Resource Allocation across Multiple Cloud Data Centres

Barnaby Malet
Imperial College London
180 Queen’s Gate
London SW7 2AZ, UK
bwm05@doc.ic.ac.uk

ABSTRACT

Web applications with rich AJAX-driven user interfaces make
asynchronous server-side calls to switch application state.
To provide the best user experience, the response time of
these calls must be as low as possible. Since response time
is bounded by network delay, it can be minimised by plac-
ing application components closest to the network location
of the majority of anticipated users. However, with a lim-
ited budget for hosting applications, developers need to se-
lect data centre locations strategically. In practice, the best
choice is difficult to achieve manually due to dynamic client
workloads and effects such as flash crowds.

In this paper, we propose a cloud management middleware
that automatically adjusts the placement of web application
components across multiple cloud data centres. Based on
observations and predictions of client request rates, it mi-
grates application components between data centres. Our
evaluation with two data centres and globally distributed
clients on PlanetLab shows that our approach can decrease
median client response times by 21% for a realistic multi-tier
web application.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications

General Terms

Management, Performance, Experimentation, Design

Keywords

Resource allocation, Management middleware, Web appli-
cations, Cloud computing

1. INTRODUCTION

The benefits of hosting web applications in the cloud are
becoming increasingly attractive to both individuals and
businesses. By using resources on demand in cloud data cen-
tres, developers can significantly reduce management and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MGC 2010, 29 November - 3 December 2010, Bangalore, India.
Copyright 2010 ACM 978-1-4503-0453-5/10/11 ...$10.00.

Peter Pietzuch
Imperial College London
180 Queen’s Gate
London SW7 2AZ, UK
prp@doc.ic.ac.uk

deployment overheads. Infrastructure-as-a-Service (IaaS)
solutions, such as Amazon Web Services [3] and Rackspace
Cloud [16], operate multiple, geographically-distributed data
centre locations with resources for computation, storage and
communication. Locations are priced differently based on
bandwidth and computational usage and provide different
performance to clients based on their network location.

Many of today’s web applications expose rich user inter-
faces (Uls) written in JavaScript, which are designed to give
a user experience similar to that of native desktop appli-
cations. They commonly employ a method called Asyn-
chronous JavaScript And XML (AJAX) [12] to fetch further
content after the application has loaded. AJAX enables the
web browser to make background calls to the remote web
server. This can be used to change Ul elements without
reloading the page and to provide responsive behaviour. The
quality of the user experience is strongly correlated with the
response time of the AJAX calls—high response times lead
to sluggishness of the UI.

Therefore it is an important decision in which cloud data
centre to host an application given a fixed budget: placing
application components close to a large user base results in
better quality-of-service due to lower latency and increased
throughput; however, it may also incur a higher cost if re-
sources at that location are more expensive. This problem
is complicated by the fact that resource allocation decisions
have to take changes of the workload into account.

Resources are available as wvirtual machines (VMs) that
appear as traditional servers. Techniques for migrating VMs
across LANs [8] are widely available but the ability to mi-
grate VMs across WANSs remains more challenging [23]. We
argue that these mechanisms should be used to strategically
place application VMs across disparate geographic locations
in order to optimise user-perceived latency and cost.

To achieve this goal, we propose a cloud management mid-
dleware that strategically migrates VMs of multi-tiered web
applications between data centre sites in response to work-
load changes. Our middleware monitors client-server work-
load at the data centre gateway. This information is used
by a control plane to initiate VM migrations between data
centres in order to move application components closer to
clients. The web clients are aware of the migration mecha-
nism and redirect their traffic to the newly migrated VM.

This approach achieves lower network round trip times,
improving client response times in the web application, with-
out requiring additional VMs. Our evaluation results on the
global PlanetLab test-bed [6] together with two data centres
show that this approach can improve the median response

time of a web application by 21% and the 80*® percentile by
7% over a single data centre deployment.
In summary, the main contributions of this paper are:

1. an approach for reorganising two-tiered web applica-
tions by allocating resources across data centres in re-
sponse to workload changes;

2. a design of a cloud management middleware that dy-
namically migrates VMs based on client workload to
provide maximum quality of service to clients; and

3. aprototype middleware implementation that optimises
the execution of a web application, and its evaluation
with two data centres and many clients on Planet-
Lab [6].

In the next section, we motivate our work. Section 3 de-
scribes the design of the cloud management middleware fo-
cusing on the VM migration and placement algorithms. We
give results from an Internet deployment in Section 4. The
paper finishes with related work in Section 5 and conclusions
in Section 6.

2. MOTIVATION

Modern Internet applications are typically designed using
a multi-tier architecture, in which each tier is responsible
for a subset of the application’s computation and/or stor-
age. Typical examples are the RUBIS [2] and TCP-W [5]
web applications, which consist of a web server tier, an ap-
plication tier and a database tier.

Due to recent advances in virtualisation technology [4, 20]
and its associated benefits in data centre management, ap-
plications are no longer hosted on dedicated machines but
instead placed within VMs. This shift has permitted re-
searchers to develop autonomic management solutions that
can resolve server hot-spots and performance bottlenecks
using VM migration and provisioning [19, 24]. These tech-
niques have been used by cloud providers to increase per-
formance and ultimately provide better service level agree-
ments (SLAs).

The widespread use of content delivery networks (CDNs)
demonstrates the advantages of placing web servers close to
clients [14]. However, the entry cost for using a CDN re-
mains high and often beyond what small businesses can af-
ford. A further disadvantage of CDNs is that they focus on
content distribution and thus do not cater for custom com-
putation and persistence. These short-comings coupled with
the geographic diversity of cloud compute sites provide a
strong motivation for a cloud management middleware that
optimises the placement of VMs.

To illustrate our idea, consider a scenario in which a web
start-up deploys a multi-tiered web application in the cloud.
It has a limited budget and thus can only afford a small
number of VM instances. The choice of data centre locations
is large and growing steadily, and the start-up must decide
how to distribute its resources among the sites in order to
provide the best service to its users.

This problem is non-trivial: different peak times across ge-
ographic regions mean that it is difficult to estimate where
the majority of users will be located at any given time. In ad-
dition, the application may face unpredictable traffic of vary-
ing intensity and duration, such as flash crowds [10]. The

& usclient

JavaScript Layer

& UK Client
JavaScipt Layer

<- - Locfxtion)= >

' | e

[
Traffic - Control Plane - Traffic

y e y
US Site | Web2 _@_ \ Web 1 H Data 1 \
UK Site

Figure 1: Cloud management middleware with two
deployed web applications. Each application con-
sists of an application tier (Web 1 or Web 2) and a
storage tier (Data 1 or Data 2).

decision to move or create a VM close to the clients may pro-
vide a benefit (i.e., decreased latency or increased through-
put) but may also incur a cost (i.e., moving data and/or
increased hosting fees). Since client workload changes can
occur rapidly and unexpectedly, such decisions have to be
periodically re-evaluated. We argue that this should be done
by a cloud management middleware that makes these deci-
sions dynamically at a fine granularity.

3. CLOUD MIDDLEWARE DESIGN

Our solution is to augment a traditional IaaS offering such
as AWS [3] with a cloud management middleware. Our de-
sign aims to reduce the client response times of two-tiered
web applications consisting of an application tier and a stor-
age tier. It achieves this by dynamically moving application
tiers and their associated data closer to clients based on the
current and previous workloads.

Our middleware consists of the components shown in Fig-
ure 1. Clients bootstrap by downloading application code
(such as HTML/JavaScript) from a web server whose IP ad-
dress is resolved via DNS. The application code is static and
can be distributed via traditional means (such as CDNs).

Clients track the movement of the application tiers us-
ing a JavaScript layer through which all server-side calls
are passed. This means that application code can transpar-
ently refer to remote application components without hav-
ing to know their current IP address. (This imposes the
constraint that anchor tags must refer to a JavaScript func-
tion rather than a URL—the JavaScript layer then forms
the URL based on the current server IP address.)

A control plane uses the client workload observed at the
data centres to decide where best to place VMs. It coordi-
nates VM migrations and traffic routing: When a migration
decision has been made, a new VM image is instantiated at
the target location and the application state is transferred.
The clients then re-direct their traffic to the new site.

In terms of strategy (cf. Section 3.3), the control plane
migrates application tier VMs freely between sites—we as-
sume that they are stateless and have a low migration cost.
In contrast, VMs supporting the storage tier are placed at
the location that has historically seen the highest access.
This is because data migration is considered to consume
more resources.

In the example in Figure 1, both tiers of application 1

(Web 1 and Data 1) are placed in the UK, close to the major-
ity of clients. Application 2 is reacting to a sudden increase
in usage from the US by moving its application tier (Web 2)
there, but leaving its database tier (Data 2) in place.

3.1 Web application architecture

Modern web applications are frequently built using the
representational state transfer (REST) [11] architecture. It
enforces a strict separation between the client, which man-
ages application state, and the web service, which is invoked
by the client upon a change in application state. At any
point in time, a client can either be in transition between
application states or “at rest”. When a client is at rest,
it exerts no load on the server; commonly, a RESTful ar-
chitecture relies on the HTTP protocol for communication.
As opposed to a traditional web application such as RU-
BiS where the line between client and server responsibility
is blurred because the server maintains application state, a
RESTful web service is stateless.

Building a RESTful web application allows developers to
draw clear lines of responsibility between components and
thus simplifies their implementation. Because RESTful ap-
plications are stateless, components can easily be duplicated
to adapt to increases in load. Furthermore intermediaries
such as proxies, gateways and firewalls can be introduced
without changing the interface between components. These
advantages make this type of architecture popular in mod-
ern web applications and we assume it throughout the rest
of the paper.

Modern web applications make heavy use of JavaScript
on the client side to provide a rich user experience similar
to desktop applications. In our work, we exploit this to get
around the problem of maintaining VM addresses during a
WAN migration: we extend client code with an interme-
diate JavaScript layer that acts as a proxy for all client-
issued RESTful calls. This intermediary is aware of the cur-
rent network location of the VM in terms of its IP address.
It maintains a persistent HT'TP connection to the control
plane, which is used to notify the client of a VM migration;
when this occurs, the JavaScript layer redirects RESTful
calls accordingly. This technique requires a browser that
supports the W3C Cross-Origin Resource Sharing recom-
mendation [21] that permits JavaScript calls to web servers
other than those from which the application code originated.

This approach allows for fine-grained control of load-bal-
ancing for this type of web application, which other tech-
niques, such as round-robin DNS and HTTP redirecting, do
not support. By providing a JavaScript client library, web
applications can be extended to handle VM mobility with
only minor changes to their code base.

3.2 Virtual machine migration

Mechanisms for migrating VMs across WANs remain elu-
sive. Migrating a live VM requires high speed networks,
access to a shared block device and control over the net-
work address space [8]—all of which are not available when
moving VMs between data centres over the Internet. Since
resolving these issues requires changes to hypervisors and
networks [23], we instead assume that a consistent image of
each VM is available at every data centre. The middleware
can then use a start-stop mechanism for migration, while
coordinating with the clients to redirect traffic, as described
previously. Next we explain this approach in more detail.

3.2.1 Application tier VMs

Since we assume that applications are built using a REST-
ful architecture, they are stateless and can be migrated by
starting a new instance at the target location and stopping
the old instance. In practice, an application tier may main-
tain an in-memory cache to reduce calls to the data tier; in
these cases, the newly-instantiated application would lazily
re-populate the cache using the data tier.

3.2.2 Storage tier VMs

We assume that the storage tier contains the application
state and its VMs must be migrated differently from the
application tier VMs. Web applications often maintain a
shared database of user-generated content. For RUBIS and
TCP-W, it is in the range of a few hundred megabytes to
a few gigabytes [2]. This data is challenging to replicate at
multiple remote sites because it must remain consistent.

For simplicity, we opt to maintain a single active copy of
the data at any point in time. Migration is therefore im-
plemented as part of the application: to migrate a storage
tier VM, an identical VM with an empty database is instan-
tiated at the target location. The data is then iteratively
copied to the target. Any concurrent database changes to
the source data are also mirrored at the target. After the
data has been copied, the target becomes the active copy
and the source is switched off.

This approach is application-specific, and requires that
the storage system is able to maintain a synchronised copy
of the data during transfer. It incurs a considerable network
cost for transferring the entire state but the middleware tries
to migrate storage tiers infrequently. As future work, stor-
age tier migration could be improved using a distributed file
system that handles consistency between replicas [18].

3.3 Virtual machine placement

The middleware uses the following simple algorithms to
translate the workload observations into migration commands
for VMs hosted at data centres.

3.3.1 Placement goals

There are many potential goals when optimising the place-
ment of VMs: reducing monetary costs [15], increasing appli-
cation throughput or decreasing latency. The specific goal
depends on the nature of the underlying application. For
example, a large map-reduce job [9] that is not time crit-
ical may strive to reduce monetary costs by choosing sites
that offer the least expensive compute and network transfer
rates. Web applications may have SLAs to meet, aiming to
reduce response times as much as possible. In the case of
web applications that expose Javascript-driven GUIs using
AJAX, reducing network round-trip times (RTT) is key.

Another decision to be made is which clients should achieve
a given goal. For example, the middleware may prioritise a
subset of clients belonging to paying customers and reduce
their response times. Alternatively, it could try to achieve
a minimum SLA such that all clients would be guaranteed
a maximum bound on their RTTs when supporting an in-
teractive web GUI. In this work, we choose to reduce the
response times of web requests for the majority of globally
distributed clients. We leave more complex placement goals
that trade-off gain and cost for future work.

3.3.2 Placement algorithms

We now present the algorithms that decide the placement
location of the web application tiers. We treat the migration
of application and storage VMs separately because storage
VMs are more expensive to migrate due to communication
costs. The middleware employs a reactive algorithm for the
placement of application VMs and a predictive algorithm for
storage VMs.

Reactive placement algorithm.

The goal of the reactive placement algorithm is to respond
quickly to variations in application workload by moving ap-
plication tier VMs. Intuitively, the system considers the
optimal location of application VMs to be the site closest
to the majority of the clients issuing requests within a given
time window.

The control plane maintains a sliding window for each
hosted web application. The window contains one entry
per client web request recording its origin location and size;
as new requests reach the servers, they are added to the
window. The control plane also maintains a list of available
data centre locations DC'.

At regular intervals, the control plane iterates through
the window counting requests per data centre location. A
request is counted for a site if that site is closest to the
requesting client in terms of geographic distance. Each site x
is then assigned a value A\, which is the weighted sum of the
requests at its origin:

|requests(z)|
Az) = Z W,

=0

where W; are the request weights, which can be tuned to
prioritise some client requests over others. The new place-
ment location is chosen as the data centre with the highest
A value:

max (A(z) | z € DC)

The size of the window used to record the requests governs
how sensitive the system is to changes in client workload. In
our experiments in Section 4, we empirically determined a
window size of 10,000 requests to be rigid enough to prevent
unnecessary oscillations but sufficiently flexible to permit
migrations that compensate for a large increase in requests
from a site. In general, we would expect the window size to
be chosen adaptively to achieve a desired number of migra-
tions.

Predictive placement algorithm.

Because storage tiers are considered costly to migrate,
their location must be chosen more strategically. In order to
achieve a reasonable degree of accuracy when placing storage
VMs, we use a predictive algorithm inspired by the technique
employed by Rolia et al. [17]. It uses past observations of
application workload to predict future peak demands.

The placement location is predicted at the granularity of
hours. The best location of a storage VM for a given hour
is the location that was closest to the majority of client
accesses for that hour over the past several days. A storage
VM is migrated at hour ¢ + 1 if the predicted location is
different from that at hour ¢ and remains the same over the
next w hours. Intuitively, this algorithm splits up a day into
contiguous periods of at least w hours, moving storage VMs

at the boundary between these periods.

This approach assumes that there are reoccurring patterns
between days (cf. Figure 2). This means that it cannot adapt
to unpredicted events such as flash crowds. However, such
events would be handled by the reactive placement algo-
rithm above. More advanced prediction techniques such as
a combined reactive and predictive approach [19] could be
used instead.

4. EVALUATION

The goal of our experimental evaluation is to demonstrate
that our cloud management middleware decreases the re-
sponse time of a globally accessed web application. By plac-
ing VMs strategically, it can achieve this without requiring
additional resources in the data centres.

4.1 Experimental set-up

The prototype deployment of our system consists of two
data centre sites, one in the US hosted at the Emulab test-
bed facility [22] and another in the UK hosted in the data
centre of our university. We use the Xen Hypervisor [4] to
multiplex each server into a number of separate VMs, which
host individual application and storage tiers.

We use four virtual machines to host the various tiers in all
experiments—two in the US and two in the UK. The appli-
cation tiers use an Apache web server running PHP scripts
that generate static data or retrieve data from a MySQL
database in the storage tier. Client requests to the web
server include the desired size of the response document and
a flag indicating its source (database or static). A hard limit
on the request size of 300 KB is set to put a bound on the
amount of network resources used in the experiments.

For the application workload, we use a 24-hour request
trace from our department’s web server. The trace is an
Apache log file that contains HTTP status codes, request
sizes, request times and client IP addresses. We adapt the
trace in the following ways: (1) Only HTTP “OK (200)” sta-
tus codes are kept. (2) All internal university requests are re-
moved. (3) All requests from locations outside the US or the
UK are discarded. To expedite experimentation, the 24-hour
trace is uniformly compressed into a 2-hour run. Since we
do not know how many of the requests in the original trace
involved database accesses, we assume 10% of the requests
to require database transactions due to efficient caching.

We use six PlanetLab nodes to emulate requests from a
world-wide client population. The clients are split into EU
and US clients. Each group is placed at a minimum 800 km
radius from their respective data centres. The EU (respec-
tively US) clients are assigned the UK (respectively US) por-
tions of the trace to replay. Since we use three clients per
sub-trace, this is equivalent to tripling the trace, resulting
in a mean request rate of 28.6 requests/second over the two
hour period.

The clients replay the transformed trace by implementing
a multi-threaded HTTP downloader. For simplicity of im-
plementation, we did not implement the JavaScript layer on
the clients, instead all URLs in the workload reference the
IP addresses of gateways placed in the data centre. When
the control plane makes a migration decision, the gateways
issue redirect responses to redirect the client traffic to the
new location.

30 T T T 1T T T 1T 1T 177 |\| T T T T T 1T 11T
US Requests o

- 25 EURequests ------- i E 5
5 VM Location - it b=
o 20} Y 4 o
5} R o
() oo " -
9 15 F ey I O LT | ; UK @
7] . ‘,.r“ v A . :]
S 10} T]
4 g
N us &8

0 T et B S S i NN N ST NN N AT NN M N N M N N M

O oo % 0P YL
Elapsed Time (in minutes)

Figure 2: Observed client request rate, split into US
and EU requests.

4.2 Results

Figure 2 shows the split in client request workload over
time based on client location as observed at the application
servers. As mentioned previously, the workload is obtained
by uniformly compressing a day trace of our department’s
web servers into a 2-hour period. Due to our compressed
replay of the trace, each hour in the original trace is mapped
to a 5 minute slot in the workload. Minute 0 corresponds
to 1:2lam in the original trace, minute 5 corresponds to
2:21am and so forth—the intersection of the request rates
at minute 40 corresponds to 9:21lam in the original trace.

The VM Location line shows the location of the applica-
tion VM as decided by the reactive placement algorithm,
where a low (respectively high) value indicates that the VM
is in the US (respectively UK). We can see that the location
of the VM follows closely the user base issuing the major-
ity of requests at any given time: The VM is in the US for
the first 40 minutes and then moves to the UK because the
UK rate becomes higher than the US rate. Similarly, after
90 minutes, it switches back to the US. There are oscillations
causing the VM to move back and forth between continents
after around 90 minutes because the UK and US request
rates are similar. Such oscillations are unwanted side effects
of workload variations and we are investigating dampening
approaches to suppress them.

The distribution of client response times are shown in Fig-
ure 3. Response time is measured at the client as the time
elapsed between a request being made and the full receipt
of the server’s response. We compare three resource alloca-
tion strategies: (1) singleDC places all VMs in the UK data
centre and does not migrate them; (2) application is the re-
active placement algorithm with a window size of 10,000 to
move the application VMs only without migrating the stor-
age VMs; and (3) application+data also migrates the storage
VMs using the predictive placement algorithm. The place-
ment algorithm is trained with “normal” days that did not
exhibit any request surges in the workload.

In both reactive approaches, the control plane places the
application components closer to the majority of clients at
any given time. The results show that the application+data
approach achieves a 21% decrease in client response times
over the singleDC approach for the median and a 7% decrease
for the 80'" percentile. The application approach does not
do as well, with a 15 % median decrease but a 7 % increase
at the 80" percentile.

The lower performance is caused by the dependency be-

1 . . : :
0.8 -
w 06}
a)
© o4t
o - application i
o2 singleDC --------
0 . applilcation+dat?
0 500 1000 1500 2000 2500

Response Time (in milliseconds)

Figure 3: Distribution of client response times under
different resource allocation strategies.

tween the application and storage tiers when the application
tier is placed in the US: 10% of requests involve database ac-
cesses that require transatlantic communication between the
two data centres. Since this happens over a slower network
path, it is faster in these cases for the client to directly access
the UK site. We believe that the performance could be im-
proved if the data centres had better network connectivity or
less data was transferred between the two tiers. This could
be achieved by caching or optimisations at the application
level.

Around 25% of requests perform significantly better in the
singleDC allocation. At any point in time, the web appli-
cation has requests originating from both regions. In cases
where the adaptive approaches have placed application com-
ponents in the US in response to client locality changes, the
minority number of requests originating from EU clients ex-
hibit significantly higher response times.

During experimentation, we observed that improvements
are sensitive to the locality of the clients in relation to the
data centres. To illustrate this, consider the following sce-
nario that we encountered: an application runs in a London
data centre, with the majority of clients in London. A sud-
den increase in requests from the US causes the application
to move to the US site. Although the US clients benefit from
this move, this is not reflected as an overall improvement be-
cause the London clients experience a drastic performance
decrease. This is an interesting trade-off and relates back
to our discussion on optimisation goals in Section 3.3.1—we
leave this for future work.

S. RELATED WORK

Urgaonkar et al. [19] strategically allocate VMs to appli-
cation tiers in web applications within a single data centre.
Their work requires more granular workload prediction to
provision the correct number of VMs per application tier.
Volley [1] addresses the problem of data placement in a multi
data centre context to reduce data access latency. They
employ an iterative optimisation algorithm based on access
patterns and data locations. They target large applications
and their optimisation is performed at the order of days—in
contrast to our fine-grained placement decisions.

To the best of our knowledge, we are unaware of work that
places VMs closer to users on the Internet. However, migrat-
ing VMs for improved performance within a data centre has
been widely studied in recent years. Sandpiper [24] alle-
viates server resource hot-spots using migration. Memory-

buddies [25] increases data centre capacity by placing similar
VMs on the same host and sharing memory between them.

There does not yet appear to be consensus as to how to
perform live VM migrations across WANs. VMWare has
recently provided support for WAN migrations but requires
622 MBps inter-data centre bandwidth and less than 5 msec
network delay [7]. Wood et al. [23] improve upon this by
optimising memory and disk transfers to migrate a live VM
across a low bandwidth (50-100 MBps), high latency link.

Persisting a VM'’s network address is a fundamental chal-
lenge in WAN migrations. CloudNet combines cloud re-
sources with a VPN. Hao et al. [13] propose a network
architecture in which VM migrations are coordinated with
a new routing mechanisms to provide WAN mobility. This
requires modifications to existing routers and network in-
frastructure and thus is more complex to implement than
our solution—our algorithms, however, could be integrated
with their system.

6. CONCLUSIONS

Global and dynamic application deployment in the cloud
is becoming possible and we expect its study to gain more
traction in the near future. We have described the design
and evaluation of a cloud management middleware that can
reduce web application response times by strategically plac-
ing application components in VMs. It handles the migra-
tion of application tier VMs reactively and uses a predictive
approach for the more costly migration of storage tier VMs.
Our evaluation results with a global client base show the
promise of this approach for managing VMs across multiple
data centres.

In the immediate future, we plan to extend our placement
algorithms to cater for flash crowds and other unexpected
workload peaks. We also want to investigate ways of strate-
gically placing data across different regions to improve the
reactive aspect of our system. Finally, we will factor migra-
tion and operational costs into the optimisation algorithms,
and provide support for n-tier applications and a larger num-
ber of data centre locations.

References

[1] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and
H. Bhogan. Volley: Automated Data Placement for Geo-
Distributed Cloud Services. In USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI), April
2010.

[2] C. Amza, A. Ch, A. L. Cox, S. Elnikety, et al. Specification
and Implementation of Dynamic Web Site Benchmarks. In
5th IEEE Workshop on Workload Characterization, 2002.

[3] Amazon Web Services. http://aws.amazon.com.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, et al. Xen
and the Art of Virtualization. In 19th ACM Symposium on
Operating Systems Principles (SOSP). ACM, 2003.

[5] H. W. Cain, R. Rajwar, M. Marden, and M. H. Lipasti. An
Architectural Evaluation of Java TPC-W. Int. Symposium
on High-Performance Computer Architecture, 2001.

[6] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. Planetlab: An Over-
lay Testbed for Broad-coverage Services. ACM SIGCOMM
Computer Communication Review, 33(3):12, 2003.

[7] Cisco. Virtual Machine Mobility with Vmware VMotion and
Cisco Data Center Interconnect Technologies, 2009.

[8] C. Clark, K. Fraser, S. Hand, J. Hansen, et al. Live Migra-
tion of Virtual Machines. In 2nd ACM/USENIX Symposium
on Networked Systems Design and Implementation (NSDI),
2005.

[9] J. Dean and S. Ghemawat. Map Reduce: Simplified Data
Processing on Large Clusters. Communications of the ACM-
Association for Computing Machinery (CACM), 51(1):107—
114, 2008.

[10] J. Elson and J. Howell. Handling Flash Crowds from your
Garage. In USENIX Annual Technical Conference (ATC),
Boston, MA, 2008.

[11] R. Fielding. Representational state transfer (REST). PhD
thesis, University of California, Irvine, CA, 2000.

[12] J. Garrett. Ajax: A New Approach to Web Ap-
plications. http://www.adaptivepath.com/ideas/essays/
archives/000385.php, 2005.

[13] F. Hao, T. Lakshman, S. Mukherjee, and H. Song. Enhanc-
ing Dynamic Cloud-based Services using Network Virtual-
ization. In 1st ACM Workshop on Virtualized Infrastructure
Systems and Architectures, 2009.

[14] A. Pathan and R. Buyya. A Taxonomy and Survey of Con-
tent Delivery Networks. Technical report, Grid Computing
and Distributed Systems (GRIDS) Laboratory, University of
Melbourne, Parkville, Australia, 2006.

[15] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and
B. Maggs. Cutting the Electric Bill for Internet-scale Sys-
tems. ACM SIGCOMM Computer Communication Review,
39(4):123-134, 2009.

[16] Rackspace Cloud. http://www.rackspacecloud.com/.

[17] J. Rolia, X. Zhu, M. Arlitt, and A. Andrzejak. Statistical
Service Assurances for Applications in Utility Grid Environ-
ments. Technical Report HPL-2002-155, HP Labs, 2002.

[18] J. Stribling, Y. Sovran, I. Zhang, X. Pretzer, J. Li, M. F.
Kaashoek, and R. Morris. Flexible, Wide-area Storage for
Distributed Systems with WheelFS. In 6th USENIX Sym-
posium on Networked Systems Design and Implementation
(NSDI), 2009.

[19] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and
T. Wood. Agile Dynamic Provisioning of Multi-tier Inter-
net Applications. ACM Transactions on Autonomous and
Adaptive Systems (TAAS), 3(1):1-39, 2008.

[20] VMWare ESX Server. http://www.VMware.com/ESX-Server.

[21] W3C. Cross-Origin Resource Sharing. http://wuw.w3.org/
TR/cors/.

[22] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An Inte-
grated Experimental Environment for Distributed Systems
and Networks. In USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), Dec. 2002.

[23] T. Wood, K. Ramakrishnan, P. Shenoy, and J. Van der
Merwe. CloudNet: A Platform for Optimized WAN Mi-
gration of Virtual Machines. In University of Massachusetts
Technical Report TR-2010-002, January 2010.

[24] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif.
Black-box and Gray-box Strategies for Virtual Machine Mi-
gration. In USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI), 2007.

[25] T. Wood, G. Tarasuk-Levin, P. Shenoy, P. Desnoyers, et al.
Memory Buddies: Exploiting Page Sharing for Smart Colo-
cation in Virtualized Data Centers. ACM SIGOPS Operating
Systems Review, 43(3):27-36, 2009.

