
SQPR: Stream Query Planning with Reuse
Evangelia Kalyvianaki #, Wolfram Wiesemann #, Quang Hieu Vu ∗, Daniel Kuhn #, Peter Pietzuch #

#Department of Computing, Imperial College London, United Kingdom
{ekalyv, wwiesema, dkuhn, prp}@doc.ic.ac.uk

∗Institute for Infocomm Research, Singapore
qhvu@i2r.a-star.edu.sg

Abstract—When users submit new queries to a distributed
stream processing system (DSPS), a query planner must allocate
physical resources, such as CPU cores, memory and network
bandwidth, from a set of hosts to queries. Allocation decisions
must provide the correct mix of resources required by queries,
while achieving an efficient overall allocation to scale in the
number of admitted queries. By exploiting overlap between
queries and reusing partial results, a query planner can conserve
resources but has to carry out more complex planning decisions.

In this paper, we describe SQPR, a query planner that targets
DSPSs in data centre environments with heterogeneous resources.
SQPR models query admission, allocation and reuse as a single
constrained optimisation problem and solves an approximate ver-
sion to achieve scalability. It prevents individual resources from
becoming bottlenecks by re-planning past allocation decisions
and supports different allocation objectives. As our experimental
evaluation in comparison with a state-of-the-art planner shows
SQPR makes efficient resource allocation decisions, even with a
high utilisation of resources, with acceptable overheads.

I. INTRODUCTION

An increasing number of applications require the processing
of infinite streams of data in near real-time according to
a large set of continuous queries. For this purpose, stream
processing systems have been successfully used in financial
data processing [1], network monitoring [2] and supply chain
management applications [3]. Distributed stream processing
systems (DSPSs) [1], [4], [5] partition the execution of queries
across a set of hosts in order to achieve higher performance,
in terms of supported data stream rates, and better scalability,
in terms of the number of concurrent queries.

A challenge that all DSPSs face is query planning—the
initial allocation of resources from hosts to queries. Individual
queries require a mix of computational, memory and network
resources from potentially multiple hosts in order to process
data streams at a given target rate. Queries consist of query
operators that consume CPU and memory resources on a
host. In addition, operators also need network bandwidth to
exchange streams with partial query results between hosts.
Query planning should provide an allocation of resources that
is efficient in order to support the maximum number of queries,
while satisfying the performance goals of individual queries.

The query planning problem is challenging because of
the large number of resources managed by the DSPS and
the complex resource requirements of queries. A bad query
planner may use resources inefficiently and therefore not admit
new queries to the system when there is a shortage of some
resource while others are under-utilised. Any of the resources

may become a bottleneck in a data centre: for example, a host
that has exhausted its network bandwidth to other hosts may
be unable to support additional operators, irrespective of its
spare CPU resources. Query planning should have the goal
of load-balancing resource allocation across hosts to achieve
uniform query performance [6]. However, in a data centre with
virtualised hosts, it may also be desirable to skew the load
distribution to switch off idle virtual machines.

Multi-query optimisation [7] has been shown to be a power-
ful technique for improving the efficiency of query processing.
By exploiting the overlap between queries in terms of shared
operators and streams, query reuse can save resources through
reuse of partial results from sub-queries, thus increasing
system scalability. However, query reuse complicates query
planning, and simple heuristics may result in poor allocation
decisions. For example, a strategy that always greedily reuses
existing sub-queries may exhaust a host’s available network
bandwidth before its CPU resources are fully utilised. This
introduces unnecessary hot-spots in the system and requires
the query planner to revisit past planning decisions.

Most research in this space focuses on adaptive query
optimisation of already running queries [4], [8], [9]. This
assumes that initial query planning at deployment time is
trivial due to abundant resources available to the DSPS. Such
over-provisioning is wasteful especially in virtualised data
centres where unused resources can be reclaimed for other
applications. In addition, poor decisions on initial query plan-
ning are costly to correct at runtime using operator migration,
which impacts query performance.

Existing proposals for initial query planning such as
SODA [9] divide the problem into admission control and
operator placement. This requires the flexibility to allocate
fewer resources to queries after too many queries have been
admitted to the system. This may not be possible for queries
that have inelastic resource requirements, such as queries that
process sensor data at a given source rate.

We describe SQPR (Stream Query Planning with Reuse),
a new query planner for DSPSs that is designed to perform
well in resource-scarce environments when initial query plan-
ning is non-trivial. SQPR efficiently allocates resources to
queries, while exploiting overlap between queries for reuse.
To achieve this, we formalise query planning as a single
constrained optimisation problem to provide queries with fixed
resources, while maximising resource utilisation and respect-
ing allocation goals of the system, for example, in terms of

load-balancing. This holistic view combines query admission,
operator placement and reuse into a single optimisation model.

A key feature of SQPR is that it revisits past planning deci-
sions for existing queries as new queries are added to improve
the efficiency of the resource allocation. To make query plan-
ning tractable with replanning, SQPR provides approximate
solutions by only considering a subset of all queries in re-
allocation decisions—it only replans those queries that share
streams with the new query. In addition, SQPR uses hosts to
relay streams to make them available to other hosts. Although
the focus of SQPR is initial query planning, it also supports
adaptive query optimisation by replanning already-running
queries after their resource requirements have changed.

The evaluation results show that SQPR performs better than
a current state-of-the-art planner and a hand-crafted heuristic,
especially in scenarios when resources are scarce. It scales
well in terms of the number of queries and base streams, while
showing low overhead in practice. Experimental results from
a deployment on a cluster of machines as part of a prototype
DSPS demonstrate the feasibility of SQPR in practice.

In summary, the main contributions of this paper are: (1) a
unified formal optimisation model of query planning with
query reuse in DSPSs (§III); (2) an efficient and scalable query
planning approach based on solving a constrained optimisation
problem (§IV); and (3) an evaluation of SQPR in simulation
and in comparison to another approach in a DSPS deployment
(§V). We discuss related work in §VI and finish with future
work and conclusions (§VII).

II. QUERY PLANNING

In this section, we give the necessary background to query
planning in DSPSs and explain our requirements. A DSPS
manages a set of distributed stream processing hosts. It exe-
cutes continuous queries that transform base streams to result
streams, which are then delivered to clients. When a new
query is submitted to the DSPS, a query planner must find
a query plan that allocates resources to the new query before
it is added. We assume the following high-level requirements
for query planning:

R1: Query planning should be scalable to support a large
number of queries and resources.

R2: Query plans should satisfy the resource needs of
queries and enable them to execute with good performance.

R3: Query plans should not prevent future queries from
being satisfied.

R4: Query planning should exploit overlap among queries
by sharing resources in query plans.

A query planner must be able to support a DSPS that
consists of a large number of hosts (R1). A common assump-
tion today is that processing hosts are over-provisioned and
therefore have sufficient resources to support new queries. This
considerably simplifies the query planning problem because
the planner can choose among many hosts that can provide
adequate query performance (R2). With the virtualisation
of physical hosts in data centres, this becomes wasteful.

Query operators
Base stream
Composite stream

Input
Input

Output

Host

Host Host
Host

Query 1 Query 2

Fig. 1. DSPS with 5 hosts, executing two queries with operators and streams

Resources unused by a DSPS can be allocated to other
applications in the same data centre; for example, computa-
tional resources such as CPU cores can be powered down to
save energy. This has also implications on load-balancing of
queries. While load-balancing of operators across hosts is in
general desirable to achieve low latency in query processing, it
may prevent resources from being reclaimed when the system
serves only a low query workload.

Bad planning decisions may introduce resource bottlenecks
at hosts, preventing resources from being exploited by future
queries (R3). The implications of this for query planning is
that it should perform well in scenarios with high contention
for resources on certain hosts. Finally, the overlap between
queries submitted by different users can be exploited to save
resources through reuse (R4).

Next we introduce the system, query and resource models
that are used in the rest of the paper.

A. System and query model

As shown in Fig. 1, we assume that a DSPS has hosts,
streams and query operators. For ease of exposition, we
assume that hosts, streams and query operators are time-
invariant. We can therefore denote by H := {1, . . . H} the set
of hosts and by S := {1, . . . , S} the set of all data streams.
Streams may, for example, consist of relational tuples with a
given schema [10]. Fig. 1 shows that each stream s ∈ S can
either be a base or a composite stream. A base stream is a
stream that is injected into the DSPS externally and that is
available at a given host. We define S0

h ⊂ S as the set of all
base streams available at host h ∈ H. A composite stream is
a stream of result tuples that is generated by a query operator
described below.

A stream s ∈ S has a given average data rate, denoted
as %s ∈ R+. The data rate can be observed for base streams
and estimated based on operator selectivities for composite
streams. We assume that streams have a constant average data
rate with a small variance.

Base and composite streams are transformed by query op-
erators that continuously process tuples in a moving window.
Examples of common relational streaming operators are join,
select and project, although our model makes no assumptions

regarding specific semantics. The set of possible operators is
denoted by O := {1, . . . , O}. An operator o ∈ O is described
by a triplet (So, so, γo) where So ⊂ S denotes the set of input
streams that are transformed to a single output stream so ∈ S
under computational costs γo ∈ R+.

Based on the model above, a DSPS must provide a query
plan when a new query is submitted to the system. Intuitively,
as illustrated in Fig. 1, a query plan is a mapping of query
operators to hosts so that sufficient resources are available
to support the processing of all associated data streams. We
define the query planning problem more formally in §III-A.

B. Resource model

We consider three types of resources provided by hosts:
(a) The amount of computational resources available at host h
is denoted by ζh ∈ R+. This could be a measure of the number
of CPU cores on host h. (b) The maximum outgoing host
bandwidth of host h amounts to βh ∈ R+. This is a property of
the network interface card of host h. (c) The available network
bandwidth between hosts h and m is given by κhm ∈ R+.
It is determined by the network topology in the data centres
and properties of the network switches along the path. (For
simplicity of presentation, we assume that final result streams
of queries only need to be sent once to multiple clients—the
same stream can be broadcast to multiple clients using a proxy
host outside of the DSPS.)

We have chosen these resources as they are the main
resources consumed by a DSPS. They are also representative
of different classes: computational resources and host band-
width are examples of per-host resources, whereas network
bandwidth depends on a pair of hosts. Other resources such
as memory can be added in a similar way. Through operating
system and network virtualisation, unused resources can be
assigned to different applications outside of the DSPS, which
results in a strong incentive for the DSPS to fully utilise its
assigned resources.

We assume that operator o ∈ O consumes γo units of
computational resources (e.g. as a percentage of time on a
CPU core) when executed. The operator can only be assigned
to a host that has sufficient computational resources available
and sufficient host and network bandwidth to receive and send
its input and output streams.

We assume that the DSPS has up-to-date information on
the current resource utilisation of all hosts (cf. §IV-C). The
resource consumption of existing operators can be observed.
For operators of new queries, the resource consumption can
be estimated based on operator semantics and the rates of
the input streams using existing techniques [11]. We assume
a simple cost model where the required processing resources
for operators and the output stream network consumptions are
linear functions of the rates of input streams.

C. Query planning with reuse

Overlap between sub-queries is common and is exploited in
traditional DBMSs using views. The reuse of sub-queries in
a DSPS reduces resource consumption—it takes advantage of

o1 o2

o3

s
2

s
3

s
1

s 3

h1 h2

Query 1 Query 2
s4 s5

(a) Reuse plans with two queries ex-
ploiting all resources on host h1

o1 o2

o3

s2

s3

s 1

s 3

h1 h2

Query 1 Query 2
s4 s5

(b) Reuse plans wasting CPU re-
sources on network-bound host h2

Fig. 2. Example of alternative query plans with reuse

already existing computation over streams and only consumes
additional network resources to make result streams available
to other queries. When there is a high degree of overlap
between queries, this enables the DSPS to admit more queries.

In our model, queries can reuse streams of other queries.
Fig. 2(a) gives an example of sub-query reuse with two
queries 1 and 2. The two queries share stream s3 on host h1

produced by operator o3. As a consequence, they also share
operators o1 and o2. We define two streams to be equivalent if
they are produced by the same operators using the same input
streams. This makes the discovery of shared streams between
queries simple by traversing their query plans. Note that this
approach is only possible when the set of operators is well-
known and operators are deterministic so that equivalences
between operator instances can be established. For DSPSs that
support user-defined operators [9], it is in general not possible
to verify whether two sub-queries are equivalent.

Efficiently reusing shared sub-queries complicates planning
when queries require more than one resource, such a CPU
and network resources. Indeed, query reuse trades off network
resources for CPU resources at a host. If a query planner
greedily reuses sub-queries, it may exhaust the network re-
sources before fully utilising CPU resources. This wastes
resources in the system that become unusable to other queries.

Consider again the example given in Fig. 2(a). We assume
that each host has the same amount of resources: it can support
at most three query operators and support four large streams.
In the allocation in Fig. 2(a), host h1 executes operator o3 and
two other operators, which jointly use up its CPU resources.
The four streams also deplete its network resources. (We
assume that the streams for the other two operators have low
data rates and can be ignored.) This leaves all resources of
host h2 available for future queries, potentially maximising
the total number of supported queries.

An alternative, potentially less desirable, allocation is shown
in Fig. 2(b). Here the shared operator o3 has been allocated to
host h2 instead of h1. Again, this almost entirely exhausts h2’s
network resources, preventing further allocation of operators
to it that require significant network resources. By creating a
bottleneck in terms of network resources on host h2, its spare

CPU resources are wasted to the system.
To work around this issue, we give the planner more

freedom to reuse streams: we assume that hosts can relay
streams to other hosts. By propagating a stream to another host
with potentially more spare network resources, the planner
can support more reuse with future queries. For example, in
Fig. 2(b), a single stream s3 could be relayed from h2 to h1

to remove the network bottleneck on h2. The cost of relaying
streams is that it complicates query planning even further by
giving another degree of freedom to the query planner.

An interesting issue in the context of query planning is
the need for load-balancing. While the plan in Fig. 2(a) does
not load-balance operators and therefore may incur a higher
processing latency of tuples processed by host h1, it has
the benefit that host h2 remains idle and may be powered
down. In contrast, the plan in Fig. 2(b) load-balances operators
and may achieve lower processing latency. We believe that a
query planner should provide control over the degree of load-
balancing to the system administrator. For example, with a
low query workload, load-balancing may be undesirable to
achieve power efficiency but it may be more important with
an almost fully-utilised system. As explained in §IV, SQPR
provides control over load-balancing in planning decisions.

III. OPTIMISATION MODEL

In our approach, we treat query admission, operator alloca-
tion and reuse as a single inter-related constrained optimisation
problem. As described above, query reuse requires the re-
planning of existing queries to remove bottlenecks in the
system as new queries are added. This avoids prematurely
exhausting specific resources of individual hosts.

However, the integration of operator allocation and reuse
into a single model introduces a new challenge: it requires the
query planner to explicitly account for the data streams that
are sent between the hosts. We address this issue in the opti-
misation model by incorporating novel acyclicity constraints.
These constraints ensure the absence of cycles in the query
plan, which would correspond to acausal sequences of data
streams. For example, an acausal sequence of streams arises
if two hosts h1 and h2 send a base stream s ∈ S to each
other, but neither host receives s from elsewhere. Acausal
sequences of streams cannot be implemented in practise, and
the optimisation model must ensure that any feasible solution
is causal.

Next we formalise the query planning problem and describe
the objective function and the various constraint sets of our
optimisation problem.

A. Query planning problem

We define a query plan as a tree with node and arc labels.
The node labels are of the form 〈h, o〉, where h ∈ H represents
a host and o ∈ O ∪ {µ} denotes an operator (where µ is the
relay operator, which enables hosts to exchange streams, as
introduced in §II-C). The arc labels are of the form 〈s〉, where
s ∈ S represents a data stream. Contrary to ordinary trees, the
root node has an outgoing arc to send the result stream to the

client, and each leaf node has one or more incoming arcs to
receive data from stream sources.

We can interpret a query plan as follows. A node with
label 〈h, o〉, o ∈ O, states that host h executes operator o.
Likewise, a node with label 〈h, µ〉 means that host h relays a
stream to other hosts that require them. An arc with label 〈s〉
represents a flow of stream s. A query plan for query q ∈ S
needs to satisfy the following four conditions:

C1: The arc emanating from the root node has label q.
C2: For node 〈h, o〉, o ∈ O, the labels of the incoming arcs

form a superset of So, while the label of the outgoing arc
is so.

C3: A node with label 〈h, µ〉 has only one incoming arc.
The label of that arc coincides with the label of the
outgoing arc.

C4: If arc 〈s〉 enters leaf node 〈h, o〉, then s ∈ S0
h.

Condition C1 ensures that the query plan matches the query.
C2 and C3 ensure the correct behaviour of hosts that execute
operators and relay streams, respectively. C4 requires the query
to be satisfied from the repeated application of operators to
base streams. We say that a query plan is feasible if the
involved hosts and links have enough available resources to
perform the assigned tasks.

B. Formal model

We assume that query planning has multiple objectives. The
aim is to maximise the number of satisfied queries, minimise
the usage of CPU and network resources, and possibly bal-
ance the load between the hosts of the network. A formal
description of the query planning model relies on the following
decision variables:

d ∈ BH×S , x ∈ BH×H×S , y ∈ BH×S , (III.1)

z ∈ BH×O, p ∈ RH×S
+ .

The binary variable dhs indicates whether host h ∈ H provides
stream s ∈ S (dhs = 1) or not (dhs = 0). To be able to provide
stream s, host h must receive or generate s. This requirement
is enforced by the variables x, y, and z. Our constraints ensure
that xhms = 1 if and only if host h ∈ H sends stream s ∈ S to
host m ∈ H. Likewise, we have yhs = 1 if and only if stream
s ∈ S is available at host h ∈ H, and zho = 1 if and only
if host h ∈ H executes the operator o ∈ O. In the following,
we call xhms a flow variable, yhs an availability variable, and
zho an operator variable.

The continuous variable phs denotes the potential of stream
s ∈ S at host h ∈ H. Its meaning will become clear
when we discuss the acyclicity constraints below. The tuple
(d, x, y, z, p) uniquely identifies a query plan, as defined in the
previous section. The constraints of our optimisation model
ensure that only feasible query plans are considered.

Our query planning model has four objectives: maximise the
number of satisfied queries (O1), minimise the system-wide
network usage (O2), minimise the usage of computational
resources (O3), and potentially balance the load between

network hosts (O4):

O1 :=
∑
s∈S,
h∈H

dhs , O2 :=
∑
s∈S,

h,m∈H

%sxhms ,

O3 :=
∑

h∈H,
o∈O

γozho , O4 := max
h∈H

∑
o∈O

γozho . (III.2)

Since dhs = 1 if and only if host h provides stream s, objec-
tive O1 relates to the number of satisfied queries. Recall that
%s represents the data rate of stream s, while xhms = 1 if and
only if host h sends stream s to host m. Hence, objective O2

measures the system-wide network usage. Objective O3 relates
to the system-wide usage of CPU resources.

Objective O4 measures the maximum resource consumption
at any host. This objective allows us to balance the load
between the networks hosts (if desirable): by minimising the
maximum resource consumption over all hosts, O4 penalises
deviations of the resource consumption of any single host from
the resource consumption of the other hosts. Note that strictly
speaking, objective O4 is not linear due to the maximum oper-
ator. However, one can use standard reformulation techniques
to linearise this objective (cf. [12]).

Due to the conflicting nature of the different objectives,
we cannot optimise all objectives simultaneously. Instead, we
must seek Pareto efficient solutions with the property that
no objective can be improved without deteriorating at least
one of the other objectives. Such solutions are obtained by
maximising a weighted sum

λ1O1 − λ2O2 − λ3O3 − λ4O4

for some constants λ1, λ2, λ3, λ4 ≥ 0. (III.3)

The parameters associated with the objective functions enable
us to control the trade-off between the individual objectives.
Exposing these parameters to SQPR allows our planner to
control the degree of load-balancing in the query allocation
(cf. §IV). For example, if we fix some values for (λ1, λ2)
and set (λ3, λ4) := (1, 0), we minimise the system-wide
consumption of CPU resources. In contrast, we aim to obtain
an even consumption of CPU resources across all hosts if
we set λ3 := 0 and λ4 := 1. Intermediate settings, such as
(λ3, λ4) := (0.5, 0.5), allow us to trade off the conflicting
goals of minimal resource consumption and load balancing.

A query plan, represented by the variables (III.1), cannot
be chosen freely but must satisfy a number of technical and
physical constraints in order to be feasible. For instance, a
query plan must not require more resources than are available
in the system. The necessary constraints are explained next:

Demand constraints. This constraint group involves the deci-
sion variable d. Host h can satisfy requests for stream s only
if h possesses stream s and if s is actually demanded by users:

dhs ≤ δsyhs ∀h ∈ H, s ∈ S, (III.4a)

where δs ∈ B is an indicator variable that specifies whether
stream s is requested (δs = 1) or not (δs = 0). Thus, dhs can

only have value 1 if δs = 1 (stream s is required) and yhs = 1
(host h possesses stream s).

To ensure the correctness of objective O1, we restrict the
queries considered in O1 to those that are indeed requested:∑

h∈H

dhs ≤ δs ∀ s ∈ S (III.4b)

If (III.4b) were missing, objective O1 could account for
streams that are not requested. Note that (III.4b) also implies
that each requested data stream may only be served by at most
one host. Indeed, if we allowed multiple hosts to serve one and
the same request, then objective O1 would no longer count the
number of satisfied queries. However, our optimisation model
can be readily adapted to systems, in which it is desirable to
serve data streams by multiple hosts. In this case, objective
O1 would sum over new auxiliary variables qs, where qs = 1
if and only if

∑
h∈H dhs > 0, that is, if any host provides s.

Availability constraints. This constraint group relates the
availability variable y to the flow variable x and operator
variable z. Host m can possess stream s only if s is injected
into m from some other host h, or if s is the output of a
query operator executed at m, or if s is a base stream having
its source at host m.

yms ≤
∑
h∈H

xhms +
∑

o∈O:so=s

zmo + 1[s∈S0
m]

∀m ∈ H, s ∈ S (III.5a)

Note that the variable yms on the left-hand side of (III.5) can
only have the value 1 if xhms = 1 for some h ∈ H (s is
received from some other host h), if zmo = 1 for a suitable
operator o ∈ O (s is generated by host m), or if s ∈ S0

m

(s is a base stream that is available at host m). In that case,
yms = 1 signalises that stream s is available at host m.

Host h can apply operator o only if all corresponding input
streams s ∈ So are available at h.

zho ≤ yhs ∀h ∈ H, o ∈ O, s ∈ So (III.5b)

This constraint implies that zho = 0 (host h does not apply
operator o) as soon as yhs = 0 for some input stream s of
operator o. Finally, host h can transmit stream s to host m
only if s is available at h.

xhms ≤ yhs ∀h,m ∈ H, s ∈ S (III.5c)

Resource constraints. The joint data rate of all streams
transmitted from host h to host m may not exceed the available
network bandwidth.∑

s∈S
%sxhms ≤ κhm ∀h,m ∈ H (III.6a)

The joint data rate of all streams flowing into host m may not
exceed its incoming host bandwidth.∑

s∈S

∑
h∈H

%cxhms ≤ βm ∀m ∈ H (III.6b)

The joint data rate of all streams emitted from host h may not

exceed its outgoing host bandwidth.∑
s∈S

∑
m∈H

%sxhms +
∑
s∈S

%sdhs ≤ βh ∀h ∈ H (III.6c)

Note that h can transmit stream s to another host m or to a
client that requests s. For simplicity, we assume that a host has
to transmit the same result stream only once to clients because
a proxy host distributes the result stream among multiple
clients. This assumption is not restrictive and can be lifted
by a straightforward modification of our optimisation model.

The CPU resources consumed at host h to carry out query
operators o ∈ O may not exceed the available budget.∑

o∈O
γozho ≤ ζh ∀h ∈ H (III.6d)

Acyclicity constraints. We must ensure that any data stream
available at a host has a real source. Without any further
constraints, however, streams could arise from self-sustaining
feedback loops. The reason for this nonsensical effect is that
streams can be duplicated freely anywhere in the system and
sent to multiple destinations. We now assign to each stream s
and host h a potential or “elevation” phs. In order to avoid
cycles, we require stream s to flow “downhill” with respect
to its potential, that is, s can flow from h to m only if the
potential phs exceeds pms by at least 1.

phs ≥ pms + 1−M(1− xhms) ∀h,m ∈ H, s ∈ S (III.7)

The constant M may be set to any value larger than |H|+ 1
implying that (III.7) does not restrict the choice of p if
xhms = 0. Note that the acyclicity constraints (III.7) be-
come necessary because we integrate the query reuse and
operator placement problem. To the best of our knowledge,
these two problems have never been considered jointly by a
single optimisation model, which explains why previous DSPS
optimisation models did not contain acyclicity constraints.

The query planning problem can thus be formulated as a
mixed integer linear program (MILP), solvable by standard
branch and bound algorithms [12]:

maximise
d,x,y,z,p

λ1O1(d)− λ2O2(x)− λ3O3(z)− λ4O4(z)

subject to (III.4)–(III.7).
(III.8)

IV. SQPR PLANNER

The optimisation model from the previous section is static:
it assumes that all queries are known and that the query
planning problem only needs to be solved once. In practise,
however, query planning is highly dynamic: queries arrive
continuously over time, the resource requirements of queries
may change, and the query planning problem needs to be
solved repeatedly.

Another problem arises due to the size of the optimisation
problem: when a new query is added, the query planner would
have to re-plan all existing queries from scratch to obtain an
optimal set of plans. As we prove in an extended technical
report of this work [13], our formulation of the stream query

Algorithm 1 SQPR: INITIAL-QUERY-PLANNING

1: initial solution: set (d, x, y, z, p) := 0
2: wait for a new query q ∈ S
3: if dhq = 0 for all h ∈ H then
4: fix optimisation variables relating to irrelevant streams
5: solve optimisation model (III.8) with constraint (IV.9)
6: update solution (d, x, y, z, p) if successful
7: for h ∈ H do
8: if ({xhms}m,s , {zho}o) has changed then
9: notify host h of changed streams and operators

planning problem is strongly NP-hard, rendering its solution
intractable for large problems.

Instead, we search for an approximate solution that restricts
re-planing to a subset of queries, which are “related” to the
new queries added to the system: SQPR only reconsiders the
allocation of those operators that share base or composite
streams with the new query to be added. This provides a
good trade-off in that it re-allocates operators that may be
involved in query reuse without touching operators that are
independent from the new query. The cost of query planning
remains independent of the total number of queries and base
streams in the system, achieving a more scalable solution.

In this section, we show how to incorporate the optimisation
model into our SQPR planner to meet the requirements of real-
life DSPSs. To this end, we start with a discussion of initial
resource allocation for new queries based on cost estimates.
We then consider adaptive re-planning of queries based on
observed resource consumption. We finish with a description
of the architecture of SQPR.

A. Initial query planning

For each new query to be admitted, SQPR solves a variant of
problem (III.8). This variant ensures that the new solution does
not drop already admitted queries. Also, all decision variables
that are not directly related to the new query are fixed in order
to reduce the size of the optimisation model.

The initial query planning process of SQPR is summarised
in Algorithm 1. Before any queries have been submitted,
SQPR starts with the initial solution (d, x, y, z, p) := 0 to
the optimisation problem (III.8), i.e. no streams exist in the
network, and no operators are assigned to hosts (line 1). When
a new query q ∈ S arrives (line 2), SQPR first checks whether
the same query q has already been admitted: this is the case
if dhq = 1 for some host h ∈ H (line 3).

If the query q has not yet been admitted, SQPR solves the
optimisation problem (III.8) with the additional constraint that∑

h∈H

dhs = 1 (IV.9)

for each already existing stream s ∈ S. Constraint (IV.9)
ensures that the new solution does not drop already admitted
queries. It does allow, however, that already admitted queries
are allocated to different hosts. In practise, this flexibility can

lead to better solutions, but it does require that operators are
potentially migrated between hosts.

Remember that the parameters λ1, . . . , λ4 in (III.8) allow
SQPR to favour solutions that minimise the consumed re-
sources (large values for λ2 and λ3) or to focus on solutions
that balance the load between the various hosts (large value for
λ4). The choice of λ1, . . . , λ4 depends on the environment, in
which SQPR is run, and the weights can be chosen statically or
adapted dynamically depending on the workload. In our exper-
iments in §V, we choose λ1 := M , where M is a sufficiently
large number. This ensures that the number of admitted queries
(objective O1) is the most important objective. The second
weight is λ2 := 1/

∑
h∈H βh, which scales the system-wide

network usage (objective O2) to a number between 0 and 1.
The third weight is λ3 := 1/

∑
h,m∈H κhm that scales the

aggregated usage of CPU resources to a number between 0
and 1. Finally, the fourth weight is set to λ4 := 1 and ensures
that the usage of CPU resources on the most heavily used
host (objective O4) receives the same weight as the average
consumption of CPU resources (objective O3). We thus try to
strike a balance between a minimal resource consumption and
an even load distribution.

To avoid solving the full optimisation problem, SQPR solves
smaller subproblems, in which some of the decision variables
relating to “irrelevant” streams and operators are fixed. More
precisely, let S(q) ⊂ S denote the set of all data streams
that can appear in query plans for q. Likewise, let O(q) ⊂ O
denote the set of all query operators that can appear in query
plans for q. Both sets can be determined recursively. To
speed up the optimisation, decision variables in (III.8) that
correspond to streams s /∈ S(q) and operators o /∈ O(q)
are fixed to their value in the previous solution (line 4).
This means that SQPR optimises only over those streams and
operators that are related to the new query q, while excluding
the possibility of re-planning other queries and operators.

As an example, consider Figure 2(a) and assume that
stream s4 is already satisfied, while stream s5 has just entered
the system. Our fixations imply that SQPR would optimise
over streams s1, s2, s3 and s5 and all three operators, while
fixing all decision variables corresponding to stream s4. Note
that the solution to our pruned optimisation model is in general
suboptimal, and there is no non-trivial a priori bound on the
incurred losses in optimality. However, we can bound the
incurred losses a posteriori by solving a simpler “optimistic”
variant of model (III.8) that disregards the bandwidth con-
straints (§V). Our experiments in §V indicate that the losses
due to our variable fixations are below 25% in practise.

Fixing unrelated decisions reduces the number of streams
and operators in the query planning problem from S and O to
|S(q)| and |O(q)|, respectively. Depending on the complexity
of the operators, we have that |S(q)| � S and |O(q)| � O.
Thus, even though the problem remains NP-hard, we have
managed to drastically reduce its size. Note that this does
not affect the number of hosts considered and this remains
a critical parameter in our problem.

Even with this simplification, it may be unrealistic to solve

Resource
monitor

Resource
monitor

Resource
monitor

Hosts

SQ
PR

 query planner

New
submitted
queries

Resource
availability

Resource
requirements

Query
plan

Operator
allocation

Cplex
Solver

Cost
model

Fig. 3. DSPS architecture with SQPR query planner

problem (III.8) to optimality. In practice, one can prematurely
terminate the branch and bound algorithm after a given time
interval and use the best solution that the method found [12].

If query planning is successful within the given time limit,
the solution (d, x, y, z, p) is updated (line 6). Finally, hosts are
notified of any changes in the assignment of queries (line 9).

B. Adaptive query planning

The initial query planning above is based on a cost model
for estimating resource consumption, which may give inaccu-
rate results. In addition, the resource consumption of queries
may change as data rates and tuple distributions of base
streams change. As a consequence, SQPR must adaptively
revisit past planning decisions when the actual resource con-
sumption of queries deviates from initial estimates.

We support this in SQPR by (conceptually) removing and
re-adding queries to the DSPS that require re-planning. SQPR
stores the resource estimates used during initial planning. It
then monitors the resource consumption of all queries and
periodically constructs a list of queries (a) for which the
resource consumption differs from the initial estimates by a
given threshold or (b) that suffer from a shortage of resources
on a host. It then re-plans these queries by considering the
system without those queries and re-adding them. Based on
these new query plans, the DSPS migrates operators between
hosts to reflect the plans, as done in other systems [4].

C. System architecture

The architecture of a DSPS that uses SQPR is shown in
Fig. 3. We implemented SQPR as part of the experimental
Dependable Internet-Scale Stream Processing (DISSP) system
developed in our group. The SQPR query planner is a separate
centralised component that controls resource allocation on
DISSP hosts. It interacts with DISSP hosts to get resource
information and instructs them to instantiate new operators

based on admitted query plans. We next describe the main
system components in more detail.

DISSP system. The DISSP system is designed to provide
a scalable and dependable stream processing service across
a large number of hosts. It is written in Java and follows
a relational streaming model with a set of common stream-
ing operators including join, filter and project. Queries are
executed by running operators across a set of DISSP hosts.
DISSP hosts exploit multiple CPU cores by scheduling oper-
ators using a pool of worker threads. Data streams between
engines are exchanged through TCP connections. DISSP hosts
are controlled using a management interface for monitoring
resources and handling operators. Base streams are added
through external processes that produce a stream of tuples
based on an agreed relational schema.

SQPR query planner. Our planner is implemented as a stand-
alone server. It receives up-to-date information from DISSP
hosts on running operators. When new queries are submitted,
it estimates the resource requirements of queries based on our
basic cost model from §II-B. Query planning is then expressed
as an optimisation problem and passed to the CPLEX 11.2
optimisation software [12]. CPLEX is a state-of-the-art solver
for (primarily) linear and mixed-integer linear programs. In
our experiments, we use the standard parameters suggested
by CPLEX. The solver is invoked with a fixed timeout (as
reported in §V), after which the query is not admitted if no
solution was found. If a feasible query plan is discovered, it
is instantiated by SQPR using the management interface of
DISSP hosts.

Resource monitoring. To make our query planning approach
compatible with the DISSP system, we provide an additional
capability of reporting resource utilisation to SQPR. Each
DISSP host runs a resource monitor that periodically sam-
ples the utilisation of all CPU cores and the used network
resources. This information when reported to SQPR provides
an up-to-date view of the current system state.

V. EVALUATION

Our evaluation goals are to investigate the planning effi-
ciency, scalability, and overhead of SQPR initial query plan-
ning. By reusing streams and placing operators in a non-
myopic way, SQPR should operate in a resource-efficient
manner. For a practical deployment, it must scale to a large
number of hosts and resources, as well as complex queries.
Finally, SQPR should plan new queries within an acceptable
time limit. While we are willing to sacrifice global optimality,
the incurred optimality gap should be reasonably small.

In our evaluation, we use simulation to investigate query
planning in larger systems and a real-world deployment of
SQPR as part of our prototype DISSP system on the Emulab
cluster testbed [14].

For the query workload, we consider a large set of base
streams that are uniformly distributed over the hosts. We
randomly create 1,000 queries that consist in equal parts of
two-way, three-way and four-way joins over the base streams.

Joins have a selectivity in the range of 0.1%–0.5%. The
base streams in a query are chosen according to a Zipfian
distribution with parameter 1. This guarantees a certain amount
of overlap between queries.

A. Simulation

First we simulate a system with 50 hosts using a custom-
built simulator. We consider 500 base streams and assume that
the average data rate of each is 10 Mbps. All network links
between hosts have a capacity of 1 Gbps. We set the available
CPU resources on hosts in such a way as to obtain a CPU- and
bandwidth-constrained environment with our query workload.

In addition to query planning using SQPR, we also compare
to the following two query planning strategies in our simulator:

Heuristic planner. We compare SQPR to a heuristic planner
with query reuse that is inspired by existing approaches [15].
Whenever a new query q ∈ S is submitted, the heuristic
planner generates all abstract query plans (i.e. query plans
whose operators are not yet assigned to hosts) for q. Depending
on the operator semantics, the number of abstract query plans
can be exponential in size of the query. Since we only consider
queries that result from two-way, three-way and four-way joins
in our experiments, however, an exhaustive enumeration of
all abstract query plans is feasible. For each abstract query
plan, the planner iterates over all hosts h ∈ H and tries to
implement the abstract query plan at host h. To this end, it
ensures that host h receives all of the required data streams
s ∈ S from other hosts that have s. In this step, the planner
tries to aggressively exploit sub-query reuse by favouring the
transfer of complete sub-queries over base streams that require
the application of more operators within h. Each candidate
placement that results in a feasible query plan is evaluated
according to the weighted objective function explained in
§III-B, and the best placement is chosen.

Optimistic bound. We also compare SQPR to an optimistic
upper bound to estimate how close SQPR’s solution is to the
optimum. Since an optimal planner is not implementable, we
provide an upper bound by aggregating all hosts into a single
“aggregate host”. This aggregate host has all base streams,
and its CPU resources equal the sum of all CPU resources in
the system. Since the aggregate host is the only host in this
synthetic network, we can omit all constraints relating to the
network. In this case the optimisation model (III.8) simplifies
dramatically and allows for an analytical solution. The amount
of queries satisfiable by the aggregate host constitutes an upper
bound on the number of queries satisfiable by our DSPS, even
if all optimisation problems were solved to global optimality
and if we did not decompose problem (III.8). By construction,
the true optimal solution is below this optimistic upper bound.

1) Planning efficiency: In our first experiment, we inves-
tigate the number of queries that SQPR manages to allocate
successfully. We simulate the submission of one query at the
time and observe if it can be admitted. Fig. 4(a) shows the
relation between submitted and satisfied queries for SQPR
under different timeouts (5 secs, 30 secs and 60 secs) in

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500

N
u

m
b

e
r

o
f

s
a

ti
s
fi
e

d
 q

u
e

ri
e

s

Number of input queries

Optimistic bound
SQPR timeout 60s
SQPR timeout 30s
SQPR timeout 5s
Heuristic

(a) Planning efficiency

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500

N
u

m
b

e
r

o
f

s
a

ti
s
fi
e

d
 q

u
e

ri
e

s

Number of input queries

2 query batches
3 query batches
4 query batches
5 query batches

(b) Efficiency with batching

 0

 100

 200

 300

 400

 500

 600

 0 0.5 1 1.5 2

N
u

m
b

e
r

o
f

s
a

ti
s
fi
a

b
le

 q
u

e
ri
e

s

Zipf factor

 100 base streams
 500 base streams
1000 base streams

(c) Efficiency with overlap

Fig. 4. Efficiency of query planning

 0

 400

 800

 1200

 1600

 2000

25 50 100 150

N
u

m
b

e
r

o
f

s
a

ti
s
fi
a

b
le

 q
u

e
ri
e

s

Number of hosts

Optimistic bound
SQPR

(a) Scalability in terms of hosts

 0

 1000

 2000

 3000

 4000

 5000

1 2 4 8

N
u

m
b

e
r

o
f

s
a

ti
s
fi
a

b
le

 q
u

e
ri
e

s

Number of CPU cores

Optimistic bound
SQPR

(b) Scalability in terms of resources

 0

 200

 400

 600

 800

 1000

2-w 3-w 4-w 5-w

N
u

m
b

e
r

o
f

s
a

ti
s
fi
a

b
le

 q
u

e
ri
e

s

Query types

Optimistic bound
SQPR

(c) Scalability in terms of query complexity

Fig. 5. Scalability of query planning

comparison with the heuristic planner and the optimistic
bound.

All three approaches accept new queries until the sys-
tem saturates. SQPR outperforms the heuristic planner, even
though the latter exploits overlap, considers various query
placements and employs the same objective function. This
is because the heuristic planner neither reconsiders previous
allocation decisions nor distributes query plans over multiple
hosts. From the optimistic bound, we deduce that the optimal-
ity gap of SQPR is less than 25%.

Given that we were unable to solve the full-scale query plan-
ning problem within an hour, we conclude that the problem
reduction technique from §IV-A leads to an acceptable trade-
off between optimality and efficiency. Unless stated otherwise,
SQPR uses a timeout of 30 secs in all of the following results,
which we consider an acceptable upper bound when users
submit new queries to the system.

Instead of submitting each new query individually, we
explore the impact of batching multiple queries at submission
time on planning efficiency in Fig. 4(b). SQPR provides
query plans for each batch of n queries with a timeout
of 30n secs. As the result shows, this reduces the number
of satisfied queries because it decreases the possibilities for
problem reduction. It leads to difficult optimisation problems
that cannot be solved within the employed time limits. We
conclude that batching queries to large groups is not desirable
in practice.

The impact of the degree of overlap between queries on

planning efficiency is shown in Fig. 4(c). We vary the number
of base streams, as well as the Zipf distribution according to
which base streams are selected in queries to control overlap.
Setting the Zipf parameter to zero implies that base streams
are chosen uniformly. Note that for the same Zipf distribution,
a smaller number of base streams leads to higher overlap. As
expected, the performance of SQPR increases with the degree
of overlap. This is caused by the fact that SQPR exploits query
reuse whenever it is beneficial.

2) Scalability: To evaluate the scalability of SQPR, we
investigate the impact of additional resources (in the form
of more or more powerful hosts) and more complex query
operators. Fig. 5(a) shows that the performance of SQPR
grows super-linearly in the number of hosts. Nevertheless, the
gap between the optimistic bound and SQPR widens as the
number of hosts increases. As we will show later on, this is
due to the fact that our optimisation model does not scale well
in the number of hosts. Larger number of hosts imply larger
optimisation models, which makes it increasingly difficult to
find well-performing query plans within the set timeout.

Fig. 5(b) shows that SQPR scales well in the available
resources. In this experiment, we increase all available network
bandwidths from 1 Gbps to 10 Gbps and consider hosts with
more CPU cores. Due to our decomposition technique, the
size of SQPR’s optimisation model does not increase in the
available CPU resources, resulting in near optimal solutions.

The impact of the query complexity is shown in Fig. 5(c).
Here we assume that all submitted queries are 2- to 5-way

 0

 20

 40

 60

 80

 100

25 50 100 150A
v
g

 p
la

n
n

in
g
 t

im
e
 (

in
 s

e
c
s
)

Number of hosts

(a) Planning time vs. host number

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

2-w 3-w 4-w 5-wA
v
g

 p
la

n
n

in
g
 t

im
e
 (

in
 s

e
c
s
)

Query types

(b) Planning time vs. query type

Fig. 6. Running times of query planner

joins. More complex queries require more resources, reducing
the number of queries that SQPR can admit. From the graph,
we conclude that the efficiency of SQPR (compared to the
optimistic bound) is more or less independent of the query
complexity. We will see below that this is due to the fact that
the size of our optimisation model is more sensitive to the
number of hosts than to the complexity of submitted queries.

In summary, SQPR scales well with the amount of available
computational resources and the query complexity, but its
performance deteriorates for large networks. As we will now
show, this is due to the size of the optimisation problems.

3) Overhead: Next we investigate the impact of the number
of hosts and the query complexity on the solution time of
SQPR. We set the timeout to 100 secs and record the time
required to plan queries when 75%–95% of resources are con-
sumed. We expect planning to be most challenging when there
are few resources left (i.e. the potential infeasibility cannot be
easily detected), but the satisfaction of further queries requires
restructuring among many hosts. In the following, a runtime
below 100 secs implies that the reduced optimisation problem
has been solved to optimality by SQPR.

Fig. 6(a) presents average planning time for different net-
work sizes. The results show that SQPR can solve problems
with up to 100 hosts to optimality, while larger systems require
significantly longer. In most of the cases, SQPR is still able
to provide a feasible solution.

Fig. 6(b) illustrates the impact of the query complexity on
solution time with 50 hosts. As expected, complex queries
decrease the potential of problem reduction and therefore lead
to more challenging optimisation problems. Note, however,
that the increase in runtime is smaller than in Fig. 6(a).

Overall we conclude that SQPR’s planning time scales well
in the query complexity, but is sensitive to the number of
network hosts. In future work, we plan to address this issue
by using a hierarchical approach that optimises over sets of
hosts, each of which is optimised independently.

B. Cluster deployment

Next we investigate the performance of SQPR as part of
a deployment of our prototype DISSP system on a cluster
of machines. We ran our system on 15 hosts on the Emulab
testbed [14] with a 10 Mbps LAN. Each host is a PC with
2 GB of RAM and a 3 GHz CPU. We gradually increase the
number of input queries by periodically submitting 50 queries

to the query planner and then deploying the satisfied queries.
The queries are 2- and 3-way joins over 300 base streams
with 10 Kbps output rates distributed uniformly across hosts.
Using off-line measurements, we determined that each host
could support up to 15 2- and 3-way joins before it reached
CPU saturation. We used this to seed the cost model of the
query planners.

To compare the performance of SQPR, we use SODA [9],
a state-of-the-art query planner and runtime optimiser that is
part of IBM’s System S stream processing platform [1]:
SODA considers queries that support flexible resource allo-
cations reflecting different quality-of-service (QoS). The goal
of SODA is to admit a set of queries that maximise the total
QoS of the DSPS while obeying a user-defined query ranking.
SODA first admits queries based on their overall resource
consumption and system availability. For admitted queries,
it solves the resource allocation problem using a mixture of
constrained optimisation models and heuristics. SODA also
performs runtime adaptation to workload variations. Similar
to SQPR, SODA does query planning in epochs.

SODA exploits stream reuse by gluing together different
query templates. Templates are user-defined and describe the
query structure. To minimise network usage among hosts,
query operators first seek to use input streams from the local
host. If this is not possible, the input streams are received
once from the original host and locally propagated to other
co-located operators.

In contrast to SODA’s multi-stage approach to query plan-
ning, SQPR solves the combined problem of query admission
and operator placement in one step. A query can only be
admitted after a feasible placement of its operators is found.
SQPR also performs advanced planning decisions based on
stream reuse by dynamically changing the query plan and
relaying streams across hosts. In contrast, the SODA scheduler
is bound by the initial user-given query plan and, once
admitted, has to follow its structure for all subsequent epochs.
Finally, SODA performs query planning across all queries,
whereas, SQPR considers only the new query and those
already admitted that share streams with the new query.

We have implemented the basic functionality of SODA,
namely query admission (the macroQ stage of the SODA
scheduler), operator placement, and resource allocation [9].
The last two steps are solved by a combination of optimisation
(macroW stage) and heuristic techniques (miniW stage). The
SODA heuristic has a dual role: if a solution is not found
within the time limit by the macroW stage, it provides the final
operator placement. However, if a solution is found, it further
attempts to improve it according to the objective function by
exploring different local operator swaps. Since it provides the
final operator placement in both cases, we have decided to use
the miniW stage.

To compare SODA with SQPR, we assign queries with
specific resource requirements. As a result, SODA’s stages
of resource allocation tuning, which adjust operator resource
allocation to minimise the load-balancing objective, are not
applicable—SQPR satisfies fixed resource demands and thus

 0

 50

 100

 150

 200

 250

 50 100 150 200 250

N
u

m
b

e
r

o
f

s
a

ti
s
fi
e

d
 q

u
e

ri
e

s

Number of input queries

SQPR
SODA

(a) Planning efficiency

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80

C
D

F

CPU utilisation on host (in %)

SODA-50
SQPR-50

SODA-150
SQPR-150

(b) Distribution of CPU resources

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

C
D

F

Network usage on host (in Mbps)

SODA-50
SQPR-50

SODA-150
SQPR-150

(c) Distribution of network resources

Fig. 7. Results from DISSP cluster deployment with SQPR and SODA

cannot adjust resource requirements of queries. To maximise
reuse opportunities in SODA, we combine query templates
in a way that each stream is generated once and used by all
other queries when needed. Finally, the objective function for
the next experiments is set to load balancing (cf. IV-A).

1) Planning efficiency: Fig. 7(a) shows the number of
admitted queries by the SQPR and SODA planners for every
50 input queries in the deployed system. Both planners are
given the same set of input queries. Each query has a 30 secs
planning timeout. SQPR accepts queries linearly, as long as the
system is not too overloaded. As input queries arrive, SQPR
accepts more queries than the SODA scheduler. At the last
stage, the system reaches saturation. SQPR does not admit all
250 queries because no suitable placement for the operators
is found within the timeout.

As the system approaches saturation, SODA is less flex-
ible when placing queries on resource-constrained hosts. In
addition, SODA is bound to match a fixed query template
to a given host and resource layout. In cases of saturation,
this limits flexibility and therefore decreases the admission
rate of queries. Although SODA exploits reuse, it does this
by gluing together many small queries to create large ones.
Large queries, however, make the placement problem harder.
In contrast, SQPR is able to adjust the query structure by
relaying streams across hosts and is therefore able to find a
placement even under tight resources conditions.

2) Resource distribution: Fig. 7(b) shows the distribution
of CPU utilisation across hosts as a CDF plot in the cases
of 50 and 150 input queries deployed by SQPR and SODA,
respectively. These choices of input queries result in an under-
utilised system and one that is close to overload. The figure
shows that both planners balance the load across the hosts.
Since SQPR admits more queries, it consumes more resources,
as shown by the SQPR-50 line in the figure. When both SODA
and SQPR accept a high number of queries (lines SQPR-150
and SODA-150), the CPU load is evenly distributed across
hosts and the system is approaching overload.

Fig. 7(c) shows the distribution of network usage as the
sum of sent and received data per host. We plot this for 50
and 150 submitted queries. The results show that both planners
roughly manage to balance the network usage. For SQPR, this
is achieved by the load-balancing objective of the planner.

3) Conclusions: The query planning decisions of SQPR
assume fixed resource demands per query and the potential for
extensive reuse between queries. This is exploited by relaying
streams between hosts and reusing streams between operators.
In this way, SQPR explores different possible query plans and
chooses the best according to its objective function. When
compared to SODA, it satisfies more queries because SODA
assumes a fixed query template, which limits its search space
for feasible placements. In addition, SODA struggles finding
operator placements when it does not have the flexibility
to adapt the resource requirements of admitted queries. For
admitted queries, both planners are able to evenly balance the
load across hosts and saturate the system.

VI. RELATED WORK

Different aspects related to query planning, optimisation,
and reuse have been studied in research projects such as
STREAM [10], Gigascope [2] and Borealis [4].
Query planning. Past proposals for query planning in DSPSs
assume an abundance of resources and leverage knowledge
of topology and network bandwidth to deploy query opera-
tors efficiently [8]. Ahmad et al. [15] suggest an allocation
technique that deploys operators at source hosts. Pietzuch et
al. [16] minimise global network usage of operators based
on optimisation in a metric space. In work on plan-based
composite event detection [17], the authors focus on the
efficient allocation of operators to minimise network usage.
Lakshmanan [18] propose a biologically-inspired system to
place operators on hosts while minimising end-to-end latency.
In contrast, we consider multiple constraints on both compu-
tational and network resource when planning queries together
with query reuse.

The closest work to ours is SODA [9], which performs
query planning and runtime adaptation. We describe and
compare to SODA’s initial query planning in §V-B.
Query optimisation. In addition to initial query planning,
researchers have investigated dynamic query optimisation at
runtime, often with a focus on load-balancing and shedding.
Markl et al. [11] propose that a query optimiser compares
run-time statistics with the initial estimates and changes the
query plan if necessary. The Borealis stream processing en-
gine balances load by considering load correlations between

operators and moving operators to maintain low processing
latency [6]. An approach for dynamic operators placement
presented by Zhou et al. [19] places operators initially to
reduce communication cost and then carries out dynamic load-
balancing. In contrast, we are concerned with efficient initial
query planning and admissions control—any of the above
approaches can be applied to provide dynamic load-balancing
at a finer granularity than SQPR.

Tatbul et al. introduce optimisation metrics for load-
shedding [20] when the system is overloaded and model it as
a linear program [21]. Feng et al. [22] address the combined
load-shedding and resource allocation problem in a shared
distributed stream processing platform with static placement
of operators. They use centralised optimisation techniques and
back-pressure to control the flow of data along the operators.
Our work is complementary in that we attempt to do admis-
sions control without having to shed data. If the workload
changes at runtime, we can use these existing approaches for
load-shedding to handle the overload condition until adaptively
re-planning queries (cf. §IV-B).

Query reuse. Several efforts investigate the potential of query
reuse in DSPS. The work on Synergy [23] provides a set
of distributed algorithms to discover and exploit stream and
operator reuse at deployment time. Similarly, Zhou et al. [24]
leverage publish/subscribe communication to find common
data interests across queries. XFlow [25] allows users to
search already running queries for reuse opportunities. Multi-
ple queries are optimised in the work by Seshadri et al. [26]
by solving an approximation of the query optimisation prob-
lem exploiting operator re-use in hierarchical networks. We
address the general problem of query planning in any network
configuration by solving a formal optimisation problem.

VII. CONCLUSIONS

We presented SQPR, an optimisation-based query planner
for DSPSs. SQPR is designed to perform well in data centres
environment that are resource constraint, which makes initial
query planning for new queries challenging. SQPR carries out
query admission, allocation and reuse by solving a reduced
optimisation problem. Our evaluation results show that SQPR
is more resource efficient than a hand-crafted heuristic planner.
It can also admits a larger number of queries than a state-of-
the-art query planner. It scales well to increasing number of
queries and resources without sacrificing planning efficiency.

In future work, we plan to extend our SQPR planner with
support for more resources (including memory) and advanced
cost models for predicting resource consumption. We also
want to combine heuristics with SQPR to increase satisfied
queries. To improve scalability in terms of hosts, we will
explore a hierarchical decomposition of the problem. This
would enable query planning across federated data centres by
first assigning queries to sites and then planning queries within
sites. Finally, we want to investigate how to decentralise the
planning itself by having multiple SQPR instances responsible
for different parts of a large-scale DSPS.

VIII. ACKNOWLEDGEMENTS

The authors would like to thank Marco Fiscato for his work
on developing the prototype DISSP system.

REFERENCES

[1] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo, “SPADE:
The System S Declarative Stream Processing Engine,” in SIGMOD’08.
ACM, 2008, pp. 1123–1134.

[2] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk, “Gigascope:
A Stream Database for Network Applications,” in SIGMOD, 2003.

[3] O. Cooper, A. Edakkunni, M. J. Franklin, W. Hong, S. R. Jeffery,
S. Krishnamurthy, F. Reiss, and E. Wu, “HiFi: A Unified Architecture
for High Fan-in Systems,” in VLDB’04, August 2004.

[4] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel et al., “The Design
of the Borealis Stream Processing Engine,” in CIDR, 2005.

[5] L. Chen, K. Reddy, and G. Agrawal, “GATES: A Grid-Based Middle-
ware for Processing Distributed Data Streams,” in HPDC, 2004.

[6] Y. Xing, S. B. Zdonik, and J.-H. Hwang, “Dynamic Load Distribution
in the Borealis Stream Processor,” in ICDE, 2005.

[7] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe, “Efficient and Exten-
sible Algorithms for Multi Query Optimization,” in SIGMOD’00, 2000.

[8] G. T. Lakshmanan, Y. Li, and R. Strom, “Placement Strategies for
Internet-scale Data Stream Systems,” IEEE Internet Computing, Special
Issue on Data Streams, vol. 12, no. 6, 2008.

[9] J. Wolf, N. Bansal, K. Hildrum, S. Parekh et al., “SODA: An Optimizing
Scheduler for Large-scale Stream-based Distributed Computer Systems,”
in Middleware, 2008.

[10] A. Arasu, B. Babu, and J. Widom, “The CQL Continuous Query
Language: Semantic Foundations and Query Execution,” VLDB Jounal,
vol. 15, no. 2, pp. 121–142, 2006.

[11] V. Markl, V. Raman, D. E. Simmen, G. M. Lohman, and H. Pirahesh,
“Robust Query Processing through Progressive Optimization,” in SIG-
MOD, 2004.

[12] IBM, “ILOG CPLEX,” www.ibm.com, 2010.
[13] E. Kalyvianaki, W. Wiesemann, Q. H. Vu, D. Kuhn, and P. Pietzuch,

“SQPR: Stream Query Planning with Reuse,” Imperial College London,
Tech. Rep., Jul. 2010.

[14] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An Integrated Experimental
Environment for Distributed Systems and Networks,” in OSDI, Boston,
MA, Dec. 2002, pp. 255–270.

[15] Y. Ahmad, U. Çetintemel, J. Jannotti, A. Zgolinski, and S. B. Zdonik,
“Network Awareness in Internet-Scale Stream Processing,” IEEE Data
Eng. Bull., vol. 28, no. 1, pp. 63–69, 2005.

[16] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, and
M. Seltzer, “Network-Aware Operator Placement for Stream-Processing
Systems,” in ICDE, 2006.

[17] M. Akdere, U. Çetintemel, and N. Tatbul, “Plan-based Complex Event
Detection across Distributed Sources,” VLDB, vol. 1, no. 1, 2008.

[18] G. T. Lakshmanan and R. E. Strom, “Biologically-inspired Distributed
Middleware Management for Stream Processing Systems,” in Middle-
ware, 2008.

[19] Y. Zhou, B. C. Ooi, K.-L. Tan, and J. Wu, “Efficient Dyanmic Operator
Placement in a Locally Distributed Continuous Query System,” in OTM
Conferences, 2006.

[20] N. Tatbul, U. Çetintemel, S. Zdonik, M. Chemiack, and M. Stonebraker,
“Load Shedding in a Data Stream Manager,” in VLDB’03, 2003.

[21] N. Tatbul, U. Çetintemel, and S. Zdonik, “Staying FIT: Efficient Load
Shedding Techniques for Distributed Stream Processing,” in VLDB’07,
2007, pp. 159–170.

[22] H. Feng, Z. Liu, C. H. Xia, and L. Zhang, “Load Shedding and
Distributed Resource Control of Stream Processing Networks,” Perform.
Eval., vol. 64, no. 9-12, pp. 1102–1120, 2007.

[23] T. Repantis, X. Gu, and V. Kalogeraki, “Synergy: Sharing-aware Com-
ponent Composition for Distributed Stream Processing Systems,” in
Middleware, 2006.

[24] Y. Zhou, K. Aberer, and K.-L. Tan, “Toward Massive Query Optimiza-
tion in Large-scale Distributed Stream Systems,” in Middleware, 2008.

[25] O. Papaemmanouil, U. Çetintemel, and J. Jannotti, “Supporting Generic
Cost Models for Wide-Area Stream Processing,” in ICDE, 2009.

[26] S. Seshadri, V. Kumar, and B. F. Cooper, “Optimizing Multiple Queries
in Distributed Data Stream Systems,” in NetDB, 2006.

