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Abstract. Security engineering must be integrated with all stages of
application specification and development to be effective. Doing this
properly is increasingly critical as organisations rush to offload their
software services to cloud providers. Service-level agreements (SLAs)
with these providers currently focus on performance-oriented parame-
ters, which runs the risk of exacerbating an impedance mismatch with
the security middleware. Not only do we want cloud providers to isolate
each of their clients from others, we also want to have means to isolate
components and users within each client’s application.
We propose a principled approach to designing and deploying end-to-end
secure, distributed software by means of thorough, relentless tagging of
the security meaning of data, analogous to what is already done for
data types. The aim is to guarantee that—above a small trusted code
base—data cannot be leaked by buggy or malicious software compo-
nents. This is crucial for cloud infrastructures, in which the stored data
and hosted services all have different owners whose interests are not
aligned (and may even be in competition). We have developed data tag-
ging schemes and enforcement techniques that can help form the afore-
mentioned trusted code base. Our big idea—cloud-hosted services that
have end-to-end information flow control—preempts worries about secu-
rity and privacy violations retarding the evolution of large-scale cloud
computing.
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1 Introduction

Complex systems are far from bug-free and distributed systems are inherently
complex. This is not only because of the fundamental properties of distribution
but also because they blur traditional boundaries of data ownership and ad-
ministrative responsibility. Current approaches to achieving secure, large-scale,



distributed systems are not holistic; often, existing abstractions are imperfectly
extended (as is the case, for example, for communication of data across net-
works [1]). Security is an increasingly critical problem as organisations rush to
offload their software services to cloud providers. SLAs with these providers
currently focus on performance-oriented parameters, which runs the risk of ex-
acerbating security failures.

Fears about security can come from a lack of isolation. It is understood
that cloud providers must isolate each of their clients from others. Traditional
server and operating system level virtualisation can help, ensuring isolation as
appropriate within a data centre. However, each cloud client provides one or
more services, each of which in turn may have a multitude of users. We want
to ensure that such a service can guarantee that its users’ data remains private,
even when managed by threads sharing a service’s address space.

To see why this is necessary, consider healthcare data. These may be sensitive
for a human lifetime or longer and approaches to security that involve only
encryption are insufficient; over long timescales, keys may be compromised or
become more easy to break. Additionally, we want a way to control, at a fine
granularity and in an end-to-end manner, precisely where information is allowed
to flow according to policy.

Our vision is that security in the cloud should be incorporated from the
start and achieved end-to-end, even when software components may be buggy
or malicious. Only thus can cloud clients guarantee that their users’ data is safe
from cross-contamination or leakage to unauthorised recipients. Cloud service
providers therefore need to offer their clients strong but usable isolation sup-
port. In effect we want to start with high-level information flow policies that
describe how a cloud client manages the data under its control and transform
these policies into mechanisms of data isolation enforcement by the cloud infras-
tructure. We call this application-level virtualisation, emphasising that the goal
is to provide the illusion of isolated application instances whose interactions are
defined by information flow policies.

As a specific example of where this type of isolation is necessary, consider
Cancer Registries within the United Kingdom. They compute aggregate statis-
tics about cancer incidence in different parts of the country. Moving these com-
putations into the cloud has the potential benefit of homogenising the processing
involved and the data structures used, ensuring that all Cancer Registries oper-
ate in the same way. However, there would be a strong need to isolate processing
within this application—ideally as if there were separate physical resources de-
voted to each of the sets of data that should not mix. This would match the
physical isolation of the data sets between each Cancer Registry that occurs
today.

The isolation provided by application-based virtualisation can also be used
to protect commercial interests. Suppose that a city runs a service, hosted by
a cloud provider, whereby sensors detecting phenomena about the city can be
connected with applications that display, process, or store the readings. A com-
pany that owns pollution sensors might sell the readings from those sensors to



specific customers. The customers, whose applications run in the cloud, should
be prevented from sharing the raw sensor data and be permitted to disclose
derived data solely based on their agreements with the sensor owner.

For application-level virtualisation to have useful authority, it must express
all paths that data may follow in any particular system, including messages
transferred over networks, data sent within a machine, and information that is
written to disk. To realise this, components of the distributed applications that
run in the cloud need to specify their communications with others in terms of not
only the structure of the data exchanged (as is commonplace with middleware
that supports type systems) but their meaning in terms of legal and other obli-
gations. In other words, we argue that software should make explicit the policy
context; the attendant information flows describe both security and privacy con-
cerns. Such policy specification must be separate from application code and the
correctness of policy enforcement, provided as part of the infrastructure, should
be backed up by proofs made against a formal model.

Alongside support for isolation, these explicit security declarations mean that
application-level virtualisation allows the cloud infrastructure to do several de-
sirable things:

1. Data flow may be monitored for the sake of audit. Components’ description
of messages’ meaning and relevance to policy mean that the infrastructure is
in the position to gather information that not only describes what happened
in the course of an interaction but what the components intended to do.

2. The infrastructure may exercise monitoring of compliance with and enforce-
ment of policies. These can codify the types of data that the components
will send and are willing to receive.

3. Negotiation facilities for these policies can be provided by the infrastructure.

Overall this means that the details of information flow control and the moni-
toring of its integrity can be removed from application logic, being placed within
the cloud infrastructure for all clients to share. This allows providers to permit
clients only the interactions that the clients specify. Ensuring that all commu-
nication between components is done using messages annotated with security
concerns, the cloud provider can enable end-to-end security that matches the
policy requirements set out by the components that make up the clients’ sys-
tems. This can eliminate disconnects between policies that specify where data
may travel and the software paths that are eventually used.

We expect large-scale systems (and those that are based in the cloud are
no exception) to span multiple administrative domains, so anything providing
application-level virtualisation will have to operate in this environment. A do-
main is the starting point for naming and authentication of principals, roles, and
communication endpoints. Within a domain, it can be assumed that entities are
mutually well-known and accountability and trust are relatively high. A domain
anchors the expression and enforcement of policy on the rights, obligations, and
expectations of principals, although certain policies may be imposed externally



by law or as a result of national agreement. A domain must recognise and fulfil
its responsibilities for safeguarding data, including the control of data flowing
into and out of it.

When a domain is part of a public service, such as in healthcare or policing,
public policy can be brought to bear on data protection. With the advent of
cloud computing, the protection of the data entrusted to services has not yet
been addressed. Indeed, the owners of the services are most likely not the own-
ers of the systems on which the services run. If a major leakage of data occurs,
who should be held responsible? Even when there is commonality between stake-
holders, such as with the UK Government’s cloud computing initiative [2], the
scale of aggregation would require inter-departmental responsibilities for data
management and security to be made clear.

Paper outline: in section 2, we introduce the key supporting technologies
required for our vision: cloud infrastructure, asynchronous messaging and data
labelling, information flow control, role-based access control (RBAC), and ex-
pression and trusted enforcement of security policy. Section 3 shows how in-
formation flow control should be augmented by RBAC and policy to realise
application-level virtualisation. We have experimented with this methodology in
a number of domains, from healthcare and co-located financial services to social
networking, as discussed in section 4. Section 5 continues with an analysis of the
major questions still to be answered and provides some proposals for address-
ing them. Section 6 concludes: we believe that our “Big Idea” could lead to a
new standard model for cloud computing, meeting developers’ needs for seamless
data integration and usability without compromising security.

2 Background

Our plan for application-level virtualisation rests on several pre-existing tech-
nologies. In section 2.1, we first describe the infrastructure that cloud providers
offer for hosting applications and providing communication between them. For
robustness, cloud applications that are large-scale, distributed systems are most
easily built using asynchronous messaging (section 2.2). Information Flow Con-
trol (IFC) (section 2.3) can sit atop asynchronous communication to curtail
leaks of sensitive information and also to prevent inappropriate trust of outside
data. Alongside this, parametrised Role-Based Access Control (RBAC) provides
a scalable framework for structuring permissions and interactions in large sys-
tems (section 2.4). Finally, the security policy must be expressed in a format
suitable to the application and requires enforcement by an independent infras-
tructure, such as a trusted policy module (section 2.5), using IFC to prevent
application security breaches.

2.1 Cloud Infrastructure

Cloud services may provide clients with operation at multiple levels of system
abstraction and their interfaces come in a consequent variety of shapes and



sizes. Some common types of cloud services, and large-scale examples of them,
are summarised in this section.

Infrastructure. In this model, clients of the cloud service rent entire comput-
ing nodes, such as virtual machines. Although particular operating system
templates may be available, the client is responsible for maintaining the op-
erating system and the software that is to run above it. Examples of this
model include Amazon’s EC2, Rackspace, and Nimbus.

Platform. This model presents a level of abstraction where clients develop
their software using a restricted set of programming languages against a
particular set of services provided by the cloud. Some platforms may include
cloud-hosted incarnations of traditional software such as relational databases
but others may provide less familiar functionality such as custom document
stores—required when there is necessary coupling between the service and
properties of the cloud infrastructure. Google’s App Engine and Microsoft’s
Azure are examples of the platform model.

Application. At the highest level of abstraction, the cloud provides applica-
tion hosting where clients configure the application on offer but do not have
programming-level involvement. Salesforce has been employing the applica-
tion level of abstraction.

Our focus is on addressing security at the “platform” level. Clients have
to redevelop their software against cloud services in any event, and we believe
that the additional effort to provide security policy alongside the code would be
unproblematic.

2.2 Asynchronous Communication and Data Labelling

Any non-trivial application hosted in a cloud is a large-scale distributed system.
To build these, and to provide links between applications, an asynchronous com-
munication model is needed, allowing participants to interact without requiring
them to be simultaneously online. Even for cloud services that are stateless (with
respect to the cloud servers), message passing is useful for achieving robustness
in the face of service reconfiguration and other downtime.

Synchronous communication interfaces can be superimposed on this asyn-
chronous model. At the same time, asynchrony provides a much more accurate
view of the realities of distributed operation, with unpredictable failures and
delays, distributed multicast used to optimise content delivery, and partial local
information. Furthermore, a truly synchronous interface is undesirable because
it can act as a covert channel—imagine a message encoded using communication
response times.

In our approach, we treat all communicated messages as multi-part struc-
tures [3] in which each part has its own data and security label. This allows
effective distributed processing because services can annotate the data as needed



without altering the security labels attached to the unchanged fields. For exam-
ple, suppose a pathology laboratory processes a healthcare record and annotates
it with diagnostic information. This annotation (a new part) would be of high
confidentiality because producing it required access to patient data. However,
other parts of the message, such as the identity of the originating pathology lab-
oratory, could remain at their original, lower confidentiality levels and remain
accessible to subsequent processors.

2.3 Information Flow Control (IFC)

Information Flow Control (IFC) uses the data labelling within messages to en-
force where data may go. Consequently, it is a security technique that guarantees
strong protection of data confidentiality and integrity [4].

In IFC, all data are tagged with security labels that limit where the informa-
tion can flow. Each label consists of a set of confidentiality tags, describing the
“secrecy” of the data, and a set of integrity tags that attest to the data’s prove-
nance. Data can only flow to processes with compatible labels and data released
by a process must be compatible with the process’s label. Normally, information
can only increase in confidentiality and decrease in integrity as it is processed,
unless special declassification or endorsement privileges are exercised. For exam-
ple, if a “top-secret” label is more confidential than “secret”, then information
labelled “secret” can be handled by processes with “top-secret” clearance but not
vice versa. “Top-secret” data is therefore confined and can only be declassified
to “secret” by trusted processes with the right declassification privilege. A static
set of labels is clearly not enough for large distributed systems. Decentralised
information flow control (DIFC) [5] addresses this, by permitting applications
to create their own tags on the fly and allowing privileges over these tags to be
assigned dynamically.

Many application domains have shown the value of IFC and DIFC, including
military multi-level security [6], operating system process isolation [7], and our
own work on event-based distributed systems [8].

2.4 Role-Based Access Control (RBAC)

Distributed applications in general, and effective use of IFC in particular, re-
quire allocation, maintenance, and checking of privileges. Role-based access con-
trol (RBAC) has been demonstrated as an effective technology for the large
scale [9]. RBAC is now in common use across a wide variety of infrastruc-
tures, including operating systems, databases, and web-based software. Specific
definitions of RBAC are provided by the American National Standards Insti-
tute (ANSI) [10], although many software systems implement a simpler version
of the RBAC concept. In all interpretations of RBAC, the notion of a role is
introduced in between principals (e.g., users and processes) and privileges (e.g.,
method calls and filesystem access requests). Used in this way, roles are essen-
tially a form of grouping. Database and operating system infrastructures often
employ this form of RBAC.



The simplest ANSI standard is RBAC 0. In addition to the grouping function
of a role, the concept of a session is included in the model. Sessions are designed
to collect a set of active roles that pertain to a given work task. This focuses
security management on related sets of roles that are being used, as opposed
to having to consider all of a user’s potential roles whenever an access control
decision needs to be made. This mirrors the way access control tends to work
with human principals in a workplace; either functional or organisational roles
are activated in appropriate contexts. The activation and deactivation of roles
leaves an audit trail as to the intentions of the user over the duration of their
session.

For scalable, fine-grained access control, these RBAC approaches are not
manageable due to the need for large numbers of roles and the static, simple
method of policy specification. The ANSI RBAC 2 standard makes steps in the
right direction by allowing the specification of additional constraints over the
role activation relationships. However, it does not go far enough to effect large-
scale, distributed RBAC because its specification of constraints is not sufficiently
fine-grained.

Parametrised RBAC mitigates this problem by allowing the connection of
dynamically-assigned attributes to roles. The RBAC infrastructure becomes
more complex, however, as there is now the need for some inference system
to bind the values of parameters during the evaluation of access control rules.
Having said this, we have demonstrated that fairly straightforward parametrised
RBAC rule specifications with Horn clause form and simple inference semantics
are useful and sufficient [11].

2.5 Policy Expression and Enforcement

The techniques of IFC and RBAC are tools that can be used to build a security
infrastructure but details of their integration may be below the level at which
applications are developed. To solve this mismatch, we need to decouple secu-
rity specification from the concerns that it protects. What we need is a means
of expressing high-level information flow policies and transforming those into
appropriate roles and IFC labels. There is usually a trade-off between process-
ing speed and the ability to make sense of the security policy being applied.
Policy enforcement requires control flow to cross into specific access control soft-
ware subsystems, which can add latency on the critical path of some software
operations.

Increasingly, software systems are looking to concentrate security manage-
ment into a focused part of the infrastructure, rather than having security logic
scattered throughout the code-base. SELinux and AppArmor provide this sort
of policy expression and enforcement at an operating-system kernel level, while
the desire to work in environments such as user web-browsers led to the design
of Java’s system of access control.

One notable policy language that is gaining acceptance is XACML [12]. For
application-level concerns, as opposed to operating system or language-level se-
curity, XACML has the advantage of security engines having been implemented



in a number of programming languages, accompanied by a standardised, expres-
sive policy language.

Regardless of the particular policy languages employed, scaling up the reach
of policy requires addressing concerns that cross multiple administrative do-
mains and needs distributed policy enforcement mechanisms; the need to handle
cooperating but distinct organisations is common in healthcare scenarios [13].

Small-scale distributed enforcement mechanisms include Kerberos [14], and
the widely-deployed Microsoft derivatives of it. At larger scale, short-lived cer-
tificates can be used to help distributed enforcement [15], although certificate-
based techniques have unavoidably inelegant problems when privilege should be
revoked before the certificate expires.

The surge of Web 2.0 applications is starting to beget technology that can ef-
fectively manage security in dynamic, heterogeneous environments. The Security
Assertion Markup Language (SAML) [16] aims to simplify trust establishment
between sites for the sake of user convenience features such as single-sign-on. A
related authentication technology is OpenID [17], which provides an approach to
managing distributed naming for user identification. Recently, OAuth [18] has
emerged as a protocol for evaluating distributed authorisation of privilege.

Many of the above technologies are closely suited to, or even tightly coupled
with, specific domains (e.g., web-based authentication or privilege management
within a LAN environment). Our aim is to provide security tools for the use of
client software, to embed the client software within our security framework, but
presume as little as possible about the application’s environment.

3 Towards End-to-end Security

Recall that we achieve security by requiring that all data and communication be
protected with Information Flow Control (IFC) constraints. If these constraints
are enforced consistently, the security context is indelibly linked to the data—the
security labels can change only when trusted software components deliberately
exercise special privileges.

3.1 IFC Compared to Boundary Security

Adding IFC labels to all data allows end-to-end tracking and protection. In
contrast, traditional boundary security restricts information only as it enters or
leaves a systemic boundary such as a domain. Figures 1 and 2 illustrate the
distinction between security controls at the boundaries of a distributed system
and continuous, end-to-end security tracking with IFC. In both figures, we see
two different events move across two domains. The paths of Event A and Event B
are shown as solid and dashed lines, respectively. In figure 1, explicit boundary
access control checks prevent Event A from reaching an unauthorised recipient.
In figure 2, it is the IFC labels that cause Event A to be blocked before it reaches
the unauthorised recipient; Event B is allowed. Even if the recipient republishes
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data derived from Event B as Event C, the same security restrictions are still
enforced.

Figure 2 also shows an anonymiser module, which has additional trust in the
form of declassification privileges. It uses these to publish an anonymised event
count. Other portions of the infrastructure, such as the RBAC module, operate
entirely within the IFC framework—all of their communications and data are
subject to its restrictions. In contrast, the boundary access controls in figure 1
are insufficient to prevent the event counting component (Σ) from potentially
accumulating identified data.

This approach provides an end-to-end model of data security that is the
precise definition of application-level virtualisation. In effect, each user of an ap-
plication is isolated from every other user except where trusted code explicitly
bridges the boundaries. Here, examples of a “user” could be (1) a single ser-
vice request, (2) healthcare data related to a single patient, or (3) stock trades



executed for a single trader in an investment bank on behalf of a third-party
client.

This whole scheme hinges on effective use of IFC. The challenge, therefore,
is to make IFC-based systems practical and flexible to use in building complex,
large, real-world computer systems. IFC is most straightforward in relatively
static, strictly hierarchical environments [6]. As systems become more complex
and include interconnections between organisations and departments, themselves
constantly in flux, the management of IFC security labels becomes an increasing
burden. At some point, the meaning of the IFC-enforced security rules is lost
and the code is simply tweaked to make it work. This comes from undisciplined
label allocation and use strategies.

Instead, we believe that IFC label enforcement should be linked to organ-
isational security policy, expressed using Role-Based Access Control. This has
three major advantages:

Simplified management. Policy can be changed without modifying the de-
ployed code and services can be re-engineered without changing the policy.
Furthermore, policy analysis tools can be used to validate the overall appli-
cation structure at a high level.

Appropriate security. Security policy can be represented using concepts of
organisational importance—this is useful for both technical and legal rea-
sons. Technically, this ensures that policy operates at the correct granularity
and can consistently follow changes in organisational structures. A large or-
ganisation can enforce overall security policy, while allowing additional policy
refinements by departments. Legally, it means that data security is linked
to concepts important to the organisation; thus data security can feature in
SLAs and organisational agreements, and data that leaves the secure pro-
cessing environment (by being printed, say) can be protected by other legal
means such as employment contracts.

Independent enforcement. Policy is translated into IFC labels by a small
trusted computing base. Bugs in application code cannot violate the policy.

3.2 Programmer-Friendly, Domain-Specific IFC

Programmers need to be given straightforward ways to develop software that
uses application-level virtualisation. We have shown that this can be achieved
with simple modifications to a standard Java runtime, enforcing IFC restric-
tions at the communications API and associating IFC labels with each process’s
local state [8]. This approach lets programmers write code as usual, with the
programming and computational overheads of label checking being systemat-
ically localised to the communication boundaries. Furthermore, programmers
need only write code in terms of policy, not in terms of individual IFC la-
bels. This simplifies programming, providing a higher-level interface to label
management—the RBAC module translates policy expressions to IFC tags, and
grants appropriate privileges to the receiving processes. Our experience of this
approach is summarised in section 4.



This IFC/RBAC model is well suited to a multi-domain architecture. In IFC
terms, all data originating from an organisation has one or more confidentiality
and integrity labels by default. Thus, data is always embedded within a security
context unless explicitly made public by privileged code.

In the cloud, this protection not only insulates co-hosted organisational ap-
plications from each other but it isolates users of shared services because the
users can employ disjoint sets of security labels. For example, the security policy
can use parametrised RBAC to effectively manage separate IFC labels for each
user or role set as in the following policy snippet [11]. Avoiding discussion of the
denotational semantics, this policy basically states that being able to acquire
the role of a “treating doctor” of a particular patient, involves the role acquirer
being a “doctor” that has an active ward-round on the ward that contains that
patient. This example demonstrates the relevance of fine-grained management of
roles: simply being a qualified doctor is not enough to justify interactions with
any patient. It is difficult to use non-parameterised RBAC to encode this policy.

duty-doctor(doctor-ID, hospital-ward-ID),

current-inpatient(patient-ID, hospital-ward-ID)

` treating-doctor(doctor-ID, patient-ID)

Figure 3 shows a component that provides controlled access to Electronic Health
Records (EHRs). Each EHR is assumed to have associated IFC security labels,
with each label being a set of tags. Doctor P requests to read the EHR of
Patient A; Doctor Q requests that of Patient B. The doctors hold treating-doctor
roles with doctor and patient identifiers as parameters. On a read invocation,
the service checks the validity and applicability of the requester’s active roles. If
they are satisfactory, the service assigns labels that allow access to the patient’s
EHR to the thread that executes the service for that doctor. This means that the
threads are isolated—they have no access to data having incompatible labels.

To complete our model of end-to-end security, we need secure persistence and
storage for data—real world applications do not maintain their state entirely
within events. IFC and RBAC support the integration of database access.

EHR-read (EHR-A, treating-doctor(P, A))

EHR-A

tags for A

EHR-read (EHR-B, treating-doctor(Q, B)) EHR-B

tags for B

check role certificates
 assign tags to threads 

tags for A

tags for B

P’s thread

Q’s thread

EHR Service

Fig. 3. Isolated threads can access different data



3.3 Integration of RBAC and IFC for Database Access

Databases need to offer fine-grained isolation of information in order to sup-
port application-level virtualisation. Otherwise they trivially become channels
for unauthorised cross-contamination of data. We express database access restric-
tions using role-based security policy, using the same policy expression as we ap-
ply to asynchronous messaging. This has two main advantages: (1) database se-
curity is expressed in common terms with operational data security and (2) roles
provide long-lasting security labels that naturally are independent of security
policy changes. This provides strong protection for persistent data that may be
sensitive for decades. In effect, roles act as bridges, allowing IFC-based informa-
tion security restrictions to provide end-to-end security both in the cloud and
for associated long-term data storage.

This approach extends our earlier work on linking database access control
with publish/subscribe systems [19]. By protecting the data in this way, rather
than exposing encrypted data to application code, we can provide long-term pro-
tection while minimising the risks of key loss or cracking of encryption schemes.
Furthermore, it is possible to store data using trusted hardware, preventing dis-
closure even to superusers and system administrators.

3.4 Current Cloud Offerings

Current cloud offerings do not provide facilities for application-level virtualisa-
tion, be it by use of of IFC and RBAC as we have advocated or using other tech-
niques. Here we describe the security mechanisms in Amazon’s Elastic Compute
Cloud (EC2), and the associated S3 storage service, and Google’s App Engine
as a representative sample of what is currently available.

Amazon EC2 and S3. Amazon’s EC2 is a cloud infrastructure as defined in
Section 2.1; it provides facilities to create and destroy virtual machines (VMs)
with ease. All of the VMs under the control of one EC2 user (what we have called
the “cloud provider client”) are linked to that user’s Amazon ID and great care
is taken to ensure that there is no cross-contamination of data, via memory or
disk, between VMs owned by different users. Communication between VMs is
constrained using a network firewall. No mechanism is provided to control data
flow within a VM.

The storage system associated with EC2, Amazon S3, offers more sophisti-
cation. It is a key/value store, where each object has a value that is an arbitrary
byte stream. A bucket is the container for one or more objects; each object re-
sides in precisely one bucket. Again, Amazon IDs are used as principals, though
they are augmented by patterns such as “anonymous” and “any authenticated
user.”

Access Control Lists (ACLs), which are a subset of simple RBAC as outlined
in Section 2.4, may be attached to buckets or individual objects [20, chapter
covering access control]. More expressive are bucket policies, which are used to
specify access rules for all objects in a given bucket. Such a policy is a set



of statements, each of which describes a permission in the form of “A is/isn’t
allowed to do B to C where D applies” [20, appendix]. A is a principal, B is an
S3 operation (such as “put object”), C is a bucket identifier, and D is a set of
conditions. These conditions are composed using a simple language combining
the expected operators (NumericNotEquals, StringEqualsIgnoreCase, and so
on) with attributes of the request (the time, the source IP address, etc.), content
of the request (such as HTTP Referrer), and properties of the target bucket.

This approach is expressive enough for an implementation that uses static
IFC labels. For example, these labels could be translated into Amazon users
who could then be incorporated into bucket policies. However, this is unsuitable
for a dynamic environment because it is awkward to create and delete users fre-
quently. Furthermore, ACLs are low-level constructs and bucket policies may not
be modified but only replaced. This means that an intermediate infrastructure
would be needed to add and remove security concerns from policies. It is doubtful
that constant replacement of policies, and creation of new buckets when a unique
policy was required within the application, would provide high performance or
be scalable.

Google App Engine. Google’s App Engine [21] provides a platform (in the ter-
minology of Section 2.1) that allows execution of Java4 and Python programmes
within a limited environment. As with Amazon EC2, care is taken to ensure,
through effective sandboxing, that one programme does not interact with an-
other, even if those programmes are associated with the same cloud client. Again
no facilities are provided to limit the flow of data within each sandbox. Further-
more, the data store provided does not appear to support any access control,
permitting the account owning the database complete access to all data.

Based on the above, in its current form App Engine is not suitable for pro-
viding application-level virtualisation. In fact, its sandboxing and hence bespoke
Java Virtual Machine (JVM) and Java libraries mean that the analysis of the
Java libraries that we have done as part of building the DEFcon prototype [8]
would not be applicable without further examination.

4 Application Case Studies: Progress to Date

We have demonstrated application-level virtualisation in a number of application
domains [22], including health record transfer, cooperative co-location of algo-
rithmic trading systems, social networking, and IFC-enforced policy specifica-
tion. Here we summarise these experiences to illustrate that (a) application-level
virtualisation is feasible and (b) we have identified the necessary prerequisite
technologies.

4 Technically, App Engine supports the Java Virtual Machine, so any language having
that as the target execution environment can be made to work.



Health records. When health records are exchanged, long-term data secu-
rity is critical—for a lifetime or more. We have adapted distributed event-based
systems to this challenge, by tightly integrating RBAC with publish/subscribe
messaging [13,23] along the lines suggested in section 3. Organisational secu-
rity policy dictates which data flows are allowed; we assume that each domain
has at least one trusted event broker node for secure exchange of events, and
uses point-to-point communication between domains. This particular applica-
tion does not demand high throughput, and health record exchange must follow
agreed protocols, so content-based event routing is not required with its sharing
of communication paths.

Application-level virtualisation builds on this work and allows a natural de-
ployment of the system in the cloud: using IFC for strong end-to-end security
allows security policy to govern not only data exchange but also data processing.
Furthermore, enforcing policy with IFC reduces the footprint of trusted code in
the messaging middleware and leads to better performance: new IFC tags are
needed only when roles are activated to gain privileges, so IFC tags effectively
cache policy evaluation.

Stock trading and pairing. We used application-level virtualisation to de-
velop a stock trading application, as part of a high performance event process-
ing platform prototype called DEFCon [8]. Financial applications have strin-
gent performance requirements in terms of throughput and latency. Co-locating
clients with investors and sharing facilities among investors is extremely use-
ful for server consolidation in heavily-demanded hosting facilities, and trading
systems aim to be co-located with stock exchanges to minimise latency [24,25].
At the same time financial applications are subject to important security policy
requirements, including:

1. flow integrity of market data information;
2. strict control of information flows between investment strategies of different

clients of a bank and between client and bank investors;
3. confidentiality of orders in Dark Pool trading, used to move large quantities

of equities without revealing the trader’s identity; and
4. auditing by regulatory authorities on completed transactions.

To satisfy these requirements, we first made the ideas presented in section 2.3
concrete by developing an IFC label model suitable for event-based processing.
The model is inspired by OS-level IFC approaches, which provide IFC security
among processes in separate address spaces [7]. We applied IFC to processing
components that run in the same address space and saw a significant improve-
ment in performance.

An important requirement for financial scenarios is the usability of the target
language. We chose Java since it supports high throughput and low latency pro-
cessing with a tunable garbage collector. Unfortunately, achieving application-
level virtualisation is difficult in Java; its security model was designed for isola-
tion between application code and the host system, but does not provide good



support for isolation between sections of application code. Crucially, we pro-
vided an isolation methodology that can easily be maintained in the face of the
continuous evolution of the language runtime.

Our experimental results show that the overhead of checking labels is low:
in common applications, labels are quite small and can be checked efficiently
without imposing global locking overhead. In comparison, the overhead of using
separate Java Virtual Machines to isolate users, both in terms of processing
latency and resource consumption, is unacceptable even when the number of
users is small.

Social networking. Social networking applications have challenging security
requirements: they need to protect their users’ individual privacy while still
allowing information exchange between these users. As an example, we used
IFC tags to protect a Twitter-like microblogging application [26]. Examples of
policies that could be enforced are:

1. subscribers to a message topic are guaranteed to have their identities hidden
from each other;

2. publications are received only by authorised subscribers and only the pub-
lisher of a topic can see the corresponding subscription requests; or

3. publications are received only by authorised subscribers and subscribers’
identities are hidden from the publisher.

Our implementation achieves isolation between requests using Erlang’s inex-
pensive process model, with IFC-based policy checks added to Erlang’s built-in
message passing mechanism. We use IFC restrictions to enforce partitioning of
subscription state per subscriber in the message dispatcher. Even in a lightweight
application such as this, having essentially no processing overhead, the cost of
IFC enforcement is reasonable, being approximately 0.2 ms (of 0.7 ms) per mes-
sage delivered in an underloaded system. In a distributed deployment, this is
small compared to the expected communication delays and computation times.

This example demonstrates two important results: (a) IFC can offer effective
privacy protection for users of shared services without preventing appropriate
data exchange; in other words, IFC restrictions are usable in practice and are not
simply a secure sink for data; and (b) IFC restrictions are compatible with the
securing of publish/subscribe communication systems for which the publisher
and subscriber sets change dynamically—with microblogging as the special case
of one publisher per topic. Whilst we do not expect cloud providers to adopt
Erlang, our results show that IFC functionality layered atop an asynchronous
message passing facility is sufficient to provide the communication necessary for
application-level virtualisation.

Policy specification and compliance monitoring. As we argued in sec-
tions 2.4 and 2.5, effective expression of roles and policy is crucial for application-
level virtualisation. As a consequence, access control policy for large systems
needs to reflect organisational structure, allowing the blending of high-level



organisational policy with local policy-based restrictions. Our work has used
parametrised RBAC to allow fine-grained enforcement and compact specifica-
tion [11]; we have shown that this approach can support large and complex
organisations, such as the UK National Health Service (NHS). The resulting
separation of policy specification and enforcement/compliance monitoring is well
suited to cloud computing infrastructure because the deployment platform only
needs to enforce policy faithfully but plays no part in its authoring.

In our latest work [22], we explore a flow control policy language in which pol-
icy authors explicitly chart how information can flow through IFC-enforcing dis-
tributed environments; these span multiple hosting organisations, ranging from
corporate intranets to cloud providers. The language uses parametrised flow
specifications to link privileges to deployed units of code.

For example, the following is a rule that allows a patient’s treating doctor
to send the patient’s data to a pathology laboratory, which may then process it
and send the results back. The pathology lab may also send the data on to a
cancer registry for further research studies:

NHS.patient-data[doctor-ID, patient-ID]: {
-> treating-doctor(doctor-ID, patient-ID) ->, NHS.pathlab,
NHS.cancerregistry ->

}.

The effect of this policy is to establish an IFC-protected domain with its own
confidentiality and integrity tags. The integrity tags prevent untrusted outside
data from being passed off as patient data; the confidentiality tags prevent pa-
tient data from being released except as authorised through the policy.

Linking the policy to RBAC privileges has two advantages: (a) privileges
can change over time without any change to policy and (b) security policy can
be linked to physical security, starting with IFC labels themselves [27,28] and
moving towards roles. For example, one can ensure that patient data is released
only to a doctor or only displayed on terminals in a physically secure location.
This bridge between security policy and physical security allows end-to-end data
security to extend beyond electronic data into the real world.

In these flow policy specifications, structured naming is used. For exam-
ple, NHS.cancerregistry could refer to all cancer registries in the NHS, while
NHS.cancerregistry.ecric could refer to a specific cancer registry and NHS.
cancerregistry.ecric.dropbox could refer to ECRIC’s dropbox service for
secure incoming data. This allows high-level organisational policy and low-level
operational policy to be specified in the same terms. Multiple policy specifi-
cations are automatically combined to determine which flows are allowed; in
the above example, the high-level NHS.patient-data rule would allow ECRIC’s
dropbox to receive patient data. Additional low level rules attached to the drop-
box could prevent it from releasing the data to third parties, either by specifying
additional flow types or by further restricting NHS.patient-data.

We are still exploring how best to support policy authoring. At the simplest
level, we have established rules to detect clashes between policy entries but



further work is needed to provide policy visualisation tools, to establish common
policy idioms for organisational data exchange, and to verify policy compliance
in large, distributed environments that encompass both cloud providers and
corporate intranets.

5 Future Work: Open Research Challenges

Our experiences show that application-level virtualisation is a viable design strat-
egy for providing end-to-end security. Our work to date has illustrated the effi-
cacy of necessary pieces of infrastructure. Moving towards a complete, principled
methodology that is usable for building cloud-hosted services will require that
the research community address the following issues.

Expression of security concerns. So far we have used labelling of data to
convey meaning in terms of security. When operating across multiple adminis-
trative domains, we have suggested that the tags within labels be interpreted in
the context of the data use agreements between participating organisations [27].
However, it is unclear that this is an ideal mechanism. Tagging of data may feel
unnatural to the developer and if data are incorrectly identified, enforcement
of security will be incorrect. We need mechanisms, for example, integrated into
programming languages, whereby security tags about data can be defined and
used as naturally as the declarations of the structure of those data.

Roles as macros for policy. We have argued that many of the tags should be
constructed based on role definitions. We must define how this can be done in
terms of the desirable RBAC primitives and, potentially, provide a “role toolkit”
that developers can use to effect end-to-end security quickly. Furthermore, if we
are to map tags to data use agreements expressed using deontic logic [29], we
must be comfortable with the advice that we give concerning how to write those
agreements. To date, we have begun to provide the mechanism to do this [30],
and we have started the process of constructing these agreements based on real-
world concerns [28].

Secure mechanisms. How should tags and labels be made secure throughout
a distributed system, ensuring that they are not altered and are bound per-
manently to data as appropriate? How can we be certain that data use always
respects tags? So far we have assumed that a small and secure trusted code base
exists on each host. Is this realistic and, if not, what are the viable alternatives?
What are the implications when high performance is needed for large numbers
of clients of a shared service with low latency requirements? How much can be
achieved by static checks at the language level?

An alternative is to use a single secure host per domain rather than having
a trusted component on each host. We have done this for OASIS [11]. This has
the advantage of concentrating domain-knowledge of policies and issuing of tags



and labels (such as for role activation or on role use) and, as we have argued, is
a natural fit with inter-organisation IFC [27].

Confidentiality of tags and labels. So far we have considered tags and la-
bels to be essentially public in that the receiver of an event may look at the
security concerns of the data contained, even if the data themselves are hidden.
However, what should be done if tags and labels themselves should be secret? If
they are protected using encryption, how should one manage key distribution?
How would this key distribution affect efficient event dissemination, for exam-
ple using content-based routing? Whilst checking back with the issuer of tags
raises immediate fears about scalability, are there application areas where it is
acceptable because correctness is vastly more important than performance? For
parametrised label systems, it may be possible to adopt a hybrid approach, for
example by identifying to the receiver that events carry patient-data parts
without revealing the patient-id parameter value.

Policy quality. IFC is only as useful as the policy used to define it. If you
specify bad policy, you can release your data. We need a disciplined approach to
(a) review policy to check for correctness, and (b) formalisms so that high-level
policy can restrict the scope for local policy errors.

Performance. We do not as yet have a comprehensive understanding of the
performance penalty that must be paid for end-to-end security in a widely-
distributed system. However, our results so far [8] indicate that IFC schemes on
a single host can be built into an existing language runtime moderately easily
and need not incur a significant performance penalty (particularly not given
that network costs are likely to dominate IFC checks). We need to confirm that
negotiation of policy concerns between hosts can be done off the critical path
used for IFC enforcement.

Special requirements of the cloud. Remember that our primary goal in this
paper is to highlight techniques that cloud providers can use to effect end-to-end
security. Whilst doing so, we must not lose sight of the additional challenges of
deployment within cloud environments. For example, design decisions that focus
on a particular operating system or hardware, or require a globally-administered
naming system, are unlikely to be applicable to cloud infrastructures.

6 Conclusions

Security in the cloud must be included from the start. This demands a new
approach to end-to-end security that supports strong isolation of data, even when
business processes are outsourced into the cloud. Cloud processing needs isolation
between users of shared services, as well as isolation between services. Our vision



of application-level virtualisation provides this, by integrating (a) event-based
communication for robust service interconnection; (b) strong end-to-end security
with Information Flow Control; (c) role-based policy specification that bridges
data processing, persistent storage, and physical security; and (d) trusted policy
enforcement.

Our research to date has demonstrated the feasibility of this approach in
the context of large-scale distributed systems. However, more work is needed to
extend this into a standard model for cloud computing that can meet develop-
ers’ requirements for seamless integration and usability without compromising
security.

Our big idea—cloud-hosted services that have end-to-end information flow
control—preempts concerns about security and data use violations that are hold-
ing back the evolution of large-scale cloud computing. With this, we can reassure
cloud users who are worried about cross-contamination within their applications
and, at the same time, are reluctant to share a system with other companies and
therefore refuse, at the moment, to entrust sensitive data to a cloud.
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