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Abstract—The secure and correct implementation of network
protocols for resource discovery, device configuration and net-
work management is complex and error-prone. Protocol spec-
ifications contain ambiguities, leading to implementation flaws
and security vulnerabilities in network daemons. Such problems
are hard to detect because they are often triggered by complex
sequences of packets that occur only after prolonged operation.

The goal of this work is to find semantic bugs in network
daemons. Our approach is to replay a set of input packets that
result in high source code coverage of the daemon and observe
potential violations of rules derived from the protocol specifi-
cation. We describe SYMNYV, a practical verification tool that
first symbolically executes a network daemon to generate high-
coverage input packets and then checks a set of rules constraining
permitted input and output packets. We have applied SYMNV
to three different implementations of the Zeroconf protocol and
show that it is able to discover non-trivial bugs.

I. INTRODUCTION

Implementations of network protocols such as DNS, Zero-
conf and OSPF frequently suffer from security problems and
interoperability issues. Ambiguities in protocol specifications
such as RFCs [1] can cause different interpretations by devel-
opers, even for well-studied and mature protocols. Such errors
in network daemons are hard to detect because they may only
be triggered by complex sequences of events that occur only
after long execution as part of a production network [2]. For
example, DNS server implementations that are vulnerable to
DNS cache poisoning attacks [3] are difficult to detect because
the vulnerability only exhibits itself in specific scenarios.

In practice, developers attempt to find flaws in network dae-
mons using a combination of manual and random testing [4],
code review [5], runtime debugging [6] and static analysis [7].
As the complexity of network services continues to increase,
these methods become less effective. Random testing has low
code coverage and thus may miss important vulnerabilities.
Dynamic tools such as Daikon [8] and Valgrind [9] require test
inputs and thus suffer from similar coverage problems. While
static analysis of the source code of a network daemon benefits
from high code coverage [7], [10], it is often too imprecise
to guarantee properties that depend on accurate information
about execution state. Although there has been much research
on formal verification of network protocols [11], [12], such
approaches cannot guarantee the correctness of the actual
implementation.

Certain security vulnerabilities and implementation errors
are only exposed when a network daemon handles pathological

input packets. Recent automated tools for test generation [13]
create high coverage test inputs via symbolic execution [14],
[15]. They run programs on “symbolic” input values and then
explore a large number of potential execution paths in order
to generate actual test data for all traversed paths. Symbolic
execution has been successfully used to find bugs in a wide
variety of applications ranging from libraries to network and
operating systems code [13], [16], [17].

We propose to execute network daemons on symbolic input
packets in order to discover deviations from the protocol
specification. To achieve this goal, we overcome two chal-
lenges: (1) due to their sizes, it is infeasible to make entire
input packets symbolic—we show that good coverage can be
achieved by repeatedly making combinations of packet fields
symbolic; (2) based on the generated high-coverage input
packets, we need to detect incorrect behaviour of the network
daemon automatically—we propose a packet rule language
that detects violations in observed input and output packets.

In this paper, we describe SYMNV, a verification tool that
enables developers to create a link between specifications and
implementations of network protocols. SYMNV automatically
validates a network daemon against its protocol specification
and discovers difficult to find semantic bugs. The input to
SYMNV is the C source code of a network daemon and
a set of rules extracted from the protocol specification that
define correctness and security violations. Each rule describes
invalid patterns of input and output packets. SYMNV uses
symbolic execution to generate an exhaustive set of input
packets that yield high source code coverage. It then replays
these test packets to the network daemon and uses a rule-
based packet analyser to detect rule violations, which indicate
implementation errors.

To evaluate the effectiveness of SYMNV, we apply it to
three network daemons that implement the Zeroconf config-
uration protocol. Using rules derived from the Zeroconf RFC
specifications [18], [19], SYMNYV finds two different types of
violations in these implementations: generic errors, e.g., test
packets that cause the daemon to abort and can be used to
mount a denial-of-service attack, and semantic errors, e.g., test
packets that expose incorrect behaviour in the implementation.

In summary, we make the following main contributions:

1) the application of symbolic execution to network dae-

mons to generate high-coverage test packets;

2) the specification of a high-level, packet rule language
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using an event automata model for expressing con-
straints on packet sequences;

3) the implementation of a verification tool, SYMNV, for
verifying network protocol implementations; and

4) an evaluation that describes real-world flaws in different
implementations of the Zeroconf protocol.

The next section gives an overview of the SYMNV tool.
SIII describes how to obtain verifiable specifications using our
packet rule language. In §IV, we discuss the test generation
and replay process using symbolic execution. We then present
our evaluation results and the discovered bugs in §V. The
paper finishes with a discussion of related work (§VI) and
conclusions (§VII).

II. SYMNV OVERVIEW

In this section, we provide an overview of the approach
taken by SYMNV, which consists of two parts. First, SYMNV
symbolically executes a network daemon to obtain a set of test
input packets that result in high code coverage when processed
by a network daemon. Second, it replays the set of test packets
under controlled conditions and observes the output packets
generated by the network daemon, which are validated for
compliance against the protocol specification.

The SYMNV architecture is shown in Figure 1. When
verifying a network daemon with SYMNYV, there are four
steps, as labeled in the figure:

1. Creation of packet rules. The first step is to develop a
rule-based verifiable specification from a standard protocol
specification. SYMNV provides a packet rule language to
describe correct sequences of packets. A developer can write
packet rules based on the protocol specification, e.g., by
translating phrases containing specific words such as “MUST”
and “SHOULD?” into rules (cf. §III-A).

2. Generation of test packets. To validate as many packet
rules as possible, SYMNV needs a good set of test packets
that provide high code coverage. It uses symbolic execution to
explore a large number of code paths in the network daemon
and, based on this, synthesises a set of test input packets
(cf. §IV-A).

3. Replay of test packets. The generated test packets obtained
above are replayed on the original network daemon. Each
test packet is sent to the daemon in a controlled environ-
ment, and the output packets generated by the daemon in
response are recorded by SYMNV together with the input
packet (cf. §IV-B).

4. Validation of packet rules. In the final step, the cap-
tured input and output packets from the previous step are
validated against the packet rules from step 1. SYMNV
translates the packet rules into a set of non-deterministic
finite automata (NFAs). A rule-based packet analyser matches
all captured replay packets against each NFA to detect rule
violations. For each violation, SYMNYV reports an error trace,
i.e., the sequence of input and output packets that led to the
violation (cf. §III-B and §IV-B).

ITII. VERIFIABLE SPECIFICATIONS

The first step in using SYMNYV is to make a standard
protocol specification such as an RFC document verifiable. A
verifiable specification allows SYMNYV to assess the correct
behaviour of a network daemon automatically. We assume
that the behaviour of a network daemon constitutes of the
output packets that it emits in response to input packets. We
define behavioural violations using a packet rule language
that matches incorrect sequences of packets. In this black-
box approach, we do not reason about the internal state of the
network daemon, which means that packet rules are reusable
across different daemons implementing the same protocol.

Next we first show how rules are derived from specifications
(8III-A) and then introduce our packet rule language to express
verifiable specifications (§III-B).

A. Rule Extraction

A set of rules can be extracted from the text of a network
protocol specification such as an RFC or IETF standard.
In many standards documents, words such as “MUST” and
“SHOULD” are used to express requirements in the speci-
fication [20]. For example, “MUST” has similar meaning to
“REQUIRED” or “SHALL” and means that the statement is
an absolute requirement. We find that phrases containing these
words are good candidates for translation into formal rules.

Consider how rules can be derived from the sentences in
the RFC defining the Multicast DNS (mDNS) network proto-
col [18]. For example, we can find the following requirement
related to the “Query ID” of a multicast DNS packet:

“In unicast response messages generated specifically
in response to a particular (unicast or multicast)
query, the Query ID MUST match the ID from the
query message.”

This requirement says how an mDNS daemon has to set
the Query ID for the response packet when it answers using
unicast for a given query. If the daemon does not follow
this desired behaviour—for example, by selecting a random
value for the ID that does not match the ID from the query—
the client may ignore the response message. Therefore this
requirement is a good candidate for a rule.
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Fig. 2. Example rule for discovering inconsistent Query IDs in DNS packets

In our packet rule language described in the next section,
violations of this requirement can be expressed as shown
in Figure 2. This rule matches query and response packets
satisfying certain predicates. The query and response packets
must appear in sequence, as specified by the next (;) operator.

Most network protocol patterns with a general query/re-
sponse model can be described using such rules.

To be reusable across different implementation, all rules
must refer to externally observable aspects of packets. There-
fore not all phrases from specifications containing these special
keywords can be translated to rules. For example, the following
requirement from the mDNS specification cannot be described
as a rule because it refers to internal state maintained by the
daemon that is not visible externally:

“A Multicast DNS Responder MUST NOT place
records from its cache, which have been learned
from other Responders |[...]”

B. Packet Rule Description Language

Since our packet rule description language is intended for
use by developers of network services, two design require-
ments are readability and ease of integration with network
protocols. The rule language describes violations of packet
requirements and consists of expressions of the following
form:

packetExpr = pkt{Efiers }

where pkt is the name of a packet and Y g 1s a finite set
of packet filter predicates. A packet filter predicate represents
the possible values of the corresponding fields in packets that
match this filter. Figure 3 lists some of the fields that are part
of a DNS packet and can be referred to in rules. The finite set
of packet filter predicates are sequences of valid packet filters
joined by the logical operators AND/OR. The modifiers ANY
and ALL specify that a predicate has to match at least one or
all fields, respectively, if multiple fields with the same name
exist. Nested field names are divided by dots (.).

Consider the packet filter on lines 1-3 of Figure 2.

It matches a DNS query packet (f1ag.QR=0x00) that is not
from the multicast IP address 244.0.0.251 and has more
than one question (questions!=0x00). It ignores packets
that do not satisfy these filter conditions.

Rule operators. Based on such packet definitions, rule expres-
sions can be built recursively using three operators: next (;),
union (|) and iteration (+):
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Fig. 3. Example of fields in a DNS packet

1) The next operator Pkt1;pkt2 detects the next occur-
rence of Pkt2 after Pktl, ignoring any intermediate
packets that do not satisfy the filter predicates for pkt2.

2) The union operator Pkt1|Pkt2 matches a choice of
packets Pkt1 or Pkt2.

3) The iteration operator Pkt +n detects n consecutive
packets Pkt.

Timeouts. It is important to include time when describing
packet sequences because many aspects of a network protocol
are driven by timers and timeouts. To describe timing-related
requirements, each packet contains a virtual field called t s that
represents the timestamp at which the packet was received.
For example, ts >= @query.ts + 150 means that a rule
matches a response packet with a timestamp that is 150 msec
larger than that of the corresponding query packet.

Variable binding. Using variable bindings, fields from previ-
ously detected packets can be stored and referenced in subse-
quent filter expressions. A field name of the form @pkt .field
refers to the field name field of a previous packet pkt.

Rule implementation. Packet rules are verified using non-
deterministic finite automata (NFAs). We use an event model
that is similar to the ones found in complex event processing
systems [21].

The SYMNV automata operate as follows. Each NFA state
is assigned a name and an input packet. All the outgoing
edges of a state read that input packet. Suppose an automaton
instance is in state S with assigned packet p. Each edge, say
between states S and T, is labelled by a pair (0, f), where 0
is a predicate and f is a transition function returning the next
state T. Let a packet e appear such that predicate 6(p,e) is
satisfied. As a result, the NFA transitions non-deterministically
to the next state 7', as licensed by its transition function f and
stores packet p in order to refer back to its field values later.

IV. VERIFICATION OF NETWORK DAEMONS

In this section, we describe how SYMNV generates high-
coverage test packets using symbolic execution and replays
those packets to discover violations of packet rules.



A. Symbolic Execution of Network Daemons

The use of symbolic execution [14] in testing is a well-
known approach. The main idea behind symbolic execution is
to use as input symbolic values—instead of actual data—and
to represent the range of possible values for a given variable
as a symbolic expression. One popular application of symbolic
execution is the automated generation of test cases that achieve
a high degree of source code coverage.

SYMNYV executes a network daemon symbolically by mark-
ing set of bytes in an input network packet as symbolic
variables. Symbolic execution then explores all (or as many
as possible in a given time budget) code paths in the network
daemon that are related to a symbolic variable. When encoun-
tering branches that depend on a symbolic value, symbolic
execution generates test cases that trigger both execution paths.

SYMNYV uses KLEE [13], a symbolic execution tool for C
programs capable of automatically generating high-coverage
tests and finding low-level bugs.

Marking packet fields as symbolic. Deciding which bytes to
mark as symbolic has a big impact on the quality of generated
test cases. In most cases, the behaviour of a network daecmon
is determined by the input packets that it receives from other
daemons or clients. For example, a DNS server receives UDP
query packets from clients and replies with a UDP response
packet after having resolved the DNS name in the query packet
to an IP address.

Usually a network packet consists of multiple fields that
are part of the packet header and a data part. Most of the
source code of daemons contains logic for handling these
fields. Therefore, SYMNYV treats entire fields as symbolic.

An open challenge is to decide which fields to mark as
symbolic. Unfortunately, it is infeasible to mark the complete
packet as symbolic because this would result in too many paths
that would need to be explored during symbolic execution.
Most of these paths would not increase code coverage because
they would relate to invalid packets that are normally discarded
by a network daemon. Instead, it is important to be strategic
and only mark individual packet fields symbolic that are likely
to result in the highest coverage gains.

SYMNV allows developers to mark any combinations of
packets as symbolic. In our experiments in §V, we try all
combinations of fields in DNS packets, starting with one field,
and then progressively advancing to larger numbers of fields
that are marked symbolic at the same time, with good results.

Injection of symbolic packets. Another important problem
is to decide how to inject symbolic packets without requiring
major changes to the daemon code. Conceptually, we would
like the daemon to receive symbolic packets over the network.
To implement this, we simply changed the code that receives
an incoming packet to mark certain packet fields as symbolic.

As most C daemon implementations use the standard socket
API to receive input packets, we found it easy to make this
modification.

B. Generation and Replay of Test Packets

The verification process of SYMNV is composed of three
tasks: test packet generation, test packet replay and packet rule
validation.

Test packet generation. To run a network daemon symbol-
ically, we first need to compile its source code to LLVM
bitcode [22], the low-level language used by the KLEE sym-
bolic execution engine. When the LLVM-compiled daemon
starts, it behaves normally and waits for input. SYMNV then
sends a specific test input packet to the daemon in order to
trigger symbolic execution. When the daemon receives this
test packet, it intercepts the packet and marks specified fields
as symbolic.

For example, if the user provides an instruction to mark the
flags field as symbolic, KLEE replaces the concrete value of
this field within the packet with symbolic values while keeping
the other fields concrete. KLEE then explores all possible
execution paths (or as many as possible in a given amount
of time) corresponding to the various input packets having
different flags values. At the end of each execution path, KLEE
generates a concrete test packet that is stored on disk.

Test packet replay. Generated test packets are then executed
(“replayed”) using the original network daemon. The replay
process executes an unmodified native version of the daemon
on all of the test packets generated by symbolic execution.
SYMNV executes the unmodified network daemon under the
same conditions under which the test packets were generated
(e.g., by using the same configuration parameters). Replayed
packets causing crashes are reported during the replay process.

To validate the network daemon, SYMNV captures all
network traffic generated by the daemon and clients during the
replay. For this, SYMNYV uses 1ibpcap [23], a portable packet
capture library. The captured traffic is stored in a .pcap file,
which is used as one of inputs to the next step.

Validation of packet rules.

To determine the correctness of the daemon implementation,
SYMNV checks the execution of the replayed test packets
against the packet rules extracted from the protocol specifica-
tion. To verify a network daemon using SYMNV mechanically,
a developer must provide an executable binary of the network
daemon, a set of packet rules, and a test directory that contains
all test packets captured during the previous replay phase. For
example, the following command instructs SYMNV to verify
a Multicast DNS daemon using a verifiable specification and
a set of test packets:

symnv-validate -exe mdns mdns.rules testcases/

Packet rules are verified using non-deterministic finite au-
tomata, as described in §III-B. The input to each NFA are the
.pcap files containing the traffic that was captured during
the replay process. If an NFA ends in a violating state,
SYMNYV reports the violation and generates a trace, which
lists the sequence of packets leading to the violation of the
corresponding packet rule.



V. EVALUATION

The goal of our evaluation is to demonstrate the feasibil-
ity of SYMNV as an efficient verification tool for finding
implementation flaws in real-world network daemons. Using
SYMNYV, we discovered seven flaws in network daemons
implementing the Zeroconf network specification [18], [19]
caused by implementations mistakes and ambiguous require-
ments in the specification.

Zeroconf protocol. We center our evaluation around Zero-
conf [18], a network discovery protocol that enables devices
on an IP network to automatically configure themselves and
their services and be discovered without manual intervention.
Zeroconf is a serverless implementation of the DNS naming
function built on top of standard DNS.

In Zeroconf, a new network service such as a file server or
printer is added as follows. A client registers a new network
service by selecting a service instance name. It then sends
a service registration message to its local Zeroconf daemon.
This causes the Zeroconf daemon to broadcast three probing
DNS packets to the network, querying if the service name
already exists. If there is no response, the daemon announces
the service through a DNS announcement packet.

Zeroconf supports service discovery to allow applications
to find a particular service name or all instances of a given
service type. When the Zeroconf daemon receives a DNS
query packet for a given type or name, it responds with any
services matching the query.

We investigate three different implementations of Zeroconf
using SYMNV: Apple’s Bonjour 107.6', Avahi 0.6.23* and
PyZeroconf 0.123. As Bonjour and Avahi are the most widely
used Zeroconf implementations and written in C, we use them
for symbolic execution. However, we use the generated test
packets on all three daemons.

A. Deriving Rules

The Zeroconf protocol is defined as part of two RFC specifi-
cations: multicast DNS (MDNS) [18] and DNS-based Service
Discovery (DNS-SD) [19]. The MDNS RFC covers basic
behaviour such as probing, announcements and responses of
Zeroconf; the DNS-SD RFC describes the structure of resource
records and service discovery mechanisms.

To obtain a set of packet rules, as defined in §III-B, we
examined both specifications to find phrases that contain the
keywords from §III-A. In total, we found 110 phrases in the
specifications: 79 phrases with a “MUST” keyword, 29 with
“MUST NOT” and 2 with “SHALL/SHALL NOT”.

Not all of these phrases could be translated into rules—
we translated successfully 29 phrases based on “MUST”,
4 phrases based on “MUST NOT” and none of the phrases
with “SHALL/SHALL NOT”. For example, some statements
were purely informative, and some contained environmental
requirements such as the interfaces that must be supported.

Ihttp://developer.apple.com/opensource/
Zhttp://www.avahi.org
3http://www.amk.ca/python/zeroconf

Any phrases referring to the internal state of the daemon,
such as the cache maintained by the Zeroconf daemon, had
to be ignored too. Finally, some phrases were used together to
describe a single requirement. In total, we obtained a verifiable
specification consisting of 25 rules based on 33 valid phrases.

B. Verification of Zeroconf

We run our experiments on a 2.4 Ghz Intel Core2 Duo
machine with 2 GB of RAM under 32-bit Ubuntu Linux.
To control network traffic during test packet generation and
replay, all experiments are done as part of an isolated test
network. Our experimental scenario involves two nodes: a
Zeroconf daemon and a DNS-SD client. The Zeroconf daemon
is executed using our SYMNYV verification tool. To simulate a
typical environment, the DNS-SD client registers six services
with the Zeroconf daemon. After registering these services,
we inject a one-off query using the UNIX dig command to
begin the symbolic execution of the Zeroconf daemon.

1) Test packet generation: The first step in the test gen-
eration process is to decide which fields in the packet to
mark as symbolic. In our experiments, each DNS input packet
has 11 fields. We start with the 1D field as the only sym-
bolic field, run KLEE to generate input test packets, and
then progressively mark more fields as symbolic, rerunning
KLEE. As more fields are made symbolic, the number of
paths explored by KLEE increase dramatically. By default,
KLEE generates one test packet for each path it explores.
To avoid unnecessarily generating a large number of packets,
we configured KLEE to generate only test packets for paths
which cover new statements in the code. Furthermore, we
also explored different timeout values for KLEE to stop the
exploration of paths.

Figure 4 shows the number of explored paths and generated
test packets when we increase the number of symbolic packet
fields and use different timeout values. These experiments
reveal two important insights. First, they suggest that a 50s
timeout value offers a good tradeoff between the time needed
to run the experiments and the number of generated test
packets—with a 10s timeout KLEE generates significantly
fewer test packets, but increasing the timeout to 1 hour does
not significantly increase the number of generated packets
(KLEE generates many more paths, but most of them cover
the same lines of code). Therefore, we use a 50s timeout value
in all of our experiments.

Second, using this approach KLEE generates relatively few
test packets overall (under 250). Consequently, we decided
to try all 4095 possible combinations of fields to mark as
symbolic. Obtaining and comparing the amount of generated
test packets for different combinations helped us understand
the sensitivity of each field in the implementation. Using all
combinations of packet fields, KLEE generated 32,069 test
packets, with a total execution time of around 22 hours (each
combination was timed out after 50 seconds).

Figure 5 shows the number of generated test packets for
a subset of these combinations, namely those in which pairs
of fields are marked as symbolic. The results show that the
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number of generated packets depends on which fields are
marked as symbolic. For example, when the flags field is
symbolic, a relatively high number of test packets is generated
because the flags field contains control information that is
used extensively by the network daemon to decide how to
handle packets. On the other hand, when the authority or
additional fields are marked as symbolic, fewer test packets
are generated because these fields are only involved in simple
checks used to decide the validity of a packet.

Finally, in order to analyse the sensitivity of each field in
different implementations of the protocol, we run an exper-
iment in which we mark one field at a time as symbolic,
and compare the number of test packets generated for both
Bonjour and Avahi. Figure 6 shows our results. As expected,
since both implementations follow the same protocol, we
obtain similar sets of test packets for the two daemons. For
example, when we mark the port field as symbolic, it results
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in values 0, 512 and 5353 for Avahi and 0, 2, 5351 and
5353 for Bonjour. However, there are certain fields, such as
srv_proto and domain, for which we obtain significantly
more test packets for Avahi than for Bonjour. By examining
the code, we discovered that the implementation used by Avahi
to compare the different fields (e.g., domain names) is more
complex, and requires more test packets to cover all possible
code statements.

To explore source code coverage, we focus on the Bonjour
daemon. It has about 8K lines of source code in 10 files. On
average, the generated test packets by SYMNV cover 61%
of the code, while the baseline tests that execute the daemon
without sending test packets only cover 20%. (We disabled
unnecessary compile options and exclude library files from
the calculation because they are not related to our experiments;
coverage is measured using the gcov tool, which is part of the
GNU GCC compiler suite.)

Fundamentally our test scenario cannot cover 28% of the
source code. In addition to DNS response/request packets, the
daemon accepts service registrations from DNS-SD clients,
which are not explored symbolically in our experiments. About
15% of the source code are used to handle such requests;
another 13% implement other features such as cache mainte-
nance and name conflict resolution.

2) Discovered implementation errors: Using SYMNV, we
applied the generated test packets to all three Zeroconf im-
plementations in order to find violations of our packet rules.
Although the generated packets come from the Avahi and
Bonjour source code, they can be used to test other Zeroconf
implementations because they are highly effective test packets
containing malformed data and corner cases.

SYMNYV discovered seven different errors, four in the
PyZeroconf implementation, two in both Avahi and Bonjour,
and one in both PyZeroconf and Bonjour. We describe three
of these errors below.

Violation 1: Vulnerability caused by source port number
zero. When we mark the source port field as symbolic, we
obtain test packets with the following four values: 0, 2, 5351
and 5353. All these port numbers are well-known; port 5353
is assigned to mDNS. According to the mDNS specification, a
query must be sent as a multicast packet from port 5353 or as
a unicast query from a random port number. If the source port



mStatus mDNSPlatformSendUDP
(..., mDNSIPPort dstPort) {

assert (m != NULL);
assert (end != NULL) ;

assert (dstPort.NotAnInteger != 0);
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Fig. 7. Code fragment from Bonjour daemon leading to abort error

in a received query is not 5353, the daemon should consider
the packet to be a unicast query and generate a conventional
unicast response, for example, by repeating the query ID and
sending a response to that source port.

Therefore, we expect the daemons simply to reply with a
response packet to all these port numbers without any errors.
However, we detect assert errors from Bonjour and Avahi.
Both errors are caused by the source port number of a query
packet.

In order to confirm these errors, we replay the test pack-
ets using the original network daemons. During this replay
process, when SYMNYV replaces the source port with 0 and
sends the crafted packet, the daemons abort after receiving
the packet. In the case of Bonjour, the daemon calls the
mDNSPlat formSendUDP function to send a response packet.
Line 6 in Figure 7 causes the daemon to abort. Therefore,
sending the crafted packet to a multicast address (224.0.0.251)
terminates all Bonjour daemons in the network which have
an answer to the query. The crafted packet also aborts any
running Avahi daemons in the network. Avahi daemons are
aborted regardless of the existence of an answer because the
responsible assertion is located in a function that handles any
received packets.

Violation 2: Incorrect response for unknown record class.
When the daemon receives a query packet asking for a specific
service, it must compare three values—name, type, and class—
against its records. The daemon responds to a query packet
only when it has a record with the same values for these three
fields. This requirement is stated in the specification:
“The record name must match the question name,
the record rrtype must match the question qtype
unless the qtype is ANY (255) or the rrtype is
CNAME (5), and the record rrclass must match the
question qclass unless the qclass is ANY (255)”
From the above statement, we derive the following rule:

query{src_port != 5353
AND dst_port = 5353
AND flag.QR = 0x00}

;esp {dst_port = @Qquery.src_port
AND flag.QR = 0x80
AND data.answer (class != ’'ANY’
AND class != Qquery.question.class) }
When we mark the class field as symbolic, we obtain
the following two test packets: “IN (Internet)” and “0x00
(unknown type)”. Both Bonjour and Avahi respond only to the

query with class value “IN”, which is the correct behaviour.

wever, eroconf incorr sends a response even when
However, PyZeroconf incorrectly sends a nse even whe
it receives a query with an unknown class value.

Violation 3: Probing missing service. The DNS-SD specifi-
cation requires every service to have a TXT record of the same
name as the SRV record. This must be the case even if the
service has no additional data to store, resulting in an empty
TXT record. In addition, the mDNS specification states that a
query for the purpose of probing the uniqueness of a record
can be distinguished from a normal query by the fact that the
query contains a proposed record in the “authority” section that
answers the question in the “question” section. This means that
when a client registers a new unique service, probing queries
for the service have to include all related records with the same
name (i.e. the PTR, SRV and TXT records) in the authority
section.

Probing query packets from the Avahi daemon correctly
include all related records. However, the Bonjour daemon
does not include the TXT record in the authority section
and PyZeroconf only includes PTR records without any SRV
or TXT records. This behaviour violates a packet rule that
matches a probing packet that does not contain all records
types (PTR, SRV and TXT) in its authority records field:

probing{flag.QR = 0x00
AND questions != 0x00
AND auth_rr != 0x00

AND ALL data.au(type !=
["PTR" | "SRV’ | 'TXT'])} +3

C. Discussion

Our experience with using SYMNV has yielded several
insights. The majority of detected violations are caused by
different interpretations of the same specification. Ambiguities
in the specification may lead to interoperability problems
between daemons. By translating textual specifications into
verifiable rules, one can eliminate ambiguities. Since the rules
only need to be extracted from a specification once, this can be
done by domain experts who can resolve ambiguities correctly.

The number of generated test packets, the runtime and
memory consumption of SYMNV, and the coverage achieved
in the code are all heavily dependant on the amount of
symbolic input in packets. Making all fields in an input packet
symbolic is usually not possible, because it can lead to path
explosion. However, our approach of systematically making
symbolic all possible combinations of fields, starting with
only one symbolic field and incrementally making more fields
symbolic seems to provide a good trade-off between runtime
and code coverage.

VI. RELATED WORK

As network services become more complex and error-prone,
it becomes important to use automated techniques to ver-
ify their correctness. Rule-based analysis has already gained
ground in the validation of network protocol implementations
and the detection of intrusions and vulnerabilities [24], [25].



For example, Monitor [25] uses network rules to describe
network behaviour and identify violations by monitoring real-
time network traffic. However, their rule description language
is not expressive enough to describe complex relationships
between packets that are associated with many network errors.

Tools such as Pistachio [10] define network rules derived
from specifications. Such systems bridge the gap between
specifications and their implementation, but they achieve only
low code coverage and struggle to detect rare errors. SYMNV
uses symbolic execution to increase code coverage and pro-
vides a high-level packet rule language based on an expressive
automata model. While Pistachio’s language could be used
with SYMNV, our packet rules can describe more complex
sequences of packets compared to Pistachio’s single input-
output patterns.

Event processing systems can detect complex event patterns
using pattern matching techniques, e.g., state automata [26] or
event trees [27]. As automata-based models provide sufficient
expressiveness for detecting complex sequences, SYMNV
uses automata to find violations in packet rules. Its packet
rule language is similar to the one used by the NEXTCEP
system [21] but is extended with primitives to make statements
about packet fields.

Symbolic execution is a popular technique for generating
high-coverage test cases and finding implementation flaws.
Symbolic execution tools such as KLEE have been applied
to a variety of application domains [16]. However, without
using any high-level semantic rules, these systems have been
limited to finding generic errors, such as division by zero or
buffer overflows. By combining symbolic execution with rule-
based analysis, SYMNV has the ability to detect hard-to-find
semantic bugs in network protocol implementations.

VII. CONCLUSIONS

In this paper, we described SYMNYV, a practical verification
tool for network protocol implementations. SYMNV combines
symbolic execution with automata-based rule checking. After
deriving a set of packet rules from a standard protocol spec-
ification, it generates a set of input packets using symbolic
execution, and then replays them to discover rule violations
in real-world network daemon implementations. We applied
SYMNYV to three implementations of the Zeroconf protocol,
and found seven non-trivial errors.

For future work, we plan to extend SYMNV in a num-
ber of directions. First, we want to achieve higher code
coverage through development of smart symbolic marking
strategies. We will also investigate generated test cases from
several network service daemons and compare them to assess
interoperability between daemons in an automated fashion.
Finally, we are extending SYMNYV to a framework providing
fully automated network service verification across multiple
network hosts. Within the framework, a runtime verifier is
embedded into network service daemons and continuously
monitors and checks the network state against given desired
properties to provide correctness guarantees.
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