tuple processing delays using a greedy online algorithm.

For operator deployment, Ahmad et al. [3] propose to
choose greedy deployment plans that reduce bandwidth us-
age of queries. This favours placements that co-locate oper-
ators with their child operators to avoid network communi-
cation, which is similar to our approach. It also attempts to
place operators at nodes that are close in network distance.
An algorithm for wide-area operator placement based on hi-
erarchical clustering of nodes is described by Seshadri et al.
[25]. The clustering according to an objective function lim-
its the search space of placements. Pietzuch et al. [23] argue
for network-centric operator placement that minimises net-
work usage by ensuring short communication paths between
operators. This is orthogonal to our approach that ignores
the impact of the network (except for a constant penalty).

Active and distributed DBMSs. In a DBMS, it is natu-
ral to treat updates to the database as events and associate
them with actions. An active DBMS processes events ac-
cording to triggers defined as event-condition-action (ECA)
rules. Automated optimisation of triggers is difficult be-
cause of their expressiveness and imprecise semantics. An-
other challenge is the lower detection performance due to
the overhead of the DBMS.

SAMOS [20] is an active DBMS that uses coloured Petri
nets for event detection. This allows the representation of
partially-detected events. Event patterns are specified using
six operators, whose semantics is defined by the underlying
Petri nets. However, the Petri nets for even simple event
patterns are complex, making automated rewriting difficult.

In Snoop [9], a declarative event language defines point-
based logical events from interval-based physical events. Com-
posite event patterns are constructed from five operators.
Although Snoop’s event language could support query rewrit-
ing, it lacks formal semantics and its expressiveness is lim-
ited to finite sequences. Snoop’s temporal model requires
unique timestamps, which is unrealistic under distribution.

There is a large body of work on query optimisation for
minimising query response time in distributed DBMSs [29,

16]. Optimisation algorithms, such as INGRES and R*, are
based on greedy heuristics and exhaustive enumeration of all
possible query execution plans. This is infeasible in a large-
scale CEP system with many processing nodes. In addition,
CEP systems require cost models that take the long-lived
nature of queries into account.

3. CEP MODEL
In this section we introduce the language for describing

event patterns along with the necessary event and temporal
models that form the basis of our automata-based detection
approach. Our high-level language is compiled into a core
language consisting of six operators. The semantics of the
core language is defined by its event automata.

3.1 Events and Event Streams
We use an event model that is similar to the ones found in

Cayuga [14, 13] and DistCED [24]. An event e is defined as a
tuple 〈s, t〉 where s is a multiset of fields, as in the relational
data model, defined by the schema S, and t is a sequence
of timestamps t = [ts, . . . , te] where the first timestamp ts
is the start time of an event and the last timestamp te is
the end time. Each timestamp is discrete and, for primitive
events, t is a pair of timestamps1. Compositions of primitive
events, composite events, contain all timestamps (and fields)
of the primitive events that constitute them. The set of
all possible events is denoted by E and all events e ∈ E
satisfy ts ≤ te. Events with ts < te have a duration while
events with ts = te are called instantaneous events. There
are two special events: ε — the empty event (similar to the
empty word in traditional automata) and the failed-detection
event ∅. Their use will become apparent in §3.3.

Events arrive on event streams that are infinite sequences
of events with the same schema. A schema and a stream
uniquely define an event type. A stream has a source and
zero or more sinks. Events are sent from the source in as-
cending order of te. If te is the same for two or more events,
then the events are sent in ascending order of ts. If t is
equal for two or more events, then they are sent in arbitrary
order. An example of this ordering is (only ts and te are
shown): [1, 2], [3, 5], [4, 5], [4, 6], [4, 6]. Events arrive without
reordering by the underlying communication channel.

3.2 Temporal Model
The temporal model must define what it means for two

events to occur after another and it must resolve the choice
of immediate successor of an event. It should also support
the rewriting and optimisation of queries. Therefore it is
important for a common operator, the “next” operator ’;’,
which, informally, detects one event occurring after another,
to be associative: Given three event patterns E1, E2 and
E3, the patterns E1; (E2;E3) and (E1;E2);E3 should pro-
duce the same composite events. This property allows a
pattern E1; (E2;E3) to be optimised if E1 occurs rarely,
while E2;E3 occurs often. By rewriting the pattern to
(E1;E2);E3, fewer events have to be processed.

In the example in Fig. 1, there are three composite events
matching (E2;E3) (namely [eb, ee], [ec, ee] and [ed, ee]), while
there is only one matching E1; (E2;E3) (namely [ea, eb, ee]).
If the pattern could be rewritten as (E1;E2);E3, then there

1A common use for this interval is to accommodate clock
inaccuracy of sources.
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Figure 1: Example of events matching three differ-
ent patterns E1, E2 and E3.

would be only one composite event matching E1;E2 and one
primitive event matching E3, resulting in fewer processed
events. Clearly, only one of the events [eb, ee], [ec, ee] and
[ed, ee] can be the immediate successor of ea to allow the
next operator to be associative. The immediate successor
of an event should intuitively be the first that occurs fully
after the event. With this choice of immediate successor,
the next operator is associative:

E1; (E2;E3) 3 [ea]
]

[eb, ee] = [ea, eb]
]

[ee] ∈ (E1;E2);E3,

where
U

concatenates two composite events.
Therefore we adopt the complete-history temporal model

formulated in [27] because it is the only temporal model that
has an associative next operator and also fulfils other desir-
able properties that make a system implementable, such as a
unique immediate successor. A temporal model is described
by 〈T,≺, SUCC,

N
〉 where T is the set of all possible times-

tamps, ≺ is a partial ordering on T, SUCC is the successor
function SUCC : T× 2T → 2T that takes a timestamp t and
a set of candidate timestamps F and produces the set of im-
mediate successors SUCC(t,F).

N
is the composition oper-

ation that takes two timestamps t1, t2 ∈ T and produces the
timestamp t1

N
t2 for the corresponding composite event.

As described above, primitive events have pairs of times-
tamps. This extends to the composite case where the se-
quence of all timestamps of all primitive events constituting
a composite event (t1, t2, . . . , tn) define its timestamp. The
partial ordering introduced above is thus defined as

t1 ≺ t2 ≡ (ts1, . . . , te1) ≺ (ts2, . . . , te2)⇒ te1 < ts2.

The successor function is defined as

SUCC(t,F) = {τ ∈ F|t ≺ τ ∧ ¬∃ρ ∈ F .t ≺ ρ v τ},

where v is the slightly modified lexicographical ordering
from the end of the sequences of timestamps (effectively a
tie-breaker for events with the same end time point):

σ v τ if σ[`(σ)− i] < τ [`(τ)− i]∧
σ[`(σ)− k] = τ [`(τ)− k] for k < i or

`(τ) < `(σ) ∧ σ[`(σ)− i] = τ [`(τ)− i] for all i < `(τ)

where `(x) is the length of the timestamp sequence x and
x[i] is the ith time point. Two examples of sequences σ and
τ which fulfill σ v τ are: σ = [2, 6, 8], τ = [3, 6, 8] and
σ = [1, 2, 4, 6, 8], τ = [4, 6, 8].

3.3 Automata-Based Event Detection
Next we describe our automaton model and define the

semantics of the core language. An event automaton is a
tuple 〈S, T, s0, sd, st, in, out〉 where

E1 θ2

0

E1 θ1 1

2

d

t

E2 θ3

E3 θ4

0

1

2

ed = ε

0

ed = ε

ed = e1

ed = e1

Figure 2: Example of automaton with two instances.

S: is the set of states of the automaton;
T T ⊆ S×S×E×Θ×F are the transitions between

states. Each transition is labeled with an event
type E ∈ E, a predicate θ ∈ Θ and a transforma-
tion function F . A predicate Θ : E× P(E)→ B is
a function that takes an event and a set of events
and returns true or false (described below);

s0: s0 ∈ S is the start state;
sd: sd ∈ S is the accepting state or, equivalently, the

detection of an event pattern;
st: st ⊂ S is the set of failed-detection states;
in : is the stream input into the automaton;
out: is an output stream of detected composite events.

There are three types of states: ordinary, timing states and
failed-detection states. The first is analogous to states in
traditional finite automata. A timing state starts an internal
timer when entered. After a specified relative time period,
it emits an instantaneous timer event (ts = te). It has a
unique event type but otherwise can label any transition in
the automaton. The failed-detection state is a state that
emits a failed-detection event when entered. This allows
an operator to “fail” when a given event occurs while the
operator is detecting another (composite) event.

The current state of an automaton is called an instance
and is described by a tree with nodes corresponding to states.
Each leaf node represents a sofar detected composite event
denoted ed. The root of an instance is the start state s0
with ed = ε (no event detected). A path from the root node
to a leaf describes a sequence of detected events. The set of
states of all leaf nodes is called the active states set of the
instance and is denoted by Sactive. We call a node in the
tree with two or more children a choice-point.

An example of an event automaton with two instances is
shown in Fig. 2. The right instance has processed an event
e1 ∈ E1. The set of active states for the left and right
instances are {So} and {S1, S2}, respectively, and the right
instance has S0 as a choice-point.

An automaton operates as follows: There is always a new
instance with s0 as the (only) active state and ed = ε. The
timestamps of ε are equal to the time when the instance was
spawned. Given a set of active states, the input domain for
the next event(s), denoted Ed(∈ E), is all the input streams
with event types that label a transition from some state
s ∈ Sactive. Usually there will only be a single next event
but there may be several simultaneous events and thus a
set of events could be input. If the input domain is empty,
then the instance is stuck and therefore discarded. This also
occurs after a pattern was matched.

When the next event(s) E ⊂ Ed occur after the currently
detected composite event(s), each event e ∈ E is processed



at each leaf node as follows: For each transition from s, la-
beled by e, where e and ed satisfy the predicate of the transi-
tion, a new child node is added with f(e, ed) as the detected
event. f is a transformation function that transforms the
two events e and ed into a new composite event. For ex-
ample, fA(e, ed) = ed

U
e is the concatenation function (A

for add) and fD(e, ed) = ed discards events (D for drop).
However, f could be also be any aggregation function.

If no events in E cause any transitions, then the branch
from the leaf node to the nearest choice-point is discarded.
This corresponds to a “wrong guess” with respect to the
pattern being matched. If all branches are discarded, then
the instance itself is discarded. If a failed-detection state is
reached, the instance is also discarded and a failed-detection
event ∅ is sent on the output stream. If an instance of an
automaton at any point reads a failed-detection event, it will
also be discarded and emit a ∅. When an instance reaches
the accepting state, detected composite event ed of sd is sent
once on output stream out.

3.4 Core Language for Event Patterns
The core language defines the basic “building blocks” of

event pattern queries and our high-level language is compiled
into these constructs. Next we present the six operators and
their semantics described by event automata.

The filter operator Eθ detects event type E that satisfies
predicate θ. The corresponding automaton is:

0

E θ, 
d

The union operator E1|E2 detects event type E1 or E2.
Note that the simultaneous occurrence of two events match-
ing E1 and E2, respectively, results in two correctly detected
events. The semantics are given by the automaton below:

0

E1 , 

E2 , 

d

The next operator E1;E2ϕ,θ detects the next occurrence
of E2 satisfying θ after E1, skipping any intermediate event
E2 not satisfying ϕ:

0 1
E1, , E2 φ θ

d

E2 φ

The predicate θ allows the operator to filter some events
and then fail on others. Consider the following query from
the application scenario in §1.1:

SELECT * FROM ( t T1; t T2; t T3 )
WHERE FILTER(T1.acc = T2.acc), FILTER(T2.acc = T3.acc),

T1.amount > 1000 AND T2.amount > 1000
AND T3.amount > 1000

This query matches three consecutive transactions of the
same account that are larger than 1000. It discards automa-
ton instances for transactions below this value. Note that
this cannot be expressed with Cayuga’s conditional sequence

operator, which would spawn instances until the pattern is
detected, and exhaust memory if the pattern never occurs.

The iteration operator E+ϕ,θ detects one or more con-
secutive events E that together with ed satisfy θ. Events
not satisfying ϕ are skipped:

d 1

E φ θ

E φ θ

E φ

E φ

0

E φ θ

This operator is similar to the Kleene Plus operator in
regular expressions. However, its evaluation may require
unbounded memory when the θ predicate never evaluates to
false. This is due to the temporal model, in which all consti-
tuting primitive events of a composite event must be stored.
A solution would be to introduce a renaming operator (as
described in [14]) to define aggregate functions or to discard
old instances after a given number of spawned instances.

The exception operator E1\E2λ detects event type E1
but fails if event E2 satisfying λ occurs. This operator sup-
ports the cancellation of an event pattern after a subpattern
was detected:

E2 λ

0

E1 d

t

This operator has interesting applications, especially when
composed with the next presented operator, the time opera-
tor. For example, it can be use to cancel a pattern for fraud
detection because the associated account was closed.

The time operator E@time detects a relative time point
after event E occurred, as specified by time expression time.
When entering a time state, a time event is emitted after
the specified time duration:

0
E time

An interesting design question arises as to why the lan-
guage needs a time operator when the occurrence of two
events within a time period can be checked by the times-
tamps in the events (once both have occurred). The prob-
lem is that if the first stream is high rate and events on the
second stream rarely occur, then this approach may exhaust
memory, irrespective of how small the time period is. With
the exception operator, detection can be “cancelled” after
the time period expired and instances are discarded.

3.5 High-Level Event Query Language
Since our high-level language is intended for human use,

two design requirements were readability and a syntax simi-
lar to SQL. Existing languages interleave source specification
and predicates, which makes queries hard to read and reason
about [13, 1]. Therefore we wanted to to separate predicates
from event patterns, while still making it easy to compile
into the core language. Our query language consists of two
sub-languages: the Stream Definition Language for defining



sources and sinks and the Event Query Language (EQL) for
expressing queries.

The Stream Definition Language defines the different
sources and sinks in the system, which are connected through
network communication channels. Sources and sinks regis-
ter under a unique identifier id and submit a schema that
describes their event type. They may also provide a wrap-
per that translates their internal event representation to the
one prescribed by their schema.

The Event Query Language specifies queries of the form:

SELECT selection FROM event pat WHERE qualifications

where selection is a field selection expression, such as * for
all fields, event pat is an event pattern and qualifications is
a list of predicates.

The event pat is built recursively from four basic opera-
tors: next (;), exception (\), union (|) and iteration (+).
The operators map to the ones introduced in §3.4 with the
exception of the filter operator, the time operator and pred-
icates, which are specified (implicitly in the case of the fil-
ter and time operators) in the qualifications. Operands are
subpatterns and, in the base case, a primitive event source
identified by a single or a pair of identifiers. A pair speci-
fies a source and an alias. This allows predicates to refer to
a particular event in patterns with several events from the
same source, similar to how self-joins are handled in SQL.

Finally qualifications are a comma-separated list of two
types of predicates: filter predicates, FILTER( pred expr ), or
regular predicates, pred expr. When the high-level language
is compiled to core operators, predicates are associated with
individual operators and qualifications are evaluated by core
operators. The syntax and semantics for predicates is as
expected from standard boolean operators, except for time
and field constraints.

A time constraint is of the form:

(id1, id2) OCCURS WITHIN time

where id1 and id2 are identifiers of two streams in the event
pattern and time is a relative time expression, such as 1 min

or 10 msec. A time constraint evaluates to true if and only
if the two events specified by the identifiers occur within the
time period.

A field constraint can have one of two forms:

field CONTAINS string (1)
field or val comp op field or val (2)

where field is a field name, string is a string, field or val is
a field name or an arithmetic expression and comp op is a
comparison operator.

A field is either a simple field, id.f, or an aggregate field,
PREV(id.f ) or ALL(id.f ). A comparison operator evaluates
to true for a simple field if and only if the field value in the oc-
curring event of that type makes the comparison true. When
the aggregate field PREV is used, the operator evaluates to
true if and only if the value of the field in the immediately
previous event of that type (in the so far detected composite
event ed) makes the comparison true. If there is no previ-
ous event in ed, the comparison is vacuously true. Finally, a
comparison with the aggregate field ALL evaluates to true if
and only if the field values of all previously detected events
of that type make the comparison true.

For example, the following query detects composite events
that consist of one or more transactions with some currencies
followed by a transaction with a currency different from all
the previous ones:

SELECT * FROM t T1+; t T2
WHERE ALL(T1.currency) <> T2.currency

We can now describe the semantics of the two field con-
straints given above. (1) The first field constraint evaluates
to true if and only if the specified field is of type string and
its value has string as a substring. For aggregate fields, the
constraint evaluates to true if and only if the fields of the
previous/all previous events contains string as a substring.
(2) The second field constraint evaluates to true if and only
if the operator is defined for the two fields/values and eval-
uates to true (with the usual semantics defined for standard
data types). An arithmetic expression is composed of the
four binary operators (*, /, +, -) and the unary minus op-
erator (-). If an arithmetic expression is undefined (e.g.,
division by zero), the field constraint evaluates to false.

4. QUERY OPTIMISATION
Event queries can be executed in different ways, each with

given resource consumption and performance characteris-
tics. These depend on the structure of event patterns and
on the distribution of operators to processing nodes. The
goal of query optimisation is to find an event pattern struc-
ture and deployment plan with the best possible behaviour.
This can be achieved by rewriting event patterns to better
equivalent patterns, reusing already deployed operators and
selecting efficient deployment plans for new operators. Be-
fore describing our query optimisation approach, we state
our assumptions and the underlying cost model.

4.1 Optimisation Goals and Assumptions
The three main resources in a distributed event processing

system are memory, CPU time and network bandwidth. In
many applications, such as the one described in §1.1, CPU
resources become a bottleneck due to the computational
overhead of pattern detection, even at low event rates. This
limits maximum throughput and scalability in terms of the
number of concurrent queries supported by the system. Low
detection latency is frequently another desirable property.

Our primary optimisation goal for query rewriting is to
minimise operators’ CPU usage to enable the system to sup-
port more operators. The secondary objective is to lower de-
tection latency. It turns out that these goals are, in fact, not
conflicting — lower processing time of an event also results
in lower latency.

With respect to distributed deployment plans for opera-
tors, we aim to reuse existing operators to minimise CPU
usage and latency. Receiving, processing and sending net-
work packets consumes CPU resources and traversing net-
work links increases latency. A secondary goal is to min-
imise variance of CPU usage. High variance due to process-
ing bursts may result in temporary overload conditions and
high scheduling overhead.

We make the following assumptions about the CEP sys-
tem and its deployment environment: (1) The deployment
nodes are dedicated servers in a data centre with only the
CEP system running. (2) Network links between nodes are
not congested. This is a reasonable assumption in a data
centre with high capacity links. (3) The source streams are



Poisson distributed and the average event rate is available
or can be measured. This assumes that events occur inde-
pendently, as it is the case in our application scenario from
§1.1. (4) Operators only consume CPU cycles when process-
ing events, yielding the CPU when idle.

4.2 Cost Model
The cost model provides a quantitative measure of a query

plan’s quality. To simplify the cost model, we make the fol-
lowing assumptions: (1) Our cost model describes asymp-
totic costs of operators. It only permits reasoning about
relative costs, as absolute costs depend on a range of other
factors, such as processor speeds and programming language
overheads. (2) We ignore the cost of predicate evaluation.
Efficient algorithms for predicate indexing (with known re-
source demands) could be used to extend the cost model [13].
(3) Finally, we ignore the selectivity of operators, i.e., the
number of events not filtered by predicates, and assume
worst-case output sizes. There exists an extensive body of
work in database query optimisation on estimating operator
selectivities. We assume CPU consumption to be a function
of event rates only.

We use the worst-case rate µs of complex events in all cost
equations. Event rates may be lower due to events filtered by
predicates. Table 1 summarises the worst case event rates
for different operators as a function of input rates. Note
that the event rate of the next operator only depends on the
rate of the first subpattern as each event E1 results in at
most one complex event E1;E2. The worst-case event rate
of the iteration operator is unbounded because there may
be an infinite number of instances outputing events when a
new event arrives. Therefore, we leave the cost equations
for the iteration operator to future work. It would requires
additional statistics, such as predicate selectivities.

A complex event detected by an operator o has a detec-
tion time, DT(o). It is the average time between complex
events detected by o. For a primitive source s with event
type E, DT(s) = 1/µs(E) because sources are assumed to
be Poisson distributed with average rate µs(E). For any op-
erator, the detection time depends on the detection time of
subpatterns, as shown in Table 1. The detection times of the
filter, exception, iteration and time operators are equal to
the detection times of the subpatterns (and E1 in the case of
the exception operator) because they immediately output a
composite event (assuming negligible processing delay). In
contrast, the next operator waits for the second event pat-
tern E2 to occur after the first event E1 has occurred. This
results in a detection time DT(E1)+DT(E2). The detection
time of the union operator is the time between two events
from its subpatterns occurring.

Cost of query. The cost function used for query rewriting
is given by: cost(Q) =

P
o∈Q CPU(o) whereQ is a query and

CPU(o) is the CPU cost of operator omeasured as CPU time
used per unit time. The models for CPU usage of different
operators are described below.

Cost of filter operator. Its CPU cost is equal to the
number of events processed per time unit. On average this
is µs(E) (ignoring the cost of predicate evaluation).

Cost of exception operator. Similarly, the CPU cost is
equal to the total number of events processed per time unit.
As the exception operator has two streams as input, the cost
is µs(E1) + µs(E2).

Cost of union operator. The union operator also has two
streams as input. Its cost is therefore µs(E1) + µs(E2).

Cost of time operator. The CPU cost is equal to the
average number of processed events µs(E).

Cost of next operator. The cost function of the next
operator differs significantly from other operators due to
an effect we call bursting. It occurs when a next opera-
tor E1;E2ϕ,θ has event streams with µs(E1) > µs(E2). As
a result, one or more instances are spawned for each event
∈ E1. When the next event ∈ E2 occurs, multiple complex
events are detected and output simultaneously — a burst.

We define the burst size bsize(E) as the number of complex
events in a burst and the burst rate brate(E) as the number
of bursts occurring per second. The burst rates and sizes of
most operators are straight-forward and are shown in Ta-
ble 1. For the next operator, the burst size is recursively
defined by: bsize(E1;E2) = bsize(E1) brate(E1) DT(E2) be-
cause DT(E2) is the average time between two events ∈ E2
and brate(E1) DT(E2) is the number of bursts of E1, each
of size bsize(E1), that occurred in that time period.

The burst rate of the next operator is brate(E1;E2) =
1/max [DT(E1),DT(E2)] because a burst is sent from the
next operator when a burst of E2 occurs. The average time
between two consecutive bursts ∈ E2 is DT(E2). However,
the burst rate cannot exceed the time between two bursts
of E1 (DT(E1)) since at least one event ∈ E1 must occur
before E2 due to the semantics of the next operator.

Therefore the cost of the next operator is as follows. First,
the operator has to process all events E1, which adds a term
of size µs(E1). The number of bursts of E1 that occur
before a burst of E2 is DT(E2)/DT(E1). Each E1 burst is

of size bsize(E1). Thus DT(E2)
DT(E1)

bsize(E1) instances have to

process the bsize(E2) number of E2 events. This processing
occurs brate(E2) times per second (each time an E2 burst
occurs). However, if the burst rate of E2 is higher than E1,
there are events ∈ E2 that have no matching E1 events.
These remaining events are processed (and discarded) by the
operator at a cost of max(brate(E2)−brate(E1), 0) bsize(E2).
This gives a total cost of:

cost(E1;E2) = µs(E1) +
DT(E2)

DT(E1)
bsize(E1) bsize(E2) brate(E2) +

max(brate(E2)− brate(E1), 0) bsize(E2)

Cost of deployment plan. The cost of an operator de-
ployment plan includes both the cost of placing an operator
on a different node than its suboperators, which results in
network traffic, and also the variance of CPU utilisation of
different nodes. The cost function is given by:

cost(Q,P ) =
X
o∈Q

» X
o2∈sub(o)

“
δ(P (o), P (o2)) · µs(o2)

”
+

has(o, P (o)) · CPU(o) +
X

o2∈ops(o,P (o))

CPU(o2)

–
where P maps operators to nodes, sub(o) are the suboper-
ators of operator o, ops(o, n) are the operators excluding o
running on node n. δ(n1, n2) is defined to return 1 if and
only if n1 = n2 and 0 otherwise. has(o, n) returns 0 if node n
already has operator o running and 1 otherwise.

As can be seen from the cost function, a deployment of
operator o is expensive if its suboperators are placed on an-



Operator (o) µs(o) Detection time Burst size (bsize(o)) Burst rate (brate(o))
Eθ µs(E) DT(E) bsize(E) brate(E)
E1\E2λ µs(E1) DT(E1) bsize(E1) brate(E1)

E1|E2 µs(E1) + µs(E2) 1
brate(E1)+brate(E2)

bsize(E1) brate(E1)+bsize(E2) brate(E2)
brate(E1)+brate(E2)

brate(E1) + brate(E2)

E1;E2ϕ,θ µs(E1) DT(E1) + DT(E2) bsize(E1) brate(E1) DT(E2) 1
max(DT(E1),DT(E2))

E+ϕ,θ unbounded DT(E) unbounded unbounded
E@time µs(E) DT(E) + time bsize(E) brate(E)

Table 1: Worst-case event rates of complex events (ignoring predicates), average detection times and burst
sizes and rates of operators.

other node than o or if the total CPU utilisation of the
selected node is high. However, the cost is lowered if the
operator already exists on the selected node. This favours
deployment plans that reuse operators, deploy suboperators
on the same node as parent operators and do load-balancing.

4.3 Query Rewriting
Next we give the transformation rules and algorithms for

finding optimal, equivalent patterns with lower CPU cost for
three operators.

Patterns with union operator. The union operator is
commutative and associative and following equivalences hold:
E1|E2 ≡ E2|E1 and E1|(E2|E3) ≡ (E1|E2)|E3. Now,
consider three of the 12 equivalent patterns of E1|(E2|E3):
(1) E1|(E2|E3), (2) E2|(E1|E3) and (3) E3|(E1|E2). Pat-
tern (1) is optimal with respect to CPU cost if µs(E1) >
maxi=2,3 [µs(Ei)]. The reason is that an event e ∈ E1 is
then only processed by one operator instead of two, as in
patterns (2) and (3).

In general, the problem of finding the most efficient pat-
tern is solvable by enumerating all equivalent patterns and
calculating the CPU cost for each. As there are (n + 1)! ·

(2n)!
(n+1)!n!

= (2n)!
n!

different patterns with n union operators,

this is infeasible for larger patterns. (The number of ways
n internal nodes can be arranged in a binary tree (i.e., the

parentheses) is given by the Catalan number Cn = (2n)!
(n+1)!n!

.

For each tree, there are (n+ 1)! different ways to place the
leaves (i.e., subpatterns).)

Instead, we propose a greedy algorithm for calculating the
optimal solution in O(n logn) steps. An event pattern can
be thought of as a tree with union operators as internal nodes
and subpatterns (other operators or primitive streams) as
leaves. Let Ei be a leaf with an associated event rate µs(Ei)
and let dT (Ei) denote the depth of the leaf in the tree. The
cost incurred by Ei is µs(Ei) dT (Ei) since each event has to
be processed by all union operators on the path to the root
operator. The total cost of the tree is

P
i µs(Ei) dT (Ei).

This problem is isomorphic to finding the optimal prefix
code for compression of data, i.e., a set of bit strings, in
which no string is the prefix of another. A prefix code is also
represented by a binary tree: Each internal node represents
either a one or a zero and each leaf represents the frequency
of a character. The bits on the path from the root to a
leaf give the character encoding. Now, the cost of a binary
tree is

P
c∈C f(c) dT (c) where C is the set of characters and

f(c) is the frequency of character c. The problem of finding
an optimal prefix code is solvable by the greedy Huffman
algorithm. An adopted version of this algorithm can be
applied to rewrite union expressions. We omit the proof
that closely follows the one given in [12].

Fig. 3 shows the pseudo code for the union rewriting algo-
rithm. It first builds a sorted set of subpatterns in the event
pattern that are operands of a union operator (line 2). It

1 findOptimalUnion(e_pat)
2 Q = extractUnionOperands(e_pat)
3 n = Q.size()
4 for(i = 0; i < n - 1; i++)
5 l = Q.extractMinRate()
6 r = Q.extractMinRate()
7 newRate = l.rate() + r.rate()
8 Q.insert(new UnionOperator(l, r), newRate)
9 return Q.extractMinRate()

Figure 3: Pseudo code for finding the optimal equiv-
alent pattern of union operators.

Initially: Iteration 1:

Iteration 2: Iteration 3:

E1 E2 E3 E4 E1

E2 E3

E4
|

E1

E2 E3

E4 |

|

E1

E2 E3

E4 |

|

|

(2000) (100) (500) (1000) (2000) (1000)

(600)

(2000)

(1600)

(3600)

Figure 4: Example of the union rewriting algorithm
applied to event pattern E1|E2|E3|E4 with the given
rates. The optimal pattern is (E1|(E4|(E2|E3))) with
a cost of 3600 events/second.

then constructs the resulting tree of union operators (lines 4–
8) by iteratively extracting the two event patterns in Q with
the lowest rate (CPU cost). After n − 1 iterations, the set
consists of a single element, the optimised pattern of union
operators (line 9). Fig. 4 gives an example of the operation
of this algorithm.

Patterns with next operator. The next operator is as-
sociative and thus E1; (E2;E3) ≡ (E1;E2);E3 holds. The
cost of each of the two event patterns depends on the prop-
erties of E1, E2 and E3. As in the case of the union oper-
ator, the lowest cost pattern can be found by enumerating
all equivalent patterns and computing each cost. There are

(2n)!
(n+1)!n!

enumerations where n is the number of next opera-

tors and, as in the previous case, this is infeasible.
We solve the problem of finding the optimal pattern of

next operators using a dynamic programming approach. Fig. 5
shows the algorithm that iteratively finds optimal subex-
pressions of increasing length l until an optimal (sub)expression
with length n is found (for-loop in lines 4–13). The optimal
subexpressions are kept in list list, which initially holds all
subexpressions of length 1. As optimal subexpressions are
found, they are appended to the list. The for-loop in lines
5–13 finds the n-l optimal subexpressions of length l. For
each subexpression of length l starting at position i and



1 findOptimalNext(e_pat)
2 list = extractNextOperands(e_pat)
3 n = list.size()
4 for(l = 2; l =< n; l++)
5 for(i = 0; i < n-l+1; i++)
6 best = new InfinityCost()
7 j = i+l
8 for(k = i; k < j; k++)
9 ele1 = list.get(indexOf(i, k, n))
10 ele2 = list.get(indexOf(k+1, j, n))
11 if(cost(ele1, ele2) < best.cost())
12 best = New NextOperator(ele1, ele2)
13 list.add(best)
14 return list.get(indexOf(0, n-1, n))

Figure 5: Pseudo code for finding the optimal equiv-
alent pattern of next operators.

Index:       0    1     2     3    4        5             6             7               8

list = [ E1, E2, E3, E4, E5, (E1; E2), (E2; E3), (E3; E4), (E4; E5) ]

e_pat = E1; E2; E3; E4; E5
i = 0  j = 0 + l

k = 0: E1; (E2; E3)

k = 1: (E1; E2); E3

i = 0, j = 2:

l = 3:

i = 1  j = 1 + l

i = 2  j = 2 + l

Figure 6: Sample execution of the next rewriting
algorithm for pattern E1;E2;E3;E4;E5.

ending at position j=i+l-1, the optimal expression is found
by finding the two subexpressions that concatenated start at
i and end at j, and have the lowest cost (for-loop in lines 8–
12). The function indexOf returns the index of the optimal
(previously found) subexpression of length l (starting at a

and ending at b in the pattern) in list.
The time complexity of the algorithm is Θ(n3) due to the

three for-loops. Its space complexity is Θ(n2) because the
list contains

Pn
i=1 i elements at termination.

A snapshot of a sample execution of the algorithm is
shown in Fig. 6. The algorithm is at line 8 and is about
to compute the optimal pattern starting at index 0 with
length 3. As shown in the figure, there are two different
patterns to consider: E1; (E2;E3) and (E1;E2);E3. The
one with the lower cost is appended to the list in line 13.
After that, the same computations are performed again for
the next pattern of length 3, E2;E3;E4 (i = 1) and so on.

Patterns with exception operator. The exception pat-
tern E1; (E2\E3) is equivalent to (E1;E2)\E3 because the
terminating pattern E3 only influences the composite event
detection after the next operator has detected E1, which
does not depend on E2. This allows the next rewriting al-
gorithm to be used.

4.4 Operator Distribution
We developed a simple greedy algorithm for choosing op-

erator deployment plans. The algorithm reuses already de-
ployed operators and deploys the remaining operators in a
bottom-up fashion. Existing operators are stored in a hash
map to achieve fast look-up. First, a submitted query is tra-
versed top-down to find the largest equivalent deployed op-
erator in the hash map, if any, starting with the entire query.
If found, the (sub)expression is replaced with a marker con-

Central Manager

Sockets 
to clients

Client 
Handlers

Operators

Source Proxy

Sink Proxy Sink

Client Manager

Manager

Node Manager Engine

Operator Nodes
Primitive Source

Source

ControlsNode Process Spawns/controls Data flowEntity (of multiple 
processes)

TCP 
connection

TCP 
connection

Event Detection System

Figure 7: Overview of the Next CEP system design.

taining the operator identifier and location to allow oper-
ators to be connected once deployed. Next, the remaining
operators are deployed bottom-up. The location of each op-
erator is selected by recursively placing the left and right
subexpressions of the operator and then the operator itself.
An operator is placed by calculating the cost of placing the
operator on each node and selecting the lowest cost node,
as described in §4.2. This approach has a time complex-
ity of O(Q N) where Q is the number of operators in the
submitted query and N is the number of nodes.

Information about operators’ deployments are stored in-
crementally, as efficient locations are found, to support op-
erator reuse even within a single query. To avoid requesting
information about hosted operators from nodes themselves,
we store information about deployment plans at a central
location. Memory usage is proportional to the number of
operators times the average size of the abstract operator
tree (AOT) that describes each operator. To reduce mem-
ory usage, the hash value of AOTs could be used as key and
AOTs could be stored on disk and retrieved on-demand.

The advantage of our distribution approach is that it se-
lects good deployment plans while having low time complex-
ity. However, as the algorithm is greedy, it may not find the
optimal solution. In particular, as suboperators are placed
independently of each other, they may not be placed on the
same node, even if this would result in a better solution
after placing the parent operator. This could be addressed
by post-processing deployment plans using a meta-heuristic,
such as simulated annealing. We leave this to future work.

5. THE Next CEP SYSTEM
In this section, we describe the design and implementation

of the Next CEP system. As shown in Fig. 7, it consists of a
Central Manager, Operator Nodes and Source/Sink Proxies.

The Central Manager receives, processes and optimises
queries and instantiates them on available physical Opera-
tor Nodes. These tasks are divided between different pro-
cesses. The Node Manager monitors which Operator Nodes
are available for operator distribution. The Client Manager
accepts connections from clients and spawns a client handler
that receives queries, sends them to the Engine and returns
responses from the Engine to clients. The Engine parses
queries, registers sources and sinks and optimises queries
received from clients and spawns necessary Operators and
Sink and Source Proxies on the available nodes according to
the query deployment plan. The Engine also keeps track of
running queries and statistics used for query optimisation.

We chose a centralised management design for its simplic-
ity. It also facilitates query optimisation: Since the Central
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Manager has knowledge of all operators and their deploy-
ment, it is possible to reuse existing operators when new
queries are submitted.

The Operator Nodes execute the operators and proxies.
The actual sources and sinks are not part of the system and
are connected through TCP connections to ensure ordering
of packets according to our event model from §3.1. The
operators on an Operator Node can send events to each other
and also to operators on other nodes in the network.

Operators. Each operator has four types of processes, as
illustrated in Fig. 8. Incoming events are received by an
Input process and are then processed by a Generic Event
Automaton. This automaton is instantiated with a specifi-
cation of the particular operator type to execute (e.g., the
next operator). We chose this approach for its flexibility
and extensibility but it suffers from reduced operator perfor-
mance. The Generic Event Automaton spawns Automaton
Instances according to the operator’s semantics. An Output
process sends detected complex events to other operators or
sink proxies and also allows operators to be reused.

A problem inherent to distribution is the lack of global
time [22]. We assume that sources are synchronised using
the Network Time Protocol (NTP), which results typically
in 1–50 ms accuracy. On the other hand correct detection
does not depend on clock synchronisation of Next nodes
since we implement a guaranteed detection policy, as found
in the DistCED [24] system. Under this policy, events have
to become stable before being consumed by operators. An
event is stable if no other (delayed) event in the system
should be processed instead. Since channels do not reorder
events, stability of events can be achieved by having the
Input delay events from other operators or sources until the
next event has been received.

A benefit of the Next CEP design is that operators are
share-nothing processes communicating through events that
can thus be distributed transparently. Therefore more CPU
resources can be utilised resulting in higher throughput at
the cost of increased latency. This is relevant in our credit
card fraud detection scenario from §1.1. Most queries in-
clude patterns involving only transactions of the same card.
As a card is only used infrequently, e.g., once a day on av-
erage, and the data rate is 2100 transactions per second,
there will be a large number of automaton instances waiting
for the next transaction. By distributing these instances to
multiple machines, our system can then handle the work-
load.

Prototype implementation. To simplify development re-
lating to concurrency and distribution, we decided to im-
plement the system in Erlang. Erlang is a functional lan-

guage designed for distributed and fault-tolerant computing
based on the actor model. In this model, processes (actors)
only interact by asynchronous message passing within a sin-
gle host or between hosts. Erlang processes are lightweight
language-level threads that are mapped to operating system
threads. Therefore they have small memory footprints and
lower context-switching overheads.

The drawback of Erlang is reduced execution performance.
Although the Erlang virtual machine is capable of executing
native, pre-compiled code, it remains substantially slower
than systems programming languages, such as C or C++.
However, for the purpose of this work, we were interested in
relative performance improvements due to query optimisa-
tion techniques, as opposed to absolute performance num-
bers. Although our absolute performance remains several
orders of magnitude lower than that of state-of-the-art CEP
implementations, we believe that it nevertheless shows the
validity of our proposed optimisation techniques. The ab-
solute performance of our prototype implementation could
be improved by creating operator-specific (as opposed to
generic) event automata in C and calling these from Erlang.

To evaluate our query optimisation techniques, we wanted
a prototype implementation with predictable operator per-
formance. This allowed us to validate the cost functions
used in the query optimisation. As a result, our implemen-
tation does not use the “simple solution” everywhere. For
example, we implemented an efficient algorithm using gen-
eral balanced trees to compute event stability in the Input
process. Our implementation also maintains an index of au-
tomaton instances for fast event dispatching.

6. EVALUATION
Our evaluation had two main goals: assessing the poten-

tial efficiency gains of query optimisation and evaluating
the system behaviour when deployed on multiple machines.
Consequently, we separate the two aspects by first measuring
query optimisation improvements on a single machine and
then analysing system behaviour for the distributed case.

Methodology. Our tests were performed on the Emulab
test-bed [15]. In the single node case, we deployed the Next
CEP system on a Xeon 64-bit 3GHz machine that hosted
the operators, while the manager, the sources and the sinks
were hosted on other machines. For the distributed case, we
allocated 40 850Mhz Pentium III machines for the operators
and again separate machines to measure the system and
inject events. Nodes were connected to a 100-Mbps LAN.

We set up 8 sources publishing Poisson-distributed events.
The mean of the distribution was chosen exponentially in-
creasing for each source, ranging from one event per second,
for the slowest one, to 128 events per second, for the fastest
one. The combined average of all sources was 255 events per
seconds. To stress CPU usage, messages were kept small,
only including timestamps and theirs ids.

We choose three query workloads, next, union and mix, to
investigate the rewriting of the two main operators, union
and next, and also to represent realistic queries as featured
in the credit card fraud detection scenario. We composed
queries of the next and union workloads by uniformly gener-
ating trees of a given size and randomly allocating sources to
leaves. Queries of the mix workload were built by recursively
nesting union or next subtrees of two operators. While the
system without query rewriting used the query as issued, the
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Figure 9: Scalability improvement due to query rewriting for next, union and mix query workloads as a function
of query size (single node case).
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Figure 10: Throughput improvement due to query rewriting for next, union and mix query workloads as a
function of query number (single node case).

rewriting query compiler of the Next CEP system rewrote
it to a more optimal form before deploying it.

The additional resources due to query rewriting can be ex-
ploited to increase the number of operators supported con-
currently by the system or to support sources with higher
event rates. To test the first case, we measured the maxi-
mum number of operators that could be run on a single ma-
chine without overloading it and repeated this with query
rewriting turned off. To determine overload, we first times-
tamped events at the input queue of operators, where events
are stabilised, and again when events left the queue to enter
the operator. This enabled us to distinguish, for each event,
the portion of the latency measured at the sink caused by
event stabilisation and the part caused by queueing and pro-
cessing delays. We declared the system overloaded when the
80th percentile of processing delay grew above one second in
a 10-second observation window.

(1) Single node case. We conducted several experiments
changing the query size and computed averages over multiple
runs. The 5-run average results on a single node are given
in Fig. 9. For each query workload, the graphs shows the
maximum number of non-overloaded operators that can be
supported with and without query rewriting, as a function
of query size. The effect of query rewriting is significant for
next queries and increases with query size, as the union op-
erator is less costly than the next operator the performance
gains for union queries are less substantial, also improving
for larger queries. The result for the mix workload is between
the next and union.

Fig. 10 shows the dual scalability aspect by fixing the
number of deployed queries and testing the maximum rate
of complex event detection. In this test, we registered a vari-
able number of 5-operator queries and increased the source
rates up to the maximum throughput achievable by the sys-
tem. The graph for the next workload shows that query
rewriting increases the achievable throughput substantially,
doubling it in many cases. The throughput improvement for
union is still significant, about 20% on average, with mix still
showing an intermediate behaviour between the two.
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Figure 11: Scalability improvement for next (top)
and union (bottom) query workloads as a function of
node number (distributed case).

(2) Distributed case. To test scalability in the multi-node
case, we measured the number of supported 5-operator next
and union queries as we added more operator machines. The
distribution algorithm plays a crucial role: for the next work-
load (top chart in Fig. 11), the number of queries supported
by Round robin placement grows slowly up to 15 nodes and
is flat thereafter. Using our Greedy placement approach,
scalability is improved considerably and is further increased
after enabling the planner’s Reuse feature. The Rewrite
graphs in the figure show that query rewriting improves
upon Greedy and Reuse: with 40 nodes, Rewrite improves
Greedy by 24% and Reuse by 34%. When query rewriting is
applied before reuse, query rewriting increases reuse oppor-



tunities by finding equivalent patterns and rewriting them
in a more efficient way.

For the union workload (bottom chart in Fig. 11), the sys-
tem saturates at around 80 queries. This can be explained
by considering that each next query outputs 32 events/sec
on average (i.e., the rate of the first source), while the 5-
operator union query produces six times that, 191 events/sec
on average. With 80 queries, the union workload outputs
about 15, 000 events/sec vs. 2500 events/sec for next. We de-
termined that this caused the sink proxy machine to became
overloaded. When we removed this bottleneck by allocating
5 machines as sink proxies, the distance between Rewrite
and Greedy improved to be up to 50% at about 10 nodes
(as shown). We believe that this demonstrates how our dis-
tributed Next CEP system facilitates the addition of new
resources to remove bottlenecks.

7. CONCLUSIONS
In this paper, we describe the Next CEP system, a dis-

tributed event processing system with automated query rewrit-
ing and distributed deployment implemented in Erlang. The
system uses a new high-level event query language for ex-
pressing event patterns that supports rewriting and sepa-
rates patterns from predicates. Patterns are detected through
a simple, yet expressive automaton-based approach. The
CPU usage of different operators is estimated using a cost
model that takes the burstiness of operators into account.
We show how patterns with three operators (union, next
and exception) can be rewritten to have lower costs. We
also describe a greedy algorithm for selecting deployment
plans that reuse existing operators.

For future work, we plan to extend the cost model to
include operator selectivities and processing costs of pred-
icates. In addition, we want to examine the interplay of
language level optimisation techniques with dynamic opti-
misation at query run-time. We believe that our cost model
will also be applicable to this case and enable the CEP sys-
tem to reconsider query optimisation decisions as resource
availability and properties of event sources change.
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