
Accelerating Publish/Subscribe Matching on
Reconfigurable Supercomputing Platform

K.H. Tsoi, I. Papagiannis, M. Migliavacca, W. Luk and P. Pietzuch
Department of Computing, Imperial College London

Abstract—A modular design is proposed and analyzed for
accelerating the publish/subscribe matching algorithm in re-
configurable hardware. With help from a performance model,
we demonstrate an optimized FPGA implementation which is
scalable and efficient enough for many of today’s most demanding
web and financial applications. Our design achieves 5.9 times
speedup over software while consuming around0.5% of power.

I. I NTRODUCTION

Today millions of users are subscribing to content over a
network by setting sets of filtering rules. Web applications,
such as Twitter and Facebook, enable users to specify their
interests and subscribe to updates provided by information
publishers. This publish/subscribe (pub/sub) model for content
distribution can also be found in financial data processing and
monitoring applications [1]. In general, a stream of informa-
tion updates in the form of event messages (or events), must
be matched against a set of defined rules (or subscriptions).
The goal of pub/sub matching is to notify a potentially large
set of subscribers about matching events quickly (in terms of
latency) and efficiently (in terms of throughput).

This matching problem has become a performance bottle-
neck as the workload of publish/subscribe applications has
increased dramatically in recent years, with a million of event
messages per second not unheard of [2]. Previous imple-
mentations and optimizations based on multi-threaded CPU
suffer from various weakness inherited from the Von Neumann
architecture. FPGAs has been served as supercomputing plat-
forms for various applications before [3]. The rich on-chip
memory bandwidth and stream processing ability in today’s
reconfigurable logic devices make them a good candidate for
accelerating this process. This work explores the architecture
and implementation schemes of using FPGA as a pub/sub
processor. Major contributions include:

- An architecture for pub/sub matching on FPGA using
multiple levels of indices to reduce processing time. The
memory requirement and performance of the architecture
are analyzed and modeled.

- A scalable multi-core implementation optimized for Xil-
inx FPGAs. Experimental results show significant im-
provements in both throughput and power efficiency.

II. T HE PUBLISH/SUBSCRIBE MATCHING ALGORITHM

The followings provides the basic formulation of the
pub/sub matching problem. The publishers createevents (e)
to represent the changes in their contents. An event is a list
of Attribute (a) and Value (v) pairs. The subscribers create

predicates (p) as rules to filter the events for notification.
Onesubscription (s) is a set of predicates and one predicates
is defined by theAttribute, Operator (o)and Value tuple as
described below.

e = {< ai, vi >: i = [0, el − 1]}

p = < a, o, v >

s = {pi : i = [0, sl − 1]}

p ◦ e ⇐⇒ a = ai ∧ o(v, vi) = true : ∃ < ai, vi >∈ e

s • e ⇐⇒ pi ◦ e : ∀pi ∈ s

whereel is the number of< a, v > pairs in an event andsl
is the number of predicates in a subscription. A predicatep is
matchedby an evente, p◦e, if and only if the relation between
the values defined by the operator holds true for the attribute.
A subscription issatisfiedby an event,s • e, if and only if
all its predicates are matched by that event. The input to the
system is a stream of events and the satisfied subscriptions per
event are generated as the output.

A naive implementation to find all the satisfied subscriptions
for a new event is to loop through all subscriptions and for each
p inside everys, try to find one pair ine that is matched. For a
system withm subscriptions, the average number of required
comparisons is(m× sl× el)/2, assuming half of the pairs in
e are compared on average. The required computation power
and memory bandwidth grow linearly with the number of
subscriptions. This is not efficient for two reasons: First,every
subscription in the system has to be checked for each event,
even if its predicates do not refer to this event’s attributes.
Second, the predicates included in various subscriptions may
be equal to or covered by each other. Thus, predicate operators
have to be repeatedly calculated per subscription even if the
result of this calculation is already known.

Database systems usually create indices to reduce search
time in large data set. The same idea can be applied in the
pub/sub matching problem as demonstrated by Fabret et al [4].
The original filtering algorithm in [4] is optimized for CPU
processing and cache utilization. We augment the algorithm
as shown below to target our reconfigurable platform.

bv: one-to-one mapping bit vector for all possiblep
for ∀ai ∈ e do

for ∀p : a = ai do
if p ◦ e then

bv(p) ⇐ 1;
end if

end for



end for{step 1}
for ∀p : bv(p) = 1 do

for ∀s : p0 = p do
if bv(pi) = 1 : ∀pi ∈ s then

outputs satisfied;
end if

end for
end for{step 2}

The algorithm can be divided into two steps by the two
outerfor loops. The first step ensures that only the predicates
with attributes that exist in the event are checked and that
any predicate is checked at most once. After the first step,
a bit in the vectorbv is set when the corresponding distinct
predicate is matched by the event. The second step ensures that
only the subscriptions with matched predicates are checked
and that any subscription is checked at most once. Two lookup
tables are used in the implementation. TableTa→p indexes all
related predicates by a given attribute. TableTp→s indexes all
subscriptions start with a given predicate.

Even when the number of predicate checked is largely
reduced by the above algorithm, the performance is still
insufficient for today’s requirements where millions of events
are generated per second in a systems with millions of
subscriptions. Farroukh et al proposed speedup schemes based
on parallel threading [5]. By partitioning and distributing the
events, predicates and associated subscriptions to threads, the
design can achieve over 1600 events per second or around
1.5ms matching time per event on a 2.3GHz Xeon processor.
The scalability is limited by the large software synchronization
overhead and the available number of active threads.

III. A RCHITECTURE

After analysing the issues on the CPU based pub/sub
matching designs, we believe that realizing and optimizingthe
system on a reconfigurable platform such as FPGA devices
will significantly improve the overall performance as well
as being more efficient in energy utilization. Figure 1 is an
overview of the pub/sub matching architecture. A hardware
accelerated pub/sub system can benefit from the increase in
number of parallel processing cores, the low hardware syn-
chronization overhead, the higher on chip memory bandwidth
and the efficient bit level manipulation.

In this system, there arel distinct possible attributes,m
subscriptions andn distinct predicates. Thematchprocessing
block compares the outputs from the predicate and event data
blocks. Thecheckprocessing block will examine the bit vector
positions indexed by the output of the subscription data block.
Hardware parallelism can be achieved by multiple instancesof
the two processing blocks.

Figure 1 does not show any improvement over the original
software design. To maximize the performance on FPGA,
several platform specific issues need to be addressed. These
include the utilization of on-chip/off-chip data storages, the
pipeline and synchronization between the two steps and the
resource allocation between processing blocks. Based on the
system and platform parameters, we also create a performance

m
at

ch

ch
ec

k

idx p

iv

Ta p

idx p

Tp s

sidx

step 1 step 2

satisfied
output:

p

einput:

p0
, p

1,
 ..

.
p0

, p
1,

 ..
.

<
a,

 o
, v

>
<

a,
 o

, v
>

n
bv

a1

a0 v0

v1

event
(e)

el

a

n

l

n

predicates
(p)

o,v

m

sl

m

subscriptions
(s)

Fig. 1. Pub/sub Matching Architecture.

model which will will help to explore better hardware config-
uration and greater scalability.

Providing high bandwidth data access, the on-chip memory
in FPGA device is a precious resource and must be used
wisely. We assume all values are in the range of[0, vmax]
for both events and predicates. The size of an single event
is el × (log(l) + log(vmax)) in bits. Since the predicates are
indexed by attributes, it is not necessary to store the attribute
again inside the predicates. Thusn×(log(omax)+log(vmax))
bits are required to store all the predicates, whereomax is the
number of different operators. Assuming that the subscriptions
have an average number of predicates,sl, the space for storing
all subscriptions ism× sl× log(n) bits. Most entries will be
empty if a fixed length data structure is used for the two lookup
tables. If all records in the tables are stored in variable length,
n × log(n) bits are used forTa→p and m × log(m) bits are
used forTp→s. An extra level of indices is used to enable
efficient access to variable length data structure in hardware.
In this level, the starting address and the number of entriesin
the corresponding record are stored for each possible input.
Thus the two tables arel × 2 × log(n) and n × 2 × log(m)
bits in size.

Since the bit vector is the only commonly accessed data
structure between the two steps, and thebv must be fully
evaluated before checking the subscriptions for each event,
the two steps can be decoupled in hardware by using a double
buffer structure forbv. The predicate matching module contin-
uously checks new events and updatebv in one buffer while the
subscription checking module continuously examines the bit
vector in another buffer. This results in a coarse-grained data
pipeline by overlapping the processing time of the two steps.
Inside each module, the data path can be further pipelined in
a finer granularity to achieved better throughput.

One problem of the multi-threaded software design is syn-
chronization, when each thread updates the globalbv from its
local bv sequentially. In hardware design, the synchronization
overhead is minimized while the scalability is limited by the
accessibility of the data. Instantiatingx number of parallel
matching cores impliesx predicates must be read in parallel.



TABLE I
TYPICAL VALUES OF SYSTEM PARAMETERS.

parameter symbol value
average attribute per event el 50
maximum value vmax 15
number of subscriptions m 6,000,000
average predicates per subscription sl 10
number of distinct attributes l 100
number of distinct predicate n 1500
possible operators o =

We then speedup the matching processx times at the cost
of wider read port or even multiple copies of predicates
when ports are fixed. The same method is applicable to the
checking module wherey parallel checking cores providey
times speedup and requirey times memory bandwidth.

Optimizing the system throughput (event per second) is the
primary design goal. Assuming all memory access latencies
are hidden by the data path pipeline, we model the processing
time for a single event asTE.

TE = max(TM , TC)

TM = (el × (n/l)× Tm)/x

TC = (n − n̂) × Tbv + (n̂ × (m/n) × Tc)/y

In TM , n/l is the average number of predicates with the
same attribute in a uniform random distribution andTm is
the time for matchingx predicates and updating thex bits of
bv in parallel. In TC , n̂ is the number of ‘1’s inbv, Tbv is
the time for checking a single bit inbv, m/n is the average
number of subscriptions starts with a same predicate in a
uniform random distribution andTc is the time for checking
y subscriptions in parallel. The value of̂n depends on the
operators in predicates. Assuming only the equality,=, is used,
one candidate predicate has1/(vmax + 1) chance of being
matched. Thus thên for equality isel×(n/l)×(1/(vmax+1)).

The actual performance depends on the data set where the
distributions may not be uniform. Even for the same data, the
order of predicates in subscriptions also has significant impact.
Since these issues affect the software implementation as well
and may be addressed irrespective of the hardware accelerator,
we will not consider them here. The hardware platform itself
also affects the accuracy of the model due to non-deterministic
external memory latency. This model provides a theoretical
upper bound of the system performance regardless of the data
set and actual implementation.

IV. I MPLEMENTATION

We adapt the typical system parameters from [5] in this
work as shown in Table I. The target hardware platform is
an FPGA device with internal dual-port memory blocks and
multiple banks of external memory such as the Xilinx Virtex or
Spartan devices. The system is modularized by separating the
match, vectorandcheckprocess with parameterized interface.
Thus user can scale the system and adapt to a new platform
easily by assembling the modules.

Figure 2 shows the implementation details of thematch
module. The event buffer is implemented in distributed flipflop
as shift register. All other data are stored in 36Kbit Dual

Generator
Address

match

ia

vi

event

Input

88 bits

4

7

11

Ta

2.2k bits
addr data

start addr

22

11
11

cnt

11 6

aT p

11

11

4

33

3311

11

6

we position

addr

addrdata

data

predicates
6k bits

addr

addrdata

data

16k bits

PortB

PortA PortA

PortB

Fig. 2. Thematchmodule.

po
s

w
e

po
s0

w
e0

po
s1

w
e1

po
s5

w
e5

11 6

P
or

tA
P

or
tB

position

6

we we

FIFO

12

11

we

1.5k bits
bv

a

a
we

d

d

clear

0

1

6

16

72−bit

idx

7

s

vector module

interface to m
atch m

odule

5

q

q

16

sbv’

idx

bv’

in
te

rf
ac

e 
to

 c
he

ck
 m

od
ul

e

Fig. 3. Thevector module (single buffer).

Port Block RAM (RAMB36). TheTa table stores the starting
address and the number of predicates associated with a given
attribute. Based on this information, the address generator
generates two address streams for theTa→p table which is
configured as a dual 36-bit ports memory. The design can
provide 6 different predicate indices concurrently by grouping
the Ta outputs. After the last address is generated, the circuit
starts processing the next attribute in the event register.Unlike
theTa→p table, the predicates are not sorted by attributes. Thus
we need 3 instances of RAMB18 to consume the generated
indices and 6 matching operators to match the 6 predicates in
parallel. Forx parallel output,1+⌈x/6⌉+⌈x/2⌉ Block RAMs
are used. Since the module process events in a streaming
manner and there is no feedback path or data dependency
between attributes, an event can be processed in average 20
clock cycles (Tm = 1).

Since thematchmodule produces the positions as outputs,
it is unwise to implement the bit vector in distributed flipflop
as that may require 6 parallel shifters each in1.5kb width.
We store thebv in RAMB36 units with the help of an input
FIFO as shown in Figure 3. The< pos, we > pairs only enter
the asymmetric FIFO if any of the 6 predicates is matched.
This scheme eliminates the need of shifters at the expense of
serializing the update tobv. Based on the fact that only a few
of bits will be set when compared to the number of predicates
checked for each event (e.g. total 7.5 bits on average in this
example), this will not become a bottleneck in the system.
The bv vector is stored in a dual port RAMB36 unit where



idx s bv’s

all ’0’
testword

counter control shifter

bv0

4

16

offset

idx0

7

11

p0

c0
shifter

c1

bv1

4

16

offset

idx1

7

11

p1

shifter

bv7

4

16

offset

idx7

7

11

p7

c7

addr data

S
66M Bytes

p sT

17.25M Bytes

addr data

external RAM

Address
Generator

bit
counter

c0
c1

c7

7

16−bit shift reg

16

16
16

flag

23

start addr

23

cnt

pT
68k bitsad

dr

da
tapos

7

11
4

232323 88

notify

FPGA chip boundary
23 subscription

Fig. 4. Thecheckmodule.

thematchmodule and thecheckmodule use independent ports.
PortB is also used to reset the vector to zero before a new event
is processed. With a 16-bit input, the vector can be reset in 94
clock cycles. To use two buffers as described in Section III,
the circuit in Figure 3 is duplicated twice.

In the second step of the algorithm, it requires scanning
through the bit vector to locate bits set to ‘1’. It costs
1500 clock cycles to scanbv in hardware bit by bit. In this
implementation, a 16-bit word,bv′s, is checked in one clock
cycle. Words with all bits are ‘0’ will be discarded while a
16-step serialized scan is performed only for those non-zero
words. When most bits inbv are ’0’s, the scanning process is
improved by a factor of 16. This word-based scheme does not
slow down the process even when most bits are ‘1’s. Figure 4
shows thecheckmodule in hardware implementation.

While tableTp is still implemented in RAMB36 units as
in the match module, tableTp→s and the subscriptions list
S are too large that they must be stored in external memory.
We assume that DDR2 memory chips with 32-bit data bus are
used. The data bus to user logic will then be 128-bit in width
for single edge half frequency clock. Parallelism is achieved
by fetching 8 predicate references from theS memory bank
in one read operation. The upper 7 bits of a reference are
used as the index input to thevector module to fetch a 16-
bit word, bv. The lower 4 bits control the shifter which shifts
out the bit being checked. This checking core is replicated 8
times for each predicate reference from the external memory.
If outputs from all cores are set to ‘1’, then the all predicates
in this subscription are matched by the current event and the
subscriber should be notified.

There are 8 extra copies ofbv in the vector module
supporting these 8 parallel checking cores to avoid bus con-
tention. To increase the degree of parallelism in thecheck
module, one must first increase the output width of table
Tp→s such that multiple copies of subscription list can be
indexed concurrently. Then the number of checking cores and
the number of extrabv copies in thevectormodule should then
be increased accordantly. The interface to the external memory
is the largest limiting factor when scaling up thecheckmodule.

V. RESULTS

The design is captured in VHDL description and synthe-
sized using the Xilinx ISE 11.4 tool chain. Xilinx Virtex-6

TABLE II
IMPLEMENTATION RESULTS.

Virtex-6 Xeon
LUTs 406(0.3%) N/A
FFs 385(0.1%) N/A
RAMB36 19(4.6%) N/A
Freq. (MHz) 254 2300
Avg. Throughput (e/s) 9.5k 1.6k
Agv. Power (W) 2.031 40
Cost (USD) 3,000 530

LX240T, which is available on the ML605 board, is targeted
to evaluate performance and cost. Table II shows the FPGA
performance and compares that with the software in [4].

The design has 6 matching cores and 8 checking cores as
shown in Figure 2 and 4. The average throughput are computed
using the performance model presented in Section III under
uniform random inputs. The average power is estimated by
the Xilinx XPower Estimator under 75% switching rate. In
this configuration, thecheckmodule dominates the run time.
With more external memory bandwidth and more checking
cores, the FPGA performance can be further improved. It is
difficult to measure the power of an isolated CPU, thus the
CPU power is estimated to be half of the TDP value from
the CPU specification. In reality, a PC system consumes even
more power than a CPU accelerator card.

Even a single engine, as implemented in this work, is 5.9
times faster than the highly optimized software design. It is
possible to fit 20 engines in a single FPGA which will be
100 time faster than the CPU system with a small cost of
increased memory chips. The FPGA is also more cost effective
in terms of event per second per dollar. The available on-
chip BlockRAM and the memory I/O will be the limiting the
scalability of the architecture. The problem can be solved by
using multi-FPGA clusters such as the one described in [6].
With 16 Virtex-5 FPGAs, the cluster can easily handle over
2.5 million events per second and perform more sophisticate
match besides equality.

VI. CONCLUSION

In this work, we develop an architecture for the pub/sub
matching engine in FPGA which outperforms software run-
ning on high end CPU in terms of throughput, system cost
and energy efficiency.

REFERENCES

[1] P. T. Eugster and et al, “The many faces of publish/subscribe,” ACM
Comput. Surv., vol. 35, no. 2, pp. 114–131, 2003.

[2] Aite Group, “Market data infrastructure challenges,” April 2009,
www.aitegroup.com/reports/200904222.php.

[3] R. Baxter et al., “Maxwell - a 64 FPGA supercomputer,” inAHS ’07:
Proceedings of the Second NASA/ESA Conference on Adaptive Hardware
and Systems, 2007, pp. 287–294.

[4] Françoise Fabret et al., “Filtering algorithms and implementation for
very fast publish/subscribe systems,” inProceedings of the 2001 ACM
SIGMOD international conference on Management of data, 2001, pp.
115–126.

[5] A. Farroukh and et al., “Parallel event processing for content-based pub-
lish/subscribe systems,” inProceedings of the Third ACM International
Conference on Distributed Event-Based Systems, 2009, pp. 1–4.

[6] K. H. Tsoi and W. Luk, “Axel: A heterogeneous cluster withfpgas and
gpus,” in FPGA ’10: Proceedings of Field Programmable Gate Arrays.
IEEE Computer Society, 2010, p. to be appear.


