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Abstract. Femtocells are small base stations that provide radio cover-
age for mobile devices in homes or office areas. In this paper, we consider
the optimisation of a number of femtocells that provide joint coverage
in enterprise environments. In such an environment, femtocells should
minimise coverage overlap and coverage holes and ensure a balanced
traffic workload among them. We use statistical verification techniques
to monitor the probabilistic correctness of a given femtocell configura-
tion at runtime. If there is any violation of the desired level of service,
a self-optimisation procedure is triggered to improve the current con-
figuration. Our evaluation results show that, compared with fixed time,
interval-based optimisation, our approach achieves better coverage and
can detect goal violations quickly with a given level of confidence when
they occur frequently. It can also avoid unnecessary self-optimisation
cycles, reducing the cost of self-optimisation.
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1 Introduction

Femtocells [5] are cellular base stations that cover small areas of tens of meters.
They are low cost and low power devices that are normally installed by consumers
in homes for better indoor mobile voice and data reception [3,5]. A femtocell
can be considered as a wireless cellular access point, which transfers data traffic
through the home broadband connection to the operator’s core network. By 2014,
the deployment of femtocells is expected to reach around fifty million, providing
service to more than a hundred million people [1].

An important challenge for femtocells is to optimise their radio coverage
area dynamically. The goal is to achieve a desired level of performance for mo-
bile transmission, avoid undesired interference and reduce power consumption.
Providing optimal femtocell signal coverage is important to improve users’ mo-
bile usage experience as well as reduce service cost expenditure. Since femtocells
are deployed by users themselves, they must also be able to self-configure all
required parameters during operation with minimal user intervention [6].



In enterprise environments, a number of femtocells may be deployed together
to achieve joint coverage. This is also done to cover a large area while balanc-
ing user load, minimising coverage gaps without signal and wasteful coverage
overlaps between multiple femtocells. Self-optimisation adapts the configuration
of radio parameters of femtocells at runtime, for example, by setting the power
level of their radio signals. Achieving good configuration is challenging due to
the diversity and dynamic nature of the deployment environment. Since fem-
tocells are deployed in a decentralised fashion, self-optimising femtocells might
interference with each other. In addition, users of femtocells might move around
at random, changing the workload and requiring dynamic hand-over between
femtocells.

Current femtocell optimisation methods derive the average value of overlap,
gap and workload within a fixed time interval and then compare this value to
a predefined threshold, known as the optimisation goal [7,9]. This approach
achieves reasonable performance and adaptability using an evolving algorithm
as shown in [9]. However, its convergence rate is slow because self-optimisation is
only triggered at fixed time intervals. When violations of optimisation goals are
rare, the algorithm cannot prevent unnecessary re-computation of parameters,
which wastes energy.

In contrast to observing the average value of a desired property, statistical
verification [11,12,15] is a technique that checks the probabilistic correctness
and satisfaction of a system against its desired behaviour. It has two major ben-
efits: first, it adopts a formal mathematical specification to describe the desired
system behaviour without ambiguity; second, it measures a property more ac-
curately than the average value because it considers the probabilistic likelihood
that a property is violated. The possibility of false positives and negatives can be
bounded below a required level [15]. When property violations occur frequently, a
fast response to trigger re-optimisation is needed rather than waiting for a given
timeout (i.e., false negatives). When violations are rare, statistical verification
can also avoid unnecessary self-optimisation (i.e., false positives). Thus, statis-
tical verification reduces energy consumption as well as durations of instability
caused by self-optimisation.

In this paper, we show how to use a statistical verification technique to
achieve self-optimisation goals for coverage optimisation in a joint femtocell sce-
nario. In particular, the contributions of the paper are:

— We model a femtocell network as a stochastic discrete event-based system
and formalise its desired behaviour using stochastic temporal logic. This
model describes properties rigorously and can be verified using statistical
verification.

— We propose a statistical verification technique based on hypothesis testing
for verifying properties in femtocell coverage optimisation. When a property
violation is detected, self-optimisation is triggered.

— We evaluate our approach in simulation and show that, compared with a
fixed time, interval-based approach, it is effective and can provide a 25%—
38% improvement in terms of reduced coverage overlaps and gaps.



The remainder of the paper is organised as follows. In the next section, we
describe related work on femtocell coverage optimisation and statistical verifica-
tion. Section 3 introduces the goals of femtocell coverage optimisation in more
detail. Section 4 provides the formal model and definitions for femtocell cover-
age optimisation. Section 5 presents evaluation results. We give conclusions and
possible future work in Section 6.

2 State of the Art

2.1 Femtocell Coverage Optimisation

Due to the predicted adoption of femtocells, researchers have begun to consider
the problem of coverage optimisation [4,6-8]. However, all of this work focuses
on single femtocell coverage optimisation for small-area residential users rather
than on multiple femtocells that achieve joint coverage in large enterprise envi-
ronments. The goals are to provide good indoor coverage, preventing signals from
leaking outdoors [6], and to increase the flexibility in deployment locations [7,8].

For multiple femtocells, the main optimisation goal is to reduce coverage
overlaps and gaps, as well as to balance the workload among femtocells. Ho et
al. [9] propose to use of genetic programming for coverage optimisation of a
group of femtocells. Their approach finds a suitable signal power to control
a femtocell’s coverage area. The authors show that genetic programming with
adjustment of signal power at a fixed time intervals can balance the average
workload of femtocells, with only small coverage gaps and overlaps. Their work
is closest to ours in terms of the scenario considered for joint femtocells coverage
optimisation. However, our focus is on selecting an optimal trigger time for
the signal power adjustment algorithm using statistical verification. We want to
carry out fast yet accurate violation detection with probabilistic guarantees of
optimisation goals. This avoids the drawbacks of approaches that use fixed time
intervals and average values, which may take a long time to achieve optimisation
goals and cannot avoid unnecessary self-optimisations.

2.2 Statistical Verification

Sen et al. [12] first considered verification of systems based on statistical hy-
pothesis testing. The authors assume that the system has already been deployed
so that execution traces cannot be controlled (black-box system). Verification is
based on the observation of system behaviour, and they show the effectiveness
of verification models based on continuous time Markov Chains. The idea of ver-
ifying a black-box system would be suitable for femtocell coverage optimisation
when the self-optimisation algorithm is unknown, such as the evolving algorithm
proposed in [9].

Younes and Simmons [15] extend Sen et al.’s approach in order to verify
probabilistic and time-based properties of black-box systems, as generalised by



semi-Markov decision processes. The authors adopt the sequential probability ra-
tio test (SPRT) and verify system traces as stochastic discrete event based mod-
els. Such a model is suitable for modelling violations of femtocell optimisation
goals. Thus we use a stochastic discrete event based model in this paper. Lee et
al. [11,13] propose a monitoring and checking framework based on SPRT, which
verifies the probabilistic correctness of a system based on its implementation
at runtime. The authors show that such an approach can be adopted to verify
probabilistic properties of wireless sensor networks. The idea of monitoring and
checking implementations at runtime is suitable for the coverage optimisation of
femtocells. Therefore, we adopt the same SPRT-based verification approach.

Next we give a short overview on the SPRT statistical verification approach.
SPRT was first developed by Wald [14] as a likelihood-based test for observed
data. It is designed for continuous monitoring. In practice, it is often evaluated
at frequent but discrete time intervals. SPRT defines a Null (Hp) hypothesis
that expresses the accepted value for the parameter under test and the Alterna-
tive (Hy) hypothesis as the unacceptable value for such parameter. Let N* be
the set of positive integers. SPRT takes a sample of pre-determined size m € Nt
and, based on the result obtained from drawing this fixed-size sample, it makes
a decision regarding these two hypotheses as follows.

Let X; be a random variable representing the number of observations at
time t. With the classical SPRT, tests are performed continuously at every
time t as additional data are collected. The test statistic is the likelihood or
log-likelihood ratio defined as

Pim H P(X¢|Hy) or p1m Z P(X¢|Hy) (1)

Pom P(X¢|Ho) P(X¢|Ho)

This test statistic is sequentially monitored for all values of ¢ > 0, until either Hy

is rejected by B2 > (1—j3)/a or until Hy is rejected by = < ﬂ/(l —a), where
a, B are type I and type II errors. With this stopping rule the Null hypothe-

sis is falsely rejected with probability a when it is true, while the Alternative

hypothesis is falsely rejected with probability 5 when it is true.

SPRT only needs a minimum number of external event observations to reach
decisions with bounded probability of false positives and negatives [14]. This
allows SPRT to be applied to black-box systems and make fast yet accurate
decisions. Moreover, SPRT is computationally inexpensive. All of these features
make it particularly suitable for the femtocell coverage optimisation problem.

3 Coverage Optimisation in Femtocells

Fig. 1 shows a simple femtocell network with four femtocells jointly providing
mobile signal coverage in an office area. Each femtocell uses home broadband
access as a backhaul to the mobile operator’s core network [5]. For a femtocell,
the coverage radius R indicates its radio coverage area and the change of signal
power 0 is used to adjust the radius. When a user equipment (UE), such as a mo-
bile device, enters the femtocell network, it performs a handover to a femtocell,
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Fig. 1. Illustration of the Femtocell Coverage Optimisation Problem

which is then used to transmit data. This results in improved mobile service and
traffic offloading from the core network. However, there may be coverage gaps
and coverage overlap between femtocells. When a UE is not covered by any fem-
tocell (coverage gap), it has to handover to the core network again for its data
transmission. When a UE is covered by more than one femtocell (coverage over-
lap), interference increases and this results in energy being wasted. Thus both
coverage overlaps and gaps are undesired behaviour and should be avoided.

Each femtocell should serve a similar number of UEs to achieve load balanc-
ing. Therefore, the aim of femtocell coverage optimisation is to minimise coverage
overlap and coverage gap, and also to balance the workload among femtocells.
Solving this problem involves adjusting the signal power in order to control the
coverage area of femtocells and deciding when such a signal power adjustment
should be triggered. In this paper, we mainly address the later problem by adopt-
ing statistical verification. The following is a list of desired optimisation goals
that we consider:

— Minimising the femtocell coverage gaps D. Coverage gaps can be inferred
from the number of handovers between femtocells and the core network,
which represents the number of times a UE enters a coverage gap;

— Balancing the load L among femtocells in a group to prevent overload or
under-utilisation;

— Minimising the coverage overlaps O by reducing the signal power.

Here we give a simple mathematical formulation of this problem. Let Dyp,,
Othr, Lipy be the required upper bound for femtocell coverage gap, overlap
and load, respectively. Let F(D; O; L; Dipyr; Ownr; Linr) 2% R be a func-
tion (in short as F LN R), of which the input parameters are the current cov-
erage performance observations (D, O, L) and the expected coverage perfor-



mance (Dipr, Othry, Lipr). Then the output parameter is a suitable power ad-
justment J, which enables a femtocell to achieve the expected R that satisfies
(Dithry Othyy Lipy). Such a signal power re-computation decision is made inde-
pendently by each individual femtocell.

4 Statistical Verification for Femtocell Networks

To achieve the optimisation objectives given in Section 3, verification goals are
used to check the probabilistic satisfaction of coverage optimisation. These veri-
fication goals can be represented as eventually Vn € Femtocells = (D < Dyy,.)
A (L < Lypr) A (O < Oygpyr) where n € NT is the number of femtocells in the net-
work. These properties are typically expressed in temporal logics. We adopt the
continuous stochastic logic (CSL) [2] as a formalism for expressing quantitative
properties. This is because CSL is semantically capable of specifying property
such as “with probability of at most 0.1” (P<¢.1(®)). For the femtocell coverage
optimisation problem, the desired properties are formulated as Equations (2)-

(4):

¢ = ]P)ZHD (true Ugt(D < Dthr))v (2)
¢ 1= Psg, (true USH(L < Lip,)), 3)
Y := Psg,, (true USHO < Ogy)), 4)

where U? is the bounded until path formula and ¢ is a specified time. We regard
t as tnow to indicate that a property should be satisfied when it is evaluated.
0p, 01, and 0o represent the desired level of confidence of each property. For
example, Equation (2) represents the probability of D being less than Dy, with
the confidence of no less than the required level §p until now. Similar meaning
applies to Equations (3)—(4) for O and L. If any of these properties are violated,

then F 2 R should be triggered.

4.1 Modelling Overlap, Load and Gap Violations as Stochastic
Discrete Event Processes

For checking probabilistic satisfaction of given properties, such as Equations (2)—
(4), statistical verifiers need to be evaluated against the trace of occurred cover-
age overlap, coverage gap and overload events. Here we give a formal description
of how the trace of these events is modelled.

Let {2 be a sample space. F is a collection of subsets of 2. Let P: F — [0, 1]
be a probability measure defined on F. Let (£2,F,P) be a probability space.
A stochastic process is a collection of random variables X = {X, : ¢t € T} with
index set T.

For the property of a femtocell, there are two types of states, in which a
property is either violated (¢rue) or not (false). Thus it can be represented as a
Bernoulli process, where each random variable X is a Bernoulli trial, mapping
2 — {true, false}, such that X = true with probability p and X = false with



probability 1 —p (p € P). The probability distribution of a sum of n Bernoulli
trials with parameter p can be represented as a binomial distribution with pa-
rameter n and p as follows:

B(n,p) =Y (1P (1 —p)". (5)

For femtocell coverage overlap O, load L and gap D, let Xo, Xy and Xp be
three random variables. X represents the occurrence of an overlap event, where
Xo = false when no overlap event occurred, Xo = true when an overlap event
occurred. The maximum allowed probability P(Xo = true) of such a Bernoulli
process is Ogp,r. Similarly, X and Xp represent the occurrence of an overload
or gap event, respectively.

In this a way, we model system states of a femtocell as a stochastic discrete
event system (denoted as M), which is similar to the work introduced in [15].
The state space of such a system can be represented as sequential observations
at times t1, to, - - -, for example, a sequence of overlap events. The state change is
discrete rather than continuous and is triggered when these events are detected.
The verification procedure is to compute whether the occurrence probability
of these events is above the predefined threshold. Thus the verification of each
desired property shown in Equations (2)—(4) can be achieved by using the veri-
fication method shown in Equation (1).

It is worth mentioning that, in the real world, Xp, X; and Xp are not
completely independent. When reducing a femtocell’s coverage area, overlap and
load are reduced, but the possibility of gaps happening is increased and vice-
versa. However, when triggering self-optimisation using statistical verification,
the decision is made independently according to the observation of each property.
Thus we consider Xp, X7, and Xp as independent observations.

4.2 Femtocell Coverage Verification Procedure

Based on the stochastic discrete event models from the previous section, we
describe in detail how to detect violations using statistical verifiers.

For a femtocell, let trigger F % R at an arbitrary time ¢ be a binary decision
D; € {true, false}, t € {1, 2, ---}, where true represents triggering this function
and false represents the opposite decision. Let Vi, Va, ---, Vy (N € NT) be
verifiers. Let P;, P», ---, Py be properties, which are used to describe desired
behaviours of a femtocell network. Each verifier V; monitors a given property P;
(¢ € N). At time ¢, a verifier V; observes a random variable X; according to P;.
Then, let H} be the Null hypothesis of the observed property P; that is violated
and Hi be the Alternative hypothesis.

During the verification procedure, if H} holds, then D; = true, otherwise if
Hi holds, D; = false. Based on the verification rule (see Equation (1)), we have



Algorithm 1 Statistical verification based coverage optimisation algorithm
List of verification goals in Equations (2)—(4): M = ¢, ¢, 9;
Input threshold 0 for coverage gap, overlap and load Dipr; Otpr; Line;
Start statistical verifiers V; for observing each given property
For each property € {¢, ¢, ¥}, when an observation X is received
Verify each property against Equation (6)
if a given property is violated (M £ {®, ¢, ©¥}) then

Trigger the self-optimisaton algorithm (F 2 R).

Output optimised parameters §

Clean observations X:s for the verified property
: end if
: Continue the statistical property monitoring

—
OO XN DOl Wy

—

the following forms:

accept Hj if pi < log(i);

l1-«a
RTI 1-p
accept Hi if p; > log(T); (6)
ontinue if log( ) < i<lo(1_ﬂ)
ntinue i — —
c u og(1—) < pi <log(——),

Dim
Pom
errors respectively («, f =1—0), as introduced in Section 2.2.

With the verification procedure from Equation (6), each femtocell in the

where p! is the log(2) in Equation (1), @ and 3 are the type I and type II

network has one or more verifiers and makes the decision of triggering F %R,
For example, HY : P(Xp = true) > Dy, represents the hypothesis that the
occurrence probability of coverage gap exceeds the given threshold (M }£ ¢ or
M= =¢)and HP : P(Xp = true) < Dy, represents the alternative hypothesis
(M = ¢). When the HP is accepted, a violation is detected, so the decision D,

should be set to be true in order to trigger F %R,

Algorithm 1 gives the pseudo code for the statistical verification-based fem-
tocell coverage optimisation procedure. Lines 1-2 specify properties as verifica-
tion goals with a given confidence level . In lines 3—4, verifiers are initiated
Vi,--+,Vy for each given property. Lines 5-10 specify that if a violation is de-

tected, T %R s triggered. Here we keep F %R asa high-level abstraction,
which can be substituted by any algorithm designed for this type of problem.
After the optimisation procedure finishes, the previous observation history is
cleared to refresh the verifiers. Eventually the femtocell network should become
stable and achieve {¢, ¢, ¥}.

5 Evaluation

The goal of our evaluation is to examine the effectiveness of our statistical veri-
fication approach in terms of reducing the probability of coverage overlaps and



gaps, and achieving optimisation quickly as well as avoiding unnecessary re-
optimisation. We investigate the impact of the proposed statistical verification-
based approach (noted as SVA). The results obtained are compared with the
performance of the fized-time interval approach (noted as FIA). The underlying
power adjustment algorithms are considered to be the same.

We implement a simulator for a four-femtocell network deployed within a
plane office area as introduced shown in Fig. 1. The statistical verification module
is implemented as part of Matlab 2009b. The occurred coverage overlap or gap
events are collected by each femtocell and passed to its statistical verifier as
input. For each statistical verifier, Equation (6) is implemented as the main
function where its likelihood function follows Equation (1) and the probability
distribution of the input data follows Equation (5). The violation of desired
coverage overlap or gap threshold is used as the Null hypothesis in Equation (6).

For the initial deployment, we assume that the femtocells are already placed
through automatic planning [10]. We ignore the required property of work-
load Ly¢p, for simplicity. We implement UEs, which randomly appear in the
femtocell network, to simulate user behaviour. We set the number of UEs to be
24, which has the same ratio of UEs and femtocells as in [9], where there are
50 femtocells and 300 UEs. We assume that the average time of a UE at a given
location within the femtocell network is 90 seconds, chosen from an exponential
distribution.

It is necessary to make assumptions about the spatial location of UEs. A nor-
mal distribution is a good choice due to the Central Limit Theorem—sufficiently
many location samples from UEs can be approximately normal distributed. A
uniform distribution is also a good model for the behaviour in an office envi-
ronment because UEs are often equally distributed around the office area. We
assume that UEs move within a square area around the centre of femtocells. Such
a setting results in a higher overlap and gap possibilities than that of UEs mov-
ing across all possible locations in a femtocell network. Here we apply the same
settings as in [9], setting Dyp, = 0.1 and Oy, = 0.3. We adopt 0p = 0o = 0.95
as the verification confidence level.

5.1 Evaluation Results

The evaluation experiments were run on a MacOS 10.5.8 machine with an In-
tel 2.53 GHz core 2 CPU with 4 GB of RAM. We simulate 24 hours in the
lifetime of a four-femtocell network.

Fig. 2 shows the impact of the occurrence probability of coverage overlap Pp
and gap Pp under the SVA and FIA schemes. The results show that the SVA
achieves a better satisfaction by lowering Pp and Pp. The SVA drastically re-
duces Pp by 25% and Pp by 38% under UEs following a normal distribution
(Fig. 2(a)) compared to FIA. A similar 26% improvement in reducing the Pp for
UEs with uniformly distributed movements is shown Fig. 2(b). However, SVA
does not improve Pp and the overlap is more likely to be increased by about
24% compared to FIA. Although Pp tends to increase, the overlap is still lower
than a threshold Oy, < 0.3. Furthermore Pp is lower than Pp of FIA.
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Analogous to the occurrence probability, the number of occurred overlap
events Xop and gap events Xp can be also observed under two UE movement
schemes. Fig. 3 shows that SVA successfully reduces the number of occurred
overlap events and gap events in comparison to FIA. For UEs with normally
distributed movements, Fig. 3(a) shows that SVA lowers the number of gener-
ated overlap and gap events. The number of gap events is also reduced under
uniformly distributed movements (Fig. 3(b)).This in agreement with the result
from Fig. 2. Both results demonstrate that SVA achieves a better optimisation
than FIA.

We also record the number of triggered power adjustments (F LN R). For
FTA, within each fixed time interval, there is always one power adjustment if the
desired level of overlap or gap probability has not been achieved. Fig. 4 shows the
number of power adjustments per half hour using SVA. Note that for both nor-
mal and uniform distributions of UE movements, SVA detects violation initially
rapidly and avoids unnecessary self-optimisations as whole network approaches
a stable optimal state.
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5.2 Discussion

A limitation of our statistical verification approach is that, if a desired property
is infeasible to achieve and violations occur very often, power adjustments are
triggered frequently without being able to converge to the optimisation goal. To
avoid such a problem, a limit on the number of self-optimisations during a given
time interval can be added to SVA. This might slow down the convergence speed
of the optimisation but it prevents the system from becoming unstable.

Moreover, different office environments might require different coverage over-
lap, gap and verification confidence values. A smaller overlap or gap threshold
makes it harder for the femtocell network to achieve its self-optimisation goal.
Higher verification confidence means that a verifier requires more evidence (i.e.,
overlap or gap events) to detect violations. It would be interesting to explore the
impact of this parameter and we plan to do this as part of future work.

6 Conclusions and Future Work

In this paper, we have shown how to use statistical verification to manage vi-
olations of optimisation goals in order to provide joint coverage in femtocell
networks. Our proposed approach is based on a sequential likelihood ratio hy-
pothesis test. It improves selection time to trigger the signal power adjustment
procedure of femtocells, and in turn improves the satisfaction of desired cover-
age performance. Our evaluation results show that our approach performs better
than a fixed time interval-based technique, resulting in a better satisfaction of
the desired upper bound of overlap and gap occurrence probabilities. Our ap-
proach can help optimise a femtocell network faster and avoid unnecessary signal
power adjustments when violations are rare. All these features are necessary for
guaranteeing fast, accurate and autonomous femtocell coverage self-optimisation.

For future work, we will consider scenarios with larger enterprise femtocell
networks and changes in femtocell locations in order to evaluate the scalability,
convergence speed and stability of statistical verification. In addition, we want
to exploit peak and off-peak usage patterns in femtocell networks, leading to
more realistic workloads of daily and weekly patterns of mobile devices.
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