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Abstract

Window aggregation queries are a core part of streaming ap-

plications. To support window aggregation efficiently, stream

processing engines face a trade-off between exploiting par-
allelism (at the instruction/multi-core levels) and incremen-
tal computation (across overlapping windows and queries).

Existing engines implement ad-hoc aggregation and par-

allelization strategies. As a result, they only achieve high

performance for specific queries depending on the window

definition and the type of aggregation function.

We describe a general model for the design space of win-

dow aggregation strategies. Based on this, we introduce

LightSaber, a new stream processing engine that balances

parallelism and incremental processing when executing win-

dow aggregation queries on multi-core CPUs. Its design

generalizes existing approaches: (i) for parallel processing,
LightSaber constructs a parallel aggregation tree (PAT) that
exploits the parallelism of modern processors. The PAT di-

videswindow aggregation into intermediate steps that enable

the efficient use of both instruction-level (i.e., SIMD) and task-

level (i.e., multi-core) parallelism; and (ii) to generate efficient

incremental code from the PAT, LightSaber uses a generalized
aggregation graph (GAG), which encodes the low-level data

dependencies required to produce aggregates over the stream.

A GAG thus generalizes state-of-the-art approaches for in-

cremental window aggregation and supports work-sharing

between overlapping windows. LightSaber achieves up to
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Figure 1: Evaluating window aggregation queries

an order of magnitude higher throughput compared to ex-

isting systems—on a 16-core server, it processes 470 million

records/s with 132 µs average latency.
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1 Introduction

As an ever-growing amount of data is acquired by smart

home sensors, industrial appliances, and scientific facilities,

stream processing engines [5, 10, 40, 68] have become an

essential part of any data processing stack. With big data

volumes, processing throughput is a key performance metric

and recent stream processing engines therefore try to exploit

the multi-core parallelism of modern CPUs [50, 76].

In many domains, streaming queries perform window ag-
gregation over conceptually infinite data streams. In such

queries, a sliding or tumbling window moves over a data

stream while an aggregation function generates an output

stream of window results. Given the importance of this class

Research 28: Stream Processing  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2505



of query, modern stream processing engines must be de-

signed specifically for the efficient execution of many win-

dow aggregation queries on multi-core CPUs.

Window aggregation queries with tumbling windows pro-

cess data streams in non-overlapping batches, which makes

them amenable to the same types of efficient execution tech-

niques as classic relational queries [24, 57, 60]. In contrast,

sliding windows offer a new design challenge, which has not

been explored comprehensively. When executing a query

with sliding window aggregation, we observe a tension be-

tween techniques that use (i) task- and instruction-level paral-
lelism, leveraging multiple CPU cores and SIMD instructions;

and (ii) incremental processing, avoiding redundant computa-

tion across overlapping windows and queries. Incremental

processing introduces control and data dependencies among

CPU instructions, which reduce the opportunities for exploit-

ing parallelism.

Current designs for stream processing engines [5, 10, 40,

68] pick a point in this trade-off space when evaluating win-

dow aggregation queries. Consequently, they do not exhibit

robust performance across query types. Fig. 1 illustrates this

problem by comparing state-of-the-art approaches (described

in §2.1 and §7.7) for the evaluation of window aggregation

queries [2, 29, 62, 64, 67]. The queries, taken from a sensor

monitoring workload [34], calculate a rolling sum (invert-

ible) and min (non-invertible) aggregation, with uniformly

random window sizes of [1, 128K] tuples and a worst-case

slide of 1. Some approaches exploit the invertibility prop-

erty [29, 62] to increase performance; others [64, 67] effi-

ciently share aggregates for non-invertible functions. To

assess the impact of overlap between windows, we increase

the number of concurrently executed queries.

As the figure shows, each of the four approaches outper-

forms the others for some part of the workload but is sub-

optimal in others: on a single query, the SoE and TwoStacks
algorithms perform best for invertible and non-invertible

functions, respectively; with multiple overlapping queries,

SlickDeque and SlideSide achieve the highest throughput
for invertible functions, while SlideSide is best in the non-

invertible case. We conclude that a modern stream processing
engine should provide a general evaluation technique for win-
dow aggregation queries that always achieves the best perfor-
mance irrespective of the query details.

The recent trend to implement query engines as code gen-

erators [52, 59] only amplifies this problem—with the elimi-

nation of interpretation overhead, differences in the window

evaluation approaches have a more pronounced effect on

performance. Generating executable code from a relational

query is non-trivial (as indicated by the many papers on

the matter [52, 55, 59]), but fundamentally a solved problem:

most approaches implement a variant of the compilation

algorithm by Neumann [52]. No such algorithm, however,

exists when overlapping windows are aggregated incremen-

tally. This is challenging because code generation must be

expressive enough to generalize different state-of-the-art

approaches, as used above.

A common approach employed by compiler designers in

such situations is to introduce an abstraction called a “stage”—

an intermediate representation that captures all of the cases

that need to be generated beneath a unified interface [55, 58].

The goal of our paper is to develop just such a new abstrac-

tion for the evaluation of window aggregation queries. We

do so by dividing the problem into two parts: (i) effective

parallelization of the window computation, and (ii) efficient

incremental execution as part of code generation. We de-

velop abstractions for both and demonstrate how to combine

them to design a new stream processing system, LightSaber.

Specifically, our contributions are as follows:

(i) Model of window aggregation strategies.We formal-

ize window aggregation strategies as part of a general model

that allows us to express approaches found in existing sys-

tems as well as define entirely new ones. Our model splits

window aggregation into intermediate steps, allowing us

to reason about different aggregation strategies and their

properties. Based on these steps, we determine execution

approaches that exploit instruction-level (i.e., SIMD) as well

as task-level (i.e., multi-core) parallelism while retaining a

degree of incremental processing.

(ii)Multi-level parallelwindowaggregation. For the par-

allel computation of window aggregates, we use a paral-
lel aggregation tree (PAT) with multiple query- and data-

dependent levels, each with its own parallelism degree. A

node in the PAT is an execution task that performs an in-

termediate aggregation step: at the lowest level, the PAT

aggregates individual tuples into partial results, called panes.

Panes are subsequently consumed in the second level to

produce sequences of window fragment results, which are

finally combined into a stream of window results.

(iii) Code generation for incremental aggregation. To

generate executable code from nodes in the PAT, we pro-

pose a generalized aggregation graph (GAG) that exploits

incremental computation. A GAG is composed of nodes that

maintain the aggregate value of the data stored in their child

nodes. It can, thus, efficiently share aggregates, even with

multiple concurrent queries. By capturing the low-level data

dependencies of different aggregate functions and window

types, the GAG presents a single interface to the code gener-

ator. The code generator traverses an initially unoptimized

GAG and specializes it to a specific aggregation strategy by

removing unnecessary nodes.

Based on the above abstractions, we design and implement

LightSaber, a stream processing system that balances paral-

lelism and incremental processing on multi-core CPUs. Our
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Algorithm

Time Space

Queries single multiple
single multiple

amort. worst amort. worst

SoE [29]
inv. 2 2 q q n qn
non-inv. n n qn qn n qn

TwoStacks [29] 3 n q qn 2n 2qn

Slick- inv. 2 2 2q 2q n q + n
Deque [62] non-inv. <2 n q qn 2 to 2n 2 to 2n

Slide- inv. 3 n q q 3n 3n
Side [67] non-inv. 3 n q qn 2n 2n

FlatFAT [63] log(n) log(n) q log(n) q log(n) 2n 2n

Table 1: Complexity of window aggregation approaches
(n partial aggregates, q queries)

experimental evaluation demonstrates the benefits of PATs

and GAGs: LightSaber outperforms state-of-the-art sys-

tems by a factor of seven for standardized benchmarks, such

as the Yahoo Streaming Benchmark [23], and up to one order

of magnitude for other queries. Through micro-benchmarks,

we confirm that GAGs generate code that achieves high

throughput with low latency compared to existing incremen-

tal approaches. On a 16-core server, LightSaber processes

tuples at 58 GB/s (470 million records/s) with 132 µs latency.
The paper is organized as follows: §2 explains the prob-

lem of sliding window aggregation, the state-of-the-art in

incremental window processing, and our model for window

aggregation; after that, we describe LightSaber’s parallel ag-

gregation tree (§3) and code generation approach (§4) based

on a generalized aggregation graphs (§5), followed by im-

plementation details (§6); we finish with the evaluation (§7),

related work (§8), and conclusions (§9).

2 Background

In this section, we cover the underlying concepts of window

aggregation required for the remainder of the paper. We

provide background on window aggregation (§2.1) and its

implementation in current systems (§2.2). We finish with a

model of the design space for window aggregation (§2.3).

2.1 Window aggregation

Window aggregation forms a sequence of finite subsets of a

(possibly infinite) input dataset and calculates an aggregate

for each of these subsets. We refer to the rules for gener-

ating these subsets as the window definition. We focus on

two window types [4]: tumbling windows divide the input

stream into segments of a fixed-size length (i.e., a static win-
dow size), and each input tuple maps to exactly one window

instance; and sliding windows generalize tumbling windows

by specifying a slide. The slide determines the distance be-

tween the start of two windows and allows tuples to map to

multiple window instances. Windows are considered deter-
ministic [16] if, when a tuple arrives, it is possible to designate
the beginning or end of a window.
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Figure 2: TwoStacks algorithm

An aggregation function, such as sum or max, performs

arbitrary computation over the window contents to generate

a window aggregate. Aggregation functions can be classified

based on their algebraic properties [27, 63]: (i) associativity,

(x ⊕y) ⊕ z = x ⊕ (y ⊕ z), ∀ x,y, z; (ii) commutativity, x ⊕y =
y ⊕ x , ∀ x,y; and (iii) invertibility, (x ⊕ y) ⊖ y = x , ∀ x,y.

Partial aggregation. A typical execution strategy for win-

dow aggregation exploits the associativity of aggregation

functions: tuples can be (i) partitioned logically, (ii) pre-

aggregated in parallel, and (iii) the per-partition aggregates

can be merged. This technique is known as hierarchical/par-

tial aggregation in relational databases [12, 25] and window
slicing in streaming. A number of different slicing techniques

have been proposed, e.g., Panes [45], Pairs [41], Cutty [16],

and Scotty [69], which remove redundant computation steps

by reusing partial aggregates. To further improve perfor-

mance with overlapping windows, slices can be pre-aggrega-

ted incrementally to produce higher-level aggregates. We

refer to these window fragment results as sashes.
Incremental aggregation. Although windows are finite

subsets of tuples, their size can be arbitrarily large. It, there-

fore, is preferable to use partial aggregation combined with

incremental processing to reduce the number of operations

required for window evaluation. Depending on the aggrega-

tion function, different algorithms can be used to aggregate

elements or partial aggregates incrementally.

Table 1 provides an overview of different incremental

aggregation algorithms: Subtract-on-Evict (SoE) [29] reuses
the previous window result to compute the next one by

evicting expired tuples and merging in new additions. This

has a constant cost per element for invertible functions but

rescans the window if the functions are non-invertible.

For non-invertible functions, TwoStacks [2, 29] achieves
O(1) amortized complexity. As shown in Fig. 2, it maintains

a back and a front stack, operating as a queue, to store the

input values (white column) and the aggregates (blue/green

columns). Each new input value v is pushed onto the back

stack, and its aggregate is computed based on the value of the

back stack’s top element. When a pop operation is performed,

the top of the front stack is removed and aggregated with

the top of the back stack. When the front stack is empty, the

algorithm flips the back onto the front, reversing the order

of the values, and recalculates the aggregates.
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System Shared

memory

Parallelization Incremental Slicing/query

sharing

Flink [5],

Spark [10]

✗ partition-by-key
within

window
✗

Cutty [16],

Scotty [69]

✗ partition-by-key
within/across

window
✓

StreamBox [50],
BriskStream [76]

✓ partition-by-key
within

window
✗

SABER [39] ✓ late merging [43, 75],

single-threaded merge

within/across

window
✗

LightSaber ✓ late merging [43, 75],

parallel merge

within/across

window
✓

Table 2: Window aggregation in stream processing systems

While the previous algorithms process only a single query,

another set of algorithms shares the work between multiple

queries on the same stream. For multiple invertible functions,

SlickDeque generalizes SoE by creating multiple instances

of SoE that share the same input values; for non-invertible

functions, instead of using two stacks to implement a queue,

SlickDeque uses a deque structure to support insertions/re-

movals of aggregates. It, therefore, reports results in constant

amortized time. FlatFAT stores aggregates in a pointer-less

binary tree structure. It has O(logn) complexity for updat-

ing and retrieving the result of a single query by using a

prefix- [14] and suffix-scan over the input. SlideSide uses a
similar idea, but computes a running prefix/suffix-scan with

O(1) amortized complexity.

As our analysis shows, while the most efficient algorithms

have a O(1) complexity, they only achieve this for specific

window definitions. We conclude that there is a need to

generalize window aggregation across query types.

2.2 Streaming processing engines

By its very nature, window aggregation can be executed

either in parallel, if there is independent work, or incremen-

tally, which introduces dependent work—but not both. Con-

sequently, the benefits of work-sharing between overlapping

windows must be traded off against the benefits of paral-

lelization. Table 2 summarizes the design decisions of exist-

ing stream processing systems. The second column denotes

whether a system considers shared-memory architectures;

the “parallelization” column specifies how computation is

parallelized; the “incremental” column describes when in-

cremental computation is performed; and the last column

considers slicing/inter-query sharing.

Scale-out systems (Spark [10] and Flink [5]) distribute pro-

cessing to a shared-nothing cluster and parallelize it with

key-partitioning. This requires a physical partitioning step

between each two operators that enables both intra- and

inter-node parallelism. However, with this approach, not

only significant partitioning overhead is introduced, but also

the parallelism degree is limited to the number of distinct ag-

gregation keys, which reduces performance for skewed data.

In terms of incremental computation, these systems aggre-

gate directly individual tuples into full windows, following

the bucket-per-window approach [46, 47]. This becomes ex-

pensive for sliding windows with a small slide when a single

input tuple contributes to multiple windows.

Slicing frameworks, like Cutty [16] and Scotty [69] de-

veloped on top of Flink, reduce the aggregation steps for

sliding windows and enable efficient inter-query sharing.

Eager slicing [16] performs incremental computation both

within and across window instances using FlatFAT; lazy slic-

ing [69] evaluates only the partial aggregates incrementally

and yields better throughput at the cost of higher latency.

Scale-up systems (StreamBox [50] and BriskStream [76])

are designed for NUMA-aware processing on multi-core ma-

chines. Both systems parallelize with key-partitioning and

use the bucket-per-window approach for incremental com-

putation, overlooking the parallelization and incremental

opportunities of window aggregation.

SABER [39] is a scale-up system that parallelizes stream

processing on heterogeneous hardware. Instead of parti-

tioning by key, it assigns micro-batches to worker threads

in a round-robin fashion, which are processed in parallel

but merged in-order by a single thread. This decouples the

window definition from the execution strategy and, thus,

permits even windows with small slides to be supported

with full data-parallelism, in contrast to slice-based process-

ing [11, 45]. SABER decomposes the operator functions into:

a fragment function, which processes a sequence of window

fragments and produces fragment results (or sashes); and an

assembly function (late merging [43, 75]), which constructs

complete window results from the fragments. In terms of in-

cremental computation, SABER shares intermediate results

both within and across window instances at a tuple level,

which results in redundant operations.

While most of these systems apply key-partitioning for

parallelization, this approach does not exploit all the avail-

able parallel hardware. In addition, when evaluating overlap-

ping windows, no system from Table 2 combines effectively

partial aggregation with incremental computation, which

results in sub-optimal performance. It is crucial, hence, to

design a system based on these observations.

2.3 Window aggregation model

As described earlier, the properties of the aggregation func-

tions can be exploited to compute aggregates either in par-

allel or incrementally. Surprisingly, we found that current

stream processing systems do not take advantage of this.

Evidently, there is a design space for stream processing sys-

tems without a dominating strategy for window aggregation.

What is lacking, therefore, is a model that captures the de-

sign space and allows reasoning about design decisions and

their impact on system performance.
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Figure 3: Model of window aggregation design space

In this model, an aggregation strategy is represented as a

word over the alphabet of intermediate result classes, Pane,
Sash, Window, and combiner strategies, parallel (P ), incre-
mental (I ), and sequential (S). The DFA in Fig. 3 shows the

possible sequences of intermediate steps to produce a win-

dow aggregate from a set of tuples. From left to right, tu-

ples are aggregated into Panes (or slices [16]), which can be

merged and aggregated into Sashes in one or more (i.e., hier-

archical) steps. Sashes are combined into complete Windows
(also, potentially hierarchically). Conceptually, each of those

aggregation steps can be I , P , or S .
Given this model, a system is described by a word of the

form (S → Pane, PPI → Sash, I →Window).1 The previous

word encodes a design in which tuples are aggregated into

Panes sequentially; Panes are hierarchically aggregated into

Sashes in two parallel and one incremental step; and the final

windows are produced in a single incremental step.

To illustrate this further, let us encode a number of real

systems in the model. Systems that utilize the bucket-per-

window approach, such as Flink, have an aggregation tree

that has only one (incremental) level (I →Window) in our

model. Slicing [16, 69] removes redundant computations

and is either (S → Pane, I → Window) or (S → Pane, S →

Window). SABER is a specialized stream processing system

that has three processing states: it incrementally aggregates

tuples into Sashes, aggregates multiple Sashes in parallel but

generates complete Windows sequentially. Formally, SABER

implements (I→Sash, PS→Window).
SABER, arguably the most advanced of these systems,

still does not exploit all available parallelism: (i) it does not

parallelize slice creation and (ii) because the aggregation

strategy is fixed, the degree of parallelism is determined

by the window definition, which limits scalability. In the

next section, we describe how LightSaber overcomes these

limitations by occupying a new point in this design space.

3 Parallel Aggregation Tree

Having formalized the design space, let us, now, describe

how to select an appropriate design. The first thing to note is

1
Note that spaces, commas, and → are merely for readability and do not

have formal semantics.
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Figure 4: Parallel aggregation tree in LightSaber

that the optimal design is highly query-, input- and system-

specific. In particular, the aggregation from sashes to win-

dows can be performed hierarchically (i.e., following the self-

referencing loop at the sash-node in Fig. 3 multiple times).

The optimal number of hierarchical merge steps is difficult

to determine statically. For this reason, we determine the

number of hierarchical merge steps (i.e., based on the run-

time state of the system). To express this fact, we use the

Kleene-star as a suffix to a literal encoding the processing

strategy: I ∗, e.g., indicates a dynamically determined number

of incremental aggregations. In this formalism, LightSaber

is a (P → Pane, I → Sash, P∗S →Window) system: parallel

aggregation of tuples into panes, incremental aggregation

of panes into sashes and a dynamic number of parallel ag-

gregations with a final sequential step to produce windows

from sashes.

Implementing such a design, however, is non-trivial be-

cause it combines static subplans (the tuples to panes and

panes to sashes) with dynamic ones (sashes to windows).

For that reason, the plan is encoded in a structure we call a

Parallel Aggregation Tree (PAT) (see Fig. 4). A PAT has three

distinct levels, one for each intermediate result class in the

formalism. While the two bottom levels are statically defined

based on the properties of the query, the depth of the last

level is data-dependent and can have arbitrarily many lay-

ers, as P∗ indicates. This increases the degree of parallelism
available in the workload, which allows LightSaber to scale

to more parallel hardware for queries that do not come with

high degrees of inherent parallelism (i.e., those with either

an expensive aggregate combiner function or a small slide).

Next, we describe each of the processing levels of the PAT

in more detail.

Level 1: Tuple merge. The goal of the first level is to ag-

gregate the tuples of a pane. Since there is no sharing po-

tential, this level can be parallelized without any downsides.

LightSaber partitions the stream into panes similar to the

strategy pioneered by Pairs [41] or Cutty [16]. Within each
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pane, LightSaber exploits SIMD as well as instruction-level

parallelism in line with previous work [66].

The panes are computed using a specialized data structure,

which we call a pane aggregation table (see Fig. 5). The pane
aggregation table is shared between the two bottom levels

of Fig. 4. For each active key, it maintains a separate pane

result and a generalized aggregation graph (GAG) instance.

GAGs are an abstract data structure supporting incremental

aggregation of values and will be described in §5. GAGs are

abstract in the sense that their implementation is generated

at query compilation time. The result of the tuple level merge

is either a hashtable with per-key aggregates or a single

aggregate value for ungrouped aggregations.

Level 2: Pane merge. The pane merge level combines the

window panes into sashes. It does so by iterating over the

pane aggregation table and merging each per-pane aggregate

into a GAG. With an interface similar to a queue, GAGs

support the insertion of a value, which triggers the emission

of a window aggregate. If a pane produces no results for a key,

the neutral element for the combiner function is merged into

the GAG to trigger the emission of an aggregate. To reduce

thememory pressure, LightSabermaintains a timeout value

for each key, which marks the time at which it no longer

contributes to windows and is safe to remove it.

While the evaluation of the tuple merge level can be an

individual task and the merging of values into the GAG can

be parallelized across CPU cores, LightSaber combines the

bottom levels of the PAT and generates code that is executed

as a single, fully-inlined task at runtime. This reduces the

number of function calls and improves data and instruction

locality. SIMD parallelization, however, is an interesting op-

timization, which we leave for future work. The output of

this level is a sash, which is passed to the next level using a

simple result buffer.

Level 3: Sash merge. In the final level of the PAT, the

sash results are combined and emitted as a stream of com-

plete window results. At first, each window fragment is

tagged as opening, closing, complete, or pending, similar to

SABER [39]. Instead of performing a single-threaded merge

though, LightSabermerges the window fragments in an ag-

gregation tree: for each pair of sashes, a task is created with

the respective aggregate combiner function and a pointer

to the sashes. Each task designates one of its inputs as the

“higher-level aggregate” side and merges the values from the

other input into it to decrease the memory footprint of this

level. LightSaber keeps track of the active window frag-

ments’ dependencies. When the merge is done, it returns

the intermediate buffers to statically allocated pools of ob-

jects. The worker that merges the last two windows emits

its output as the complete window result.

4 Query Code Generation

LightSaber generates code for two separate purposes: at

the query level, code is generated to implement the seman-

tics (filters, joins, etc.) of the query but abstracts away the

incremental aggregation strategy (SoE, TwoStacks, etc.); at
the level of aggregation strategies, the query semantics are

abstracted. The two levels are connected by the pane aggre-

gation table, as discussed in the previous section. We first

discuss the query-level code generation in this section and

the incremental aggregation in §5.

4.1 Operators

Let us define the set of operators supported by LightSaber:

(i) the PROJECTION (π ) and SELECTION (σ ) operators, which
are stateless and require a single scan over the stream batch;

(ii) the WINDOW AGGREGATION (α ) operator for both tumbling

and sliding windows, which supports GROUP-BY (γ ) as well as
standard aggregation functions (min, max, sum, count, average);

and (iii) the JOIN (Z) operator, which allows joining a stream

with a static table.

GROUP-BY and JOIN are implemented using generated (and,

thus, inlined) hashtables as well as aggregation code. Follow-

ing common practice, we use Intel’s SSE CRC instruction [38]

and bit masking for hashing, open addressing for hashtable

layout, and linear probing for conflict resolution. Hashta-

bles are pre-allocated according to (generous) cardinality

estimates but can be resized (and rehashed on overflow).

4.2 Generating query code

To translate the non-incremental operators to executable

code, we follow the approach by HyPeR [52]: we traverse

the operator tree and append instructions to a code buffer

until reaching an operator that requires materialization of its

result (a pipeline breaker). Since LightSaber does not cur-

rently support stream/stream joins, the only pipeline break-

ers are windowed aggregations. Every sequence of pipelin-

eable operators translates to a single worker task, which

minimizes task overhead (i.e., allocation, result passing, and

scheduling). Each task is optimized and compiled into exe-

cutable code by the LLVM compiler framework [42].

To illustrate this process, consider the query in Fig. 6a

(denoted in Continuous Query Language Syntax [7]). Taken
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select timestamp , highway , direction ,

(position /5280) as segment , AVG (speed) as avgSpeed

from PosSpeedStr [range 300 slide 1]

group by highway , direction , segment

having avgSpeed < 40.0

(a) SQL for LRB1 query

1 paneAggregationTable . reset_panes ( ) ;

2 f o r ( tuple &t : input ) {

3 i f ( paneAggregationTable . pane_has_ended ( t ) ) {

4 sashes . append ( paneAggregationTable . extract_sashes ( ) ) ;

5 paneAggregationTable . reset_panes ( ) ;

6 }

7 key = { t . _1 , t . _3 , t . _5 , ( t . _6 / 5 2 8 0 ) } ;

8 val = t . _2 ;
9 paneAggregationTable . tuple_merge ( key , val ) ;
10 }

(b) Generated code for fragment function of LRB1

1 size_t pos = find ( key ) ;
2 hashNode [ pos ] . pane . _1 += val ;

3 hashNode [ pos ] . pane . _cnt ++;

(c) Function tuple_merge(key, val)

1 sashesTable ;

2 f o r ( / ∗ i t e r a t e i over the hash nodes ∗ / ) {

3 gag [ i ] . evict ( ) ;

4 val = { hashNode [ i ] . pane_1 , hashNode [ i ] . pane . _cnt } ;

5 gag [ i ] . insert ( val ) ;
6 sashesTable . append ( gag [ i ] . query (WINDOW_SIZE ) ) ;

7 }

8 r e t u r n sashesTable ;

(d) Function extract_sashes()

Figure 6:Query code generation in LightSaber

from the Linear Road Benchmark [8], it reports the road

segments on a highway lane with an average speed lower

than 40 over a sliding window. A simplified version of the

generated code for the generated fragment function of this

query (in C++ notation) is shown in Fig. 6b. Note that the

LightSaber query compiler combines levels 1 and 2, as il-

lustrated in Fig. 4, into a single, fully-inlined task (line 9

implements level 1, lines 4-5 implement level 2). The gener-

ated query code reflects only the query semantics (projec-

tion, grouping key calculation) but expresses aggregation

purely in terms of the pane aggregation table API. The Pane

Aggregation Table implementation (Figures 6c and 6d) is a

very thin wrapper over the GAGs: the tuple_merge function
acts like an ordinary hashtable while the extract_sashes
function spills the pre-aggregated pane results into the GAG

using three functions: insert, evict and query. Let us, in
the next section, discuss the GAG interface as well as its

implementation.

5 Generalized Aggregation Graph

The objective of GAGs is to combine the benefits of code gen-

eration (hardware-conscious, function-call-free code) with

those of efficient incremental processing.While this is achiev-

able by hard-coding query fragments in the form of “tem-

plates” and instantiating them at runtime, this approach

quickly leads to unmaintainable large codebases and compli-

cated translation rules. Instead, a code generation approach

should be based on an abstraction that is expressive enough

leaf[0] leaf[1] leaf[2] leaf[3]

ps[1]

ps[2]

ps[3]

ps[4]

ss[1]

ss[2]

ss[3]

ss[4]

ps[0] ss[0]

Pr
efi
x-
Sc
an

Suffix-Scan

Figure 7: Initial General Aggregation Graph

to capture all of the targeted design space yet simple enough

to maintain. The focus of this section is the development

of an abstraction that captures the design space of the best

(known) in-order incremental processing algorithms.

Before presenting the intuition behind the GAG repre-

sentation, it is necessary to provide the definitions of the

prefix- [14] and the suffix-scan. Given an associative opera-

tor ⊕ with an identity element I⊕ , and an array of elements

A[a0,a1, ...,an−1], the prefix- and suffix-scan operations are

defined as PS[I⊕,a0, (a0 ⊕ a1), ..., (a0 ⊕ a1 ⊕ ... ⊕ an−1)] and
SS[I⊕,an−1, (an−1 ⊕ an−2), ..., (an−1 ⊕ an−2 ⊕ ... ⊕ a0)] respec-
tively. The first n − 1 elements of these arrays represent an

exclusive prefix- or suffix-scan, while the elements with-

out the identity I⊕ represent an inclusive scan.

Let us, now, discuss the different aspects of GAGs in the

order that they become relevant in the code generation pro-

cess: starting with the interface, the creation of an initial

generic GAG, the specialization to a specific aggregation

strategy, and the translation into executable code. We also

discuss an optimization for multi-query processing as well

as the applicability of the GAG approach.

GAG interface As discussed in the previous section, the gen-

erated code of GAGs relies on three functions to enable effi-

cient shared aggregation:
2

• void insert (Value v): inserts an item of type Value in

the GAG and performs any internal changes necessary to

accommodate further operations;

• void evict (): removes the oldest value and perform the

necessary internal changes; and

• Value query (size_t windowSize): returns the result with

respect to the current state and a given window size.

While the first two are rather obvious, the query function is

interesting in that it indicates that GAG produces results for

different window sizes. Such inter-query sharing requires

to maintain partial aggregates in memory and support in-

order range queries efficiently. LightSaber generates shared

partials (see Fig. 6b) and GAGs take care of storing them and

producing window results by invoking the query function.

2
Note that these functions are conceptual and do not exist in generated

code.
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leaf[0] leaf[1] leaf[2] leaf[3]

ps[1]

ps[2]

ps[3]

ps[4]

ss[1]

ss[2]

ss[3]

ss[4]

ps[0] ss[0]

(a) Initial inv-GAG

leaf[0] leaf[1] leaf[2] leaf[3]

ps

(b) Specialized inv-GAG

1 result = 0 ;

2 f o r ( / ∗ i t e r a t e i over i npu t ∗ / ) {

3 ps = ps + input [ i ] − input [ i−WINDOW_SIZE ] ;

4 / ∗ emi t r e s u l t ∗ /

5 result = ps ;
6 }

(c) Generated code for invertible function (sum)

leaf[0] leaf[1] leaf[2] leaf[3]

ps[1]

ps[2]

ps[3]

ps[4]

ss[1]

ss[2]

ss[3]

ss[4]

ps[0] ss[0]

(d) Initial non-inv-GAG
leaf[0] leaf[1] leaf[2] leaf[3]

ps

ss[1]

ss[2]

ss[3]

ss[4]

ss[0]

(e) Specialized non-inv-GAG

1 result = INT_MAX ;

2 ss [WINDOW_SIZE+1] = { INT_MAX } ;

3 ps = INT_MAX ;

4 leafIterator = 0 ;

5 f o r ( / ∗ i t e r a t e i over i npu t ∗ / ) {

6 / ∗ compute a s u f f i x −scan over the c u r r e n t v a l u e s ∗ /

7 i f ( leafIterator == WINDOW_SIZE ) {

8 f o r ( j = 0 ; j < WINDOW_SIZE ; j++)

9 ss [ j+1] = min ( ss [ j ] , input [ i−WINDOW_SIZE+j ] ) ;

10 leafIterator = 0 ;

11 }

12 ps = min ( ps , input [ i ] ) ;
13 / ∗ emi t r e s u l t ∗ /

14 result = min ( ps , ss [WINDOW_SIZE−leafIterator ] ) ;

15 leafIterator ++;
16 }

(f) Generated code for non-inv function (min)

Figure 8: Generating code with GAGs

5.1 Initial GAG creation

A GAG must turn a window definition (size, slide, and ag-

gregation function) into a dataflow graph that can be used

to produce any of the presented algorithms in Table 1: SoE,
TwoStacks, SlickDeque, and SlideSide (since each of these is

the best-performing in parts of the problem space). At first

glance, this seems to be a challenging problem that requires

a complex solution. There is, however, an observation that

turns this problem into an almost trivial one: any associative

aggregation function can be represented as a binary com-

bination of an element of a prefix-scan and an element of

a suffix-scan of the input. This is sufficient to capture the

low-level dependencies of the aforementioned algorithms.

Tangwongsan et al. [63] make a similar observation when

developing FlatFAT, a binary aggregation tree (see §2.1).

While FlatFAT performs poorly due to the runtime overhead

of the tree, we found that the principle can be applied to

generalize a data structure that is efficient for non-invertible

combiners: TwoStacks [29]. This results in a dataflow graph

as the one in Fig. 7, which can represent any associative

aggregation. As indicated by the color-coded nodes (which

mirror those of Fig. 2), the front stack corresponds to the blue

prefix-tree parent nodes (abbreviated as ps). The ps values

effectively constitute a running prefix-scan over the input

values (leaves in the graph, which can be panes or individual

elements). On the right-hand side in Fig. 7, (green) suffix-scan
parents (ss) correspond to the back stack.

Extracting an aggregate from this graph is as simple as

combining the two nodes from the prefix- and suffix-scan us-

ing the appropriate combiner function. These nodes’ values

can be updated either lazily (upon query) or eagerly (upon

tuple insertion). Next, we describe how we exploit this prop-

erty to specialize the initial GAG into one of the presented

aggregation algorithms.

5.2 GAG specialization

The first step in GAG specialization is the removal of un-

necessary nodes, which would lead to “dead code”. This is a

simple “mark and sweep” optimization: every node that is

needed to produce final aggregates is marked as required.

Afterwards, the GAG is traversed top-down, and each un-

necessary node is replaced by its children. If multiple nodes

have the same inputs, they are eliminated as duplicates.

The second step is the definition of a lazy or eager dataflow

computation strategy. The rationale is simple: prefix-scans

can be efficiently calculated without buffering (i.e., eagerly)

because they only require access to the last element and the

current one; suffix-scans require buffering because they need

to access older tuples from the stream. In addition, suffix-

scans must scan the window, which incurs a linear cost. It is,

therefore, beneficial to perform the suffix-calculation lazily.

This process is required whenever evictions are performed.

We refer to the respective tuple ingestions as a “trigger-

point” and represent it with a dashed vertical line in Fig. 8e.

Note that the suffix-scan directly corresponds to the “stack-

flipping” of the TwoStacks algorithm.

To illustrate the (somewhat surprising) power of this ap-

proach, let use describe the twomost illustrative cases: single-

query aggregation using an invertible (Fig. 8b) and a non-

invertible (Fig. 8e) combiner function. Note that we draw

eager computation edges in blue and lazy ones in black.

Fig. 8a shows the case of an invertible function. Here only
the root of the prefix-scan is marked as required (indicated

by the red arrow)—all other values are unnecessary and can
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Figure 9: Example of multi-window processing

be eliminated. After removing all unmarked nodes and re-

placing the parent edges with their children, only a single

node remains (Fig. 8b). This corresponds to the dataflow

representation of the SoE algorithm.

In the case of a non-invertible function (Fig. 8d), each of

the values of the suffix-scan, as well as the root of the prefix-
tree, are required. Only the prefix-scan tree can be collapsed,

resulting in the dataflow graph in Fig. 8e. Since the graph

has lazy (black) compute-edges, it requires a “trigger-point”

(indicated by the dashed green line). This graph corresponds

to the TwoStacks algorithm.

5.3 Generating code from GAGs

Processing a single sliding window while computing an in-

vertible function is the simplest case. The code (displayed

in Fig. 8c) simply iterates over the input and, for each tuple,

adds the current value to an accumulator while evicting the

appropriate value (line 3). Note that, for clarity, the code

accesses the evicted value directly from the input stream. In

practice, LightSaber buffers only a window’s worth of val-

ues. After the value is processed, a result is emitted (line 5).

The case of a single window computing a non-invertible

function is more complicated. Conceptually, it corresponds

to the TwoStacks algorithm (in particular its implementation

in HammerSlide [66]): as illustrated in Fig. 8f, the implemen-

tation maintains a single aggregate value for the back stack

(line 12) as well as a buffer for the back stack. Whenever the

number of inserted elements is equal to the window size, it

triggers the computation of the suffix-scan (lines 7 through

11). The result is emitted in line 14.

5.4 Multi-window processing

The naïve approach to evaluate multiple concurrent window

queries would be to have several instances of the single-

window code. Instead, we find that we can answer multiple

different queries (over the same stream) by extracting and

combining specific values from the GAG. Unfortunately, de-

termining which values to combine is challenging: the prob-

lem stems from the fact that tuples are stored in a circular

buffer, which leads to the start and end cursors of a window

change their relative order while processing the stream. This

is referred to as the inverted buffer problem [63].

To illustrate this problem, consider the example in Fig. 9a:

it shows the evaluation of two queries, Q1 and Q2, both

calculating a window sum but with different window sizes

(3 and 4 elements, respectively). Fig. 9a shows the state at

time 0. Q1’s window contains the values {4, 2, 8}. Their sum
(i.e., 14) can be calculated by subtracting the exclusive prefix-

scan of the window start cursor, PS(s) − s , from the inclusive

prefix-scan of the end, PS(e). Similarly, the result of Q2 at

time 0 is calculated as 17. When transitioning to time 1, the

value 5 is inserted at the insert cursor, and all cursors are

advanced. The end cursors of both windows are now to the

left of the start cursors: the windows are inverted. The sum

of the window elements can now be calculated as the prefix-

sum of the end, PS(e), and the suffix-sum of the start, SS(s).
The case of multiple non-invertible functions generalizes

the single non-invertible case, using only the root of the ps

array. Their key difference is that instead of maintaining a

single front stack, the algorithm operates on multiple stacks,

one for each query. However, these stacks can be overlayed

and start at the same memory address. We omit the details

due to space limitations.

5.5 Applicability of GAGs

Before concluding this section, let us discuss the conditions

under which GAGs are applicable. In terms of the aggregate

functions, they have the same requirements as other ap-

proaches (see Table 1): the aggregate functions must be only

associative and neither invertible nor commutative. These

conditions hold for the standard SQL aggregation functions

(min, max, sum, count, avg) as well as many statistical prop-

erties (most notably standard deviation) but exclude per-

centiles [29]. New functions can be added similar to other

approaches [16, 63]. The collapsing of the GAG to SoE re-

quires an extra invert function during the specialization

phase. With respect to ordering, GAGs can handle FIFO win-

dows with “in-order” or “slightly out-of-order” events that

end up in the same partial aggregate. Handling full out-of-

order data is beyond the scope of this work.

6 LightSaber Engine

Next, we describe the LightSaber engine
3
in more detail. It

is implemented in 24K lines of C++14 and uses Intel TBB [32]

for concurrent queues and page-aligned memory allocation.

6.1 Memory management

As we demonstrate in §7, the performance of LightSaber

is mostly restricted by memory accesses and, hence, Light-

Saber manages its own memory for improved performance.

3
The source code is available at https://github.com/lsds/LightSaber
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The processing of window operators requires the alloca-

tion of memory chunks for storing intermediate window

fragments. Dynamic memory allocation on the critical path,

however, is costly and reduces overall throughput.

We observe that, for fixed-sized windows, the amount of

memory required over time is the same. Thus, based on the

window definition and the system batch size, LightSaber

infers the amount of memory needed and allocates it once at

the start. It uses dynamic memory allocation only whenmore

memory is required. Each worker thread is pinned to a CPU

core to limit contention, while it initializes and maintains

its own pool of data structures and intermediate buffers. For

tasks, LightSaber uses statically allocated pools of objects.

6.2 NUMA-aware scheduling

CPU utilization in a multi-socket NUMA system depends on

whether tasks are scheduled efficiently to individual worker

threads based on data locality. LightSaber employs NUMA-

aware scheduling to reduce remote memory accesses.

A lock-free circular buffer per input stream stores incom-

ing tuples. These buffers are spilled between all available

sockets. To balance computation, the size of their fragments

vary based on the number of worker threads per node. Each

query task has a start and end pointer on the circular buffer

with read-only access and a window function pointer. It also

contains a free pointer, indicating which memory has been

processed and can be freed in the result stage. In contrast

to systems such as Flink and Spark, LightSaber delays the

computation of windows until the query execution stage,

thus avoiding a sequential dispatching stage.

For each NUMA node, LightSaber maintains a separate

lock-free task queue. When a new task is created, it is placed

based on data locality. A worker thread favors tasks from its

local queue and, only when there is no more work available,

it attempts to steal from other nodes to avoid starvation.

6.3 Operator optimizations

Existing optimization techniques [7, 30, 71] are applicable

to LightSaber. Our current implementation includes the

following: it (i) reorders operators according to selectivity

and moves more selective operators upstream [71] (e.g., for

filter-window commutativity [7]); (ii) inlines and applies the

HAVING clause when a full window result is constructed; and

(iii) reduces instructions by removing components related to

cross-process and network communication, that introduce

conditional branches [76].

7 Evaluation

We evaluate LightSaber to show the benefits of our window

aggregation approach. First, we demonstrate that Light-

Saber achieves higher performance for a range of real-world

query benchmarks. Then, we explore the efficiency of its

Datasets Queries

Name # Attr. Name Windows Operators Values

Cluster Moni- 12 CM1 ω60,1 π ,γ ,αsum
toring (CM) [22, 36] CM2 ω60,1 π ,σ ,γ ,αavg

Smart Grid (SG) [35] 7 SG1 ω3600,1 π ,αavg
SG2 ω128,1 π ,γ ,αavg

Linear Road 7 LRB1 ω300,1 π ,σ ,γ ,αavg
Benchmark (LRB) [8] LRB2 ω30,1 π ,γ ,αcount

Yahoo 7 YSB ω10,10 σ , π ,Z
relation

,
Streaming (YSB) [23] γ ,αcount

Sensor 18 SMf various αf f ∈ {sum,
Monitoring (SM) [34] min}

Table 3: Evaluation datasets and workloads

incremental aggregation approach compared to state-of-the-

art techniques.

7.1 Experimental setup and workloads

All experiments are performed on a server with two Intel

Xeon E5-2640 v3 2.60 GHz CPUs with a total of 16 physical

cores, a 20 MB LLC cache, and 64 GB of memory. We use

Ubuntu 18.04 with Linux kernel 4.15.0-50 and compile all

code with Clang++ version 9.0.0 using -03 -march=native.

We compare LightSaber against both Java-based scale-

out streaming engines, such as Apache Flink (version 1.8.0)

[5], and engines for shared-memory multi-cores, such as

StreamBox [50] and SABER [39]. For Flink, we disable the

fault-tolerance mechanism and enable object reuse for better

performance. For SABER, we do not utilize GPUs for a fair

comparison without acceleration. To avoid any possible net-

work bottlenecks, we generate ingress streams in-memory by

pre-populating buffers and replaying records continuously.

Table 3 summarizes the datasets and the workloads used

for our evaluation. The workloads capture a variety of sce-

narios that are representative of stream processing. In the

workloads, window sizes and slides are measured in seconds.

Compute cluster monitoring (CM) [72]. This workload

emulates a clustermanagement scenario using a trace of time-

stamped tuples collected from an 11,000-machine compute

cluster at Google. Each tuple contains information about

metrics related to monitoring events, such as task completion

or failure, task priority, and CPU utilization. We execute

two queries from previous work [39] to express common

monitoring tasks [22, 36].

Anomaly detection in smart grids (SG) [35]. This work-

load performs anomaly detection in a trace from a smart

electricity grid. The trace contains smart meter data from

electrical devices in households. We use two queries for de-

tecting outliers: SG1 computes a sliding global average of

the meter load, and SG2 reports the sliding load average per

plug in a household.

Linear Road Benchmark (LRB) [8]. This workload is wi-

dely used for the evaluation of stream processing perfor-

mance [1, 17, 33, 74] and simulates a network of toll roads.
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Figure 10: Performance for application benchmark queries

We use queries 3 and 4 from [39], that correspond to LRB1
and LRB2 here.

Yahoo Streaming Benchmark (YSB) [23]. This bench-

mark simulates a real-word advertisement application in

which the performance of a windowed count is evaluated

over a tumbling window of 10 seconds. We perform the join

query, and we use numerical values (128 bits) rather than

JSON strings [54].

Sensor monitoring (SM) [34]. The final workload emu-

lates a monitoring scenario with an event trace generated by

manufacturing equipment sensors. Each tuple is a monitor-

ing event with three energy readings and 54 binary sensor-

state transitions sampled at 100 Hz.

7.2 Window aggregation performance

To study the efficiency of LightSaber in incremental com-

putation, we use six queries from different streaming scenar-

ios, and we compare performance against Flink and SABER.

Flink represents the bucket-per-window approach [46, 47]

that replicates tuples into multiple window buckets. We use

the Scotty [69] approach with Flink to provide a representa-

tive system with only the slicing optimization
4
. In contrast,

SABER is a representative example of a system that performs

incremental computation on per-tuple basis.

Fig. 10a shows that LightSaber significantly outperforms

the other systems in all benchmarks. Queries CM1 and SG1
have a small number of keys (around 8 for CM1) or a single

key, respectively, which reveals the limitations of systems

that parallelize on distinct keys. Flink’s throughput, even

with slicing, is at least one order of magnitude lower than

that of both SABER and LightSaber. This shows that cur-

rent stream processing systems do not efficiently support

this type of computation out-of-the-box, because it requires

explicit load balancing between the operators. Compared to

SABER, LightSaber achieves 14× and 6× higher throughput

for the two queries, respectively, due to its more efficient

intermediate result sharing with panes.

For query CM2, Flink performs better and has compara-

ble throughput to SABER, because of the low selectivity of

4
Note that we use lazy slicing, which exhibits higher throughput with lower

memory consumption.

the selection operator. LightSaber has still 4×, 9× and 15×

better performance compared to SABER, Scotty, and Flink,

respectively, because it reduces the operations required for

window aggregation.

Queries SG2 and LRB1–2 group multiple keys (3 for SG2
and LRB1; 4 for LRB2), increasing the cost of the aggregation

phase. In addition, all three queries contain multiple distinct

keys, which incurs a higher memory footprint when main-

taining the window state. LightSaber achieves two orders

of magnitude higher throughput for SG2 and LRB1 and 17×

higher throughput for LRB2 compared to Flink, because of

the redundant computations. With slicing, Flink has 6×, 11×

and 3× worse throughput than LightSaber for the three

queries, respectively. Scotty outperforms SABER for SG2 by

4×, demonstrating how the single-threaded merge becomes

the bottleneck. Compared to SABER, LightSaber has 23×,

7× and 2× higher throughput for SG2, LRB1, and LRB2, re-

spectively. This is due to the more efficient partial aggregate

sharing, the NUMA-aware placement, and the parallel merge.

7.3 Efficiency of code generation

Next, we explore the efficiency of LightSaber’s generated

code. Using YSB, we compare LightSaber to Flink, SABER,

StreamBox, LightSaberwithout operator fusion, and a hard-

coded C++ implementation. StreamBox is a NUMA-aware

in-memory streaming engine with an execution model [43]

similar to LightSaber. For this workload, the GAG does not

wield performance benefits because there is no potential for

intermediate results reuse to exploit. We omit Scotty for the

same reason, as slicing does not affect the performance of

tumbling windows. Finally, we conduct a micro-architectural

analysis to identify bottlenecks.

As Fig. 10b shows, Flink achieves the lowest throughput

because of its distributed shared-nothing execution model.

A large fraction of its execution time is spent on tuples seri-

alization, which introduces extra function calls and memory

copies. For the other systems, we do not observe similar

behavior, as tuples are accessed directly from in-memory

data structures. LightSaber exhibits nearly 2×, 7×, 12× and

20× higher throughput than LightSaber without operator

fusion, SABER, StreamBox, and Flink, respectively. When
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Figure 13: Parallel merge

compared to the hardcoded implementation, we find only

a 3% difference in throughput, which reveals the small per-

formance overhead introduced by LightSaber’s code gen-

eration approach. For the other benchmarks from §7.2, we

observe similar results.

Fig. 10c shows a breakdown byCPU components following

Intel’s optimization guide [31], showing the stalls in the CPU

pipeline. The components are categorized as: (i) front-end

stalls due to fetch operations; (ii) core-bound stalls due to

the execution units; (iii) memory-bound stalls caused by

the memory subsystem; (iv) bad speculation due to branch

mispredictions; (v) retiring cycles representing the execution

of useful instructions.

Flink suffers up to 15% of front-end stalls because of its

large instruction footprint. Compared to LightSaber and

the hardcoded C++, the other approaches have more core-

bound stalls, which indicates that they do not exploit the

available CPU resources efficiently. At the same time, all

solutions, apart from Flink, are memory-bound but exhibit

different performance patterns. Although Streambox is up to

58% memory-bound, its performance is affected by its cen-

tralized task scheduling mechanism with locking primitives,

and the time spent on passing data between multiple queues.

LightSaber without operator fusion exhibits similar be-

havior and requires extra intermediate buffers that increase

memory pressure and hinder scalability. When compared

to LightSaber, SABER’s Java implementation exploits only

10% of the memory bandwidth, while our system reaches up

to 65%. The Java code spends most of the time waiting for

data [75] and copying it between operators; LightSaber and

the hardcoded C++ implementation utilize all the resources

and the memory hierarchy more efficiently. Despite exhibit-

ing better data and instruction locality though, they have

the highest bad speculation (up to 4%), because slicing and

computation are performed in a single loop.

7.4 Scalability and end-to-end latency

Next, we evaluate the scalability and the end-to-end latency

of LightSaber. We use the 7 queries from the previous

benchmarks and report the throughput speedup over the

performance of a single worker when varying the core count.

Note that the first core is dedicated to data ingestion and task

creation. We define the end-to-end latency as the time be-

tween when an event enters the system and when a window

result is produced [70].

The results in Fig. 11 show that LightSaber scales linearly

up to 7 cores for all queries, with latencies lower than tens

of ms. By conducting a performance analysis of our imple-

mentation, we observe that queries CM1–2, SG1 and YSB do

not scale beyond 7 cores, even though the remote memory

accesses are kept low. This is the result of the system being

memory bound (up to 60%) and operating close to the mem-

ory bandwidth. With LightSaber’s centralized task schedul-

ing, we observe a throughput close to 400 million tuples/sec

and only a 15% performance benefit when we cross NUMA

sockets for these four queries. As future work, we want to in-

vestigate whether applying our approach to a tuple-at-a-time

processing model can yield better results.

On the other hand, for queries LRB1–2 and SG2, we observe

up to 3× higher throughput because they are more computa-

tionally intensive. In this case, the reduction of the remote

memory accesses improves the scalability of LightSaber.

Fig. 12 shows that the average latency remains lower than

50 ms in SG1–2 and LRB1-2. The latency is in the order of

microseconds for the other queries: for YSB, LightSaber

exhibits 132 µs of average latency, which is an order of magni-

tude lower compared to the reported results of other stream-

ing systems [28, 70]. The main reason for this is that Light-

Saber combines efficiently partial aggregation with incre-

mental computation, which leads to very low latencies.

7.5 Parallel merging

In queries SG2 and LRB1, we group by multiple keys with

many distinct values, which makes the aggregation expen-

sive, as shown in §7.2. Probing a large hashtable with many

collisions and updating its values cannot be done efficiently

by SABER’s single-threaded merge. LightSaber’s parallel

merge approach removes this bottleneck for such workloads.

In Fig. 13, we compare the scalability of LightSaber,

SABER, and Scotty with and without parallel merge. For

SG2 and LRB1, the parallel merge yields 3× and 2× higher

throughput speedup, respectively. In contrast, SABER’s per-

formance is affected by its merge approach, which results
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in it being outperformed by Scotty for SG2 after 5 cores. Al-

though Scotty exhibits good scaling, it is consistently more

than 6× worse compared to LightSaber, revealing the over-

head of Flink’s runtime [49].

7.6 Memory consumption

In Fig. 14, we evaluate the memory consumption for the dif-

ferent systems. Apart from the memory required for storing

partial aggregates, we also consider the metadata as in pre-

vious work [69]. Flink stores an aggregate and the start/end

timestamps per active window; Scotty with lazy slicing [69]

maintains slices that require more metadata used for out-

of-order processing; LightSaber only stores the required

partial aggregates for the slices along with the maximum

timestamp seen so far and a counter, as it operates on de-

terministic windows. This results in at least 3× and 7× less

memory compared to Flink and Scotty, respectively.

On the other hand, SABER accesses tuples from the input

stream directly, thus having three orders of magnitude lower

memory consumption.Without slicing over the input stream,

LightSaber can adopt this approach, as shown in Fig. 8f.

This is more computationally expensive, however, because

it requires repeated applications of the inverse combiner,

leading to worse performance (see §7.2).

7.7 Evaluation of GAG

In this section, we explore the efficacy of GAG for both single-

andmulti-queryworkloads using the SM dataset. To evaluate

different aggregation algorithms in an isolated environment,

we run our experiments as a standalone process.

Each algorithm maintains sliding windows with a slide of

1 tuple by performing an eviction, insertion, and result pro-

duction, which incurs a worst-case cost. We compare GAG

to (i) SlickDeque (for non-invertible functions, we use a fixed
size deque to get better performance); (ii) TwoStacks (using
prior optimizations [66]); (iii) SlideSide; (iv) FlatFAT; and
(v) SoE when applicable (e.g., for invertible functions). We

evaluate the aforementioned algorithms in terms of through-

put, latency, and memory requirements (in terms of partial

aggregates to be maintained).

Single-query. For this experiment, the query computes a

sum of an energy measure over windows with variable win-

dow sizes between 1 and 4 M tuples. As Fig. 15a shows, GAG

behaves as SoE, exhibiting a throughput that is up to 1.4×

higher than SlickDeque, because it avoids unnecessary con-

ditional branch instructions.

For the non-invertible functions, we use min with the

same window sizes as before. Fig. 15b shows that GAG has

an up to 1.3× higher throughput compared to TwoStacks,
due to the more efficient generated code, and 1.7× higher

than SlickDeque, given its more cache-friendly data layout.

For a fixed window size of 16 K tuples and slide 1, we

measure the latency for the SMsum and SMmin queries. We

omit results that exhibit identical performance (TwoStacks)
or latency that is one order of magnitude higher (FlatFAT).
Fig. 15c shows that our approach exhibits the lowest latency

in min, max, average, and the 25
th
and 75

th
percentiles. This

result is justified sinceGAG generates the most efficient code

and removes the interpretation overhead in both cases.

Multi-query. In these experiments, we generate multiple

queries with uniformly random window sizes in the range

of [1, 128K] of tuples). The window slide for all queries is 1,

which constitutes a worst case. We create workloads with

1 to 100 concurrent queries. For invertible functions, we

use SMsum and, for non-invertible ones, we use SMmin. For

TwoStacks and SoE, we replicate their data structures for

each window definition, because they cannot be used to

evaluate multiple queries.

For invertible functions shown in Fig. 15e,GAG has compa-

rable performance to SlideSide and outperforms SlickDeque
by 45%. In Fig. 15e, we show that GAG for non-invertible

functions outperforms SlideSide by 1.3× and SlickDeque by
2.7×, because it handles updates more efficiently.

In terms of memory consumption (see Fig. 15f),GAGmain-

tains 3× more partial aggregates than SlickDeque for mul-

tiple invertible functions, similar to SlideSide. With non-

invertible functions, GAG requires the same number of par-

tial aggregates as FlatFAT and SlideSide, which is 2× more

compared to SlickDeque. Note that for non-invertible func-
tions, SlickDeque can use less memory with a dynamically

resized deque, incurring a 2× performance degradation.

In summary,GAG generates code that achieves the highest

throughput and lowest latency in all scenarios. For multi-

query workloads, our approach trades-off performance with

memory by requiring at most 3× more partials compared to

the next best performing approach. Based on the benchmark

queries from above, however, the number of partials is in the

order of hundreds.

8 Related Work

Centralised streaming systems, such as STREAM [6], Tele-

graphCQ [20], andNiagara- CQ [21], have existed for decades

but operate only on a single CPU core. More recent sys-

tems, such as Esper [26], Oracle CEP [53], and Microsoft

StreamInsight [37], take advantage of multi-core CPUs at the
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Figure 15: Comparison of incremental processing techniques

expense of weaker stream ordering guarantees for windows.

S-Store [18] offers strong window semantics for SQL-like

queries, but does not perform parallel window computation.

StreamBox [50] handles out-of-order event processing and

BriskStream [76] utilizes a NUMA-aware execution plan opti-

mization paradigm in a multi-core environment. SABER [39]

is a hybrid streaming engine that, in addition to CPUs uses

GPUs as accelerators. These approaches are orthogonal to

ours and can be integrated for further performance improve-

ment. Trill [19] supports expressive window semantics with

a columnar design, but it does not support the window ag-

gregation approaches of LightSaber.

Distributed streaming systems, such as Spark [10], Flink

[5], SEEP [17], and Storm [68], follow a distributed process-

ing model that exploits the data-parallelism on a shared-

nothing cluster. These systems are designed to account for

issues found in distributed environments, such as failures [48,

56, 73], distributed programming abstractions [4, 10, 51], and

efficient remote state management [15]. Millwheel [3] sup-

ports rich window semantics, but it assumes partitioned

input streams and does not compute windows in parallel.

Window aggregation. Recent work on window aggrega-

tion [9, 13, 61–64, 67] has focused on optimizing different

aspects of incremental computation. Instead of alternating be-

tween different solutions, with GAGs we generalize existing

approaches and exhibit robust performance across different

query workloads. Our work focuses on in-order stream pro-

cessing, andwe defer the handling of out-of-order algorithms,

such as FiBA [65], to future work. Panes [45], Pairs [41],

Cutty [16], and Scotty [69] are different slicing techniques,

which are complementary to our work—LightSaber can

generate code to support them. Leis et al. [44] propose a

general algorithm for relational window operators by uti-

lizing intra-partition parallelism for large hash groups and

a specialized data structure for incremental computation.

However, this work does not exploit the parallelism and in-

cremental computation opportunities of window aggregation

as LightSaber.

9 Conclusion

To achieve efficient window aggregation on multi-core pro-

cessors, stream processing systems need to be designed to

exploit both parallelism as well as incremental processing

opportunities. However, we found that no state-of-the-art

system exploits both of these aspects to a sufficient degree.

Consequently, they all leave orders of magnitude of perfor-

mance on the table. To address this problem, we developed

a formal model of the stream processor design space and

used it to derive a design that exploits parallelism as well as

incremental processing opportunities.

To implement this design, we developed two novel ab-

stractions, each addressing one of the two aspects. The first

abstraction, parallel aggregation trees (PATs), encodes the
trade-off between parallel and incremental window aggre-

gation in the execution plan. The second abstraction, gen-
eralised aggregation graphs (GAGs), captures different incre-
mental processing strategies and enables their translation

into executable code. By combining GAG-generated code

with the parallel execution strategy captured by the PAT, we

developed the LightSaber streaming engine. LightSaber

outperforms state-of-the-art systems by at least a factor 2

on all of our benchmarks. Some benchmarks even show im-

provement beyond an order of magnitude.
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