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Abstract
Permissioned ledger systems allow a consortium of mem-

bers that do not trust one another to execute transactions safely
on a set of replicas. Such systems typically use Byzantine
fault tolerance (BFT) protocols to distribute trust, which only
ensures safety when fewer than 1/3 of the replicas misbehave.
Providing guarantees beyond this threshold is a challenge:
current systems assume that the ledger is corrupt and fail to
identify misbehaving replicas or hold the members that oper-
ate them accountable—instead all members share the blame.

We describe IA-CCF, a new permissioned ledger system
that provides individual accountability. It can assign blame
to the individual members that operate misbehaving replicas
regardless of the number of misbehaving replicas or members.
IA-CCF achieves this by signing and logging BFT protocol
messages in the ledger, and by using Merkle trees to provide
clients with succinct, universally-verifiable receipts as evi-
dence of successful transaction execution. Anyone can audit
the ledger against a set of receipts to discover inconsistencies
and identify replicas that signed contradictory statements. IA-
CCF also supports changes to consortium membership and
replicas by tracking signing keys using a sub-ledger of gover-
nance transactions. IA-CCF provides strong disincentives to
misbehavior with low overhead: it executes 47,000 tx/s while
providing clients with receipts in two network round trips.

1 Introduction
Permissioned ledger systems, such as Hyperledger Fabric [4],
Quorum [52] and Diem [3], allow a consortium of members
that do not trust one another to deploy a trustworthy service
on a set of replicas that they operate. These systems typically
use protocols for Byzantine fault tolerant (BFT) state
machine replication [12, 17, 20, 25, 37, 62] to distribute trust:
clients send requests to execute transactions [59, 60] that are
executed in a consistent order by the replicas. The results are
recorded in a persistent, replicated ledger.

BFT protocols ensure safety (linearizability [29]) and
liveness, but they can only do this if fewer than 1/3 of N repli-
∗Work done while at Microsoft Research.

cas misbehave. With more misbehaving replicas, current
permissioned ledger systems can no longer be trusted. When
safety violations are detected, the whole service is deemed
to have failed, and all members and replicas share the blame.

Current systems try to avoid this problem by increasing
replication [25, 36, 62] or hardening individual replicas [54].
Adding replicas does not help if they are controlled by
the same consortium members and thus do not behave
independently. Increasing the number of consortium mem-
bers, however, is challenging or even infeasible in practice.
For example, the Diem Association [6] had 26 members,
which prevented it from offering a service with more than
26 independent replicas; other consortia are smaller, which
results in fewer independent replicas [7, 34, 50]. Even
for large consortia with reputable companies, a persistent
attacker may slowly compromise N/3 replicas over time,
e.g., by exploiting lax security practices, bribing members’
employees or exploiting software vulnerabilities. Without
accountability after a service compromise, there is also no
perceived reputational loss that would incentivize members
to prevent or disclose these incidents [16, 24, 30].

The Confidential Consortium Framework (CCF) [54]
uses trusted hardware [21, 35] to isolate replicas from
operators and members, and it provides receipts that commit
transaction execution to its ledger. However, CCF does
not offer safety or individual accountability if the trusted
hardware is compromised.

Prior work explores accountability for various types of
distributed systems [1, 26, 27, 38, 64]. PeerReview [27] makes
general message passing systems accountable. As we show
in §6, applying such a general approach to a permissioned
ledger system incurs high overhead: all messages must be
signed, and auditing is expensive, because it correlates logs
across many replicas. More recent work [14, 19, 53, 56]
investigates accountability in BFT protocols and blockchains.
These proposals, however, offer no guarantees when 2/3 or
more replicas misbehave, because misbehaving replicas may
rewrite the ledger history without detection.

We describe Individual Accountability for CCF (IA-CCF),

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation    467



a BFT permissioned ledger system that identifies misbehaving
replicas and assigns blame to the individual members that
operate them, even if all replicas misbehave. Individual
accountability provides strong disincentives for misbehavior.

IA-CCF is a prototype that extends CCF [54] with support
for BFT and individual accountability, while retaining the
same user programming model, key-value store, transaction
execution engine, and model of governance for changes to
the consortium membership and replica set.

IA-CCF supports individual accountability by introducing
Ledger PBFT (L-PBFT), a new BFT state machine replication
protocol that stores ordered transactions in the ledger together
with the protocol messages from replicas that justify the
execution order. L-PBFT maintains Merkle trees [42] over
the ledger, and includes the roots of the trees in protocol
messages. Since protocol messages are signed by the replicas,
this commits them to the entire contents of the ledger.

IA-CCF then issues receipts to clients that provide succinct,
universally-verifiable evidence that a transaction executed
at a given position in the ledger. Receipts include signed
protocol messages from multiple replicas that executed the
transaction, thus binding them to a prefix of the ledger.

Given a collection of receipts that violates linearizability,
anyone can audit the ledger against the receipts to assign
blame to at least N/3 replicas. Auditing produces an ir-
refutable universal proof-of-misbehavior (uPoM) in the form
of contradictory statements signed by the same replica. The
uPoM can be used by an enforcer, e.g., a court, to punish the
members responsible for the misbehaving replicas. To provide
accountability when all replicas misbehave, the enforcer may
have to compel members to produce a ledger, imposing sanc-
tions otherwise. While this formally adds a weak synchrony
assumption, the enforcer chooses a conservative timeout to
make blaming correct members unlikely in practice.

As an example of auditing, a client Alice may have a
receipt for a transaction that executed at index i in the ledger
and deposited $1 million into client Bob’s account. If Bob
obtains the receipt from Alice and another receipt for a
balance query transaction executed at index j ( j> i) that does
not show the balance, he may conduct an audit: he engages an
enforcer to obtain the relevant ledger fragment, and replays
the transactions between i and j to check for consistency
with his receipts. If Bob is right, auditing produces a uPoM
for at least N/3 replicas, which Bob sends to the enforcer to
punish the consortium members responsible for the replicas.

To support changes to the consortium membership, IA-
CCF uses governance transactions that alter the set of replicas
and consortium members [54]. Governance transactions
complicate receipt verification and auditing because they
change the signing keys that must be considered. IA-CCF
therefore records governance transactions in the ledger,
which allows clients, replicas, and auditors to determine the
set of valid signing keys. Clients do not need to keep the full
ledger, but only receipts of governance transactions. Since
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Fig. 1: IA-CCF permissioned ledger system

governance transactions are relatively rare, this governance
sub-ledger is significantly smaller than the full ledger.

Our IA-CCF prototype provides individual accountability
without compromising on throughput or latency: it imple-
ments a commitment scheme for transaction batches with
only a single signature per replica. This enables clients
to receive results with receipts after only two network
round-trips. Our evaluation shows that IA-CCF can execute
over 47,000 tx/s with low latency.

The contributions of IA-CCF and the paper structure are:

1. L-PBFT, a BFT state machine replication protocol that or-
ders and stores transactions together with the protocol mes-
sages justifying the execution order in a ledger (§3.1, §3.2);

2. universally-verifiable client receipts that are generated
efficiently with the ledger (§3.3);

3. an efficient auditing approach using the ledger and
associated checkpoints, which produces short proofs-of-
misbehavior (§4); and

4. a governance mechanism for changing members and
replica sets, allowing auditing to assign blame even after
members have left (§5).

2 Overview of IA-CCF
Fig. 1 shows IA-CCF’s design. An IA-CCF deployment
provides a service, with a well known name, to clients, which
are identified by their signing keys. Clients send requests to
execute transactions by calling stored procedures that define
the service logic. Transactions are executed by replicas
against a strictly-serializable key-value store that supports
roll-back at transaction granularity. A transaction request t
reads and/or writes multiple key-value pairs and produces
a transaction result o.

Consortium members, also identified by their signing
keys, own the service. They may be added or removed over
the service lifetime. For this, members issue governance
transactions, which change the consortium membership, add
or remove replicas, and update stored procedures. The first
governance transaction, the genesis transaction gt, defines
the initial members and replicas. Its hash is the service name.
1 Ledger PBFT (L-PBFT) is a BFT state machine
replication protocol used by replicas to order transactions.
L-PBFT is based on PBFT [17]. It provides linearizability
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and liveness if at most f = ⌈N/3⌉−1 out of N replicas fail
in a partially-synchronous environment [23].
2 Ledger. L-PBFT maintains an append-only ledger, which
stores each transaction request t and result o at a ledger
index i. Since the consortium membership and the replica set
are dynamic, the ledger also records governance transactions.
They form a governance sub-ledger, which can be used to
learn the public signing keys of active replicas and members
at any index i.

To assign blame, the ledger also includes evidence that
a transaction batch was committed by a quorum of replicas.
This evidence consists of at least N− f signed L-PBFT pro-
tocol messages for a batch. Finally, the ledger stores periodic
checkpoints of the key-value store, allowing its state to be
reconstructed by replaying the ledger from a checkpoint cp.

All entries in the ledger are bound by Merkle trees.
Protocol messages for a transaction batch contain the roots of
the Merkle trees. This commits replicas to the whole ledger
while allowing succinct existence proofs for entries.
3 Receipts are created by replicas and returned to clients.
They bind request execution to members via the replicas’
signatures over Merkle tree roots that contains the executed
request and the ledger’s history. If two or more receipts
are inconsistent with any linearizable execution, at least
f+1 replicas must have signed contradictory statements and
can thus be assigned blame.

More precisely, a receipt R for ⟨t,i,o⟩ states that request t
was executed at index i and produced result o. The receipt
consists of N− f protocol messages for t’s batch, signed by
different replicas, and a path from a Merkle tree root to the
leaf that contains an entry for ⟨t,i,o⟩.

Clients may obtain receipts from a reply to a request they
sent, from replicas, or from other clients. To validate a receipt,
clients must check its signatures using the signing keys
determined by the governance sub-ledger. A receipt therefore
includes the ledger index of the last governance transaction,
and clients must obtain the receipt of this governance trans-
action and all those preceding it. Clients cache governance
transaction receipts and fetch missing ones from replicas.
4 Auditing returns a universal proof-of-misbehavior (uPoM)
if clients obtain receipts that are inconsistent with a lineariz-
able execution. IA-CCF’s ledger is universally-verifiable, i.e.,
anyone can act as an auditor: they replay the ledger, check
consistency with receipts, and potentially generate a uPoM.

Since all consortium members and replicas may misbehave,
an enforcer, e.g., a court, must compel members to produce
a ledger copy for auditing, sanctioning non-compliance.
The enforcer also punishes members based on uPoMs. It
is unreasonable to assume that courts could run the service
or audit long executions. Therefore, IA-CCF only requires
enforcers to re-execute transactions between two consecutive
checkpoints to verify a uPoM in the worst case.

After a client passes a sequence of receipts and the
governance sub-ledger to the auditor, the auditor confirms

the receipts’ validity by calculating a Merkle tree root and
verifying the replica signatures. It then asks the enforcer
to obtain the ledger fragment corresponding to the receipts
from the replicas. The auditor checks the validity of the
checkpoint cp referenced by the oldest receipt. It then
replays the ledger from cp, re-executing transaction requests
while checking for consistency with receipts (including
governance transaction receipts). If an inconsistency is found
at index i, the auditor creates a uPoM ⟨i,F , cp,R⟩ with a
ledger fragment F , the checkpoint cp, and the inconsistent
receipt R. The uPoM is then forwarded to the enforcer, which
imposes penalties on the consortium members blamed.
Threat model, and limitations. We assume a strong attacker
that can compromise replicas, clients, auditors, and members
to make them behave arbitrarily, but cannot break the cryp-
tographic primitives. We trust the enforcer to assign blame to
replicas and the members that operate them only when it veri-
fies a valid uPoM or fails to obtain data for auditing. IA-CCF
provides linearizability and liveness if fewer than 1/3 of the
replicas are compromised [17]. With any number of compro-
mised replicas, clients, auditors, and members, IA-CCF never
punishes members that operate only correct replicas unless
they fail to provide data for auditing. In addition, IA-CCF
guarantees that at least 1/3 of the replicas are blamed, and the
members that operate them punished, if clients obtain receipts
that are inconsistent with a linearizable execution. The current
implementation does not prevent attacks that overwhelm the
ledger with transactions to slow down auditing or replaying
the governance sub-ledger. It also does not blame replicas
for liveness violations, e.g., not returning receipts. Possible
defences include: having the enforcer timestamp the genesis
transaction and bounding the rate of regular and governance
transactions; and forwarding requests to the enforcer and
having it monitor protocol execution to assign blame to
replicas when receipts are not returned before a deadline. We
leave the details of these defences for future work.

3 L-PBFT protocol and receipts
Next, we describe how L-PBFT maintains a ledger with
transactions and evidence (§3.1), and how it handles view
changes (§3.2). We then explain how evidence is used to
create receipts (§3.3) and introduce performance optimiza-
tions (§3.4). For ease of presentation, we first assume a fixed
replica set; we add dynamic membership in §5.

3.1 Protocol

To support auditing, a BFT state machine replication
protocol, such as PBFT [17], must integrate with a ledger:
it must ensure that replicas agree on a ledger with both
transactions (requests and results) and protocol messages.
It must also handle non-determinism to enable replaying
the ledger. L-PBFT addresses this issue by agreeing on
non-deterministic inputs [18] and using early execution: it
requires the primary replica to propose a transaction result,
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Alg. 1: Ledger Practical Byzantine Fault Tolerance

1 on receiveTransactionRequest(t=⟨request,a,c,H(gt),mi⟩σc)
2 Pre: verify(t)
3 T ←T ∪{t}
4 on sendPrePrepare()
5 Pre: isPrimary() ∧ ready∧ |T |>0∧ hasEvidence(M ,v,s−P)
6 B← [];G←{}
7 foreach t∈T do
8 B←B ||H(t) ; ⟨i,o⟩← execute(kv,t); G←G||⟨t,i,o⟩
9 ⟨Es−P,Ps−P,Ks−P⟩← getEvidence(M ,v,s−P)

10 L←L ||Ps−P ||Ks−P;M←M||Ps−P ||Ks−P

11 K [v,s]←createNonce();M̄← getRoot(M); Ḡ← getRoot(G)
12 pp=⟨pre-prepare,v,s,M̄,Ḡ,H(K [v,s]),Es−P⟩σr
13 L←L || pp ||G;M←M || pp;M ←M ∪{pp}; T ←{}; s←s+1
14 sendToAllReplicas(pp ||B)

15 on receivePrePrepare(pp=⟨pre-prepare,v,s′,M̄,Ḡ,H(k),Es′−P⟩σr ,B)
16 Pre: isBackup() ∧ verify(pp) ∧ ready∧ s′=s∧K [v,s]=nil∧

hasRequests(T ,B) ∧ hasEvidence(M ,s′−P,Es′−P)
17 M ←M ∪{pp};G←{}
18 foreach h∈B do
19 t← removeTx(h,T ); ⟨i,o⟩← execute(kv,t);G←G||⟨t,i,o⟩
20 ⟨Es−P,Ps−P,Ks−P⟩← getEvidence(M ,v,s−P,Es−P)
21 L←L ||Ps−P ||Ks−P;M←M||Ps−P ||Ks−P;
22 if getRoot(M) ̸=M̄ or getRoot(G) ̸= Ḡ then
23 undo(pp,kv,M ,B,T ,L); return
24 L←L || pp ||G;M←M || pp;K [v,s]←createNonce()
25 p=⟨prepare,r,H(K [v,s]),H(pp)⟩σr
26 sendToAllReplicas(p); M ←M ∪{p};s←s+1
27 on receivePrepare(p=⟨prepare,r′,H(kr′ ),H(pp)⟩σr′

)
28 Pre: verify(p)
29 M ←M ∪{p}
30 on batchPrepared(pp=⟨pre-prepare,v,s′,M̄,Ḡ,H(kp),Es′−P⟩σp)
31 Pre: prepared(pp,M )∧∃⟨prepare,r′,H(K [v,s′]),H(pp)⟩σr′

∈M
32 c=⟨commit,v,s′,r,K [v,s′]⟩
33 sendToAllReplicas(c); M ←M ∪{c}
34 foreach ⟨t,i,o⟩∈getTxForBatch(L ,v,s′) do
35 sendReplyToClient(t,⟨reply,v,s′,r,σr ,K [v,s′]⟩)
36 if shouldSendReceipt(r,t) then
37 S←getMerklePath(G,i)
38 sendReceiptToClient(t,⟨replyx,v,s′,M̄,H(kp),Es′−P,H(t),i,o,S⟩)
39 on receiveCommit(c=⟨commit,v,s′,r′,kr⟩)
40 Pre: verify(c)
41 M ←M ∪{c}

which the backup replicas must agree on for the batch to
commit. L-PBFT then maintains Merkle trees over all ledger
entries and puts the trees’ roots in protocol message, which
ensures that all replicas agree on a serial history of the ledger.

Fig. 2 gives an overview of L-PBFT with early execution:
first clients send transaction requests to all replicas. The
primary orders the requests, groups them into batches and
performs early execution. It then sends a pre-prepare message
to the backups, which includes the request batch and the ex-
ecution results. Upon receiving the pre-prepare, the backups
execute the requests and confirm that the results match the
primary’s. If so, they send a prepare message to all other
replicas. After a replica receives a pre-prepare and N− f−1
matching prepare messages for the same sequence number s
and view v, the batch is prepared at the replica at v with s if all
batches with lower sequence numbers have also prepared. A
replica then sends a reply to the clients and commit messages
to the other replicas. We say that a batch is committed at
sequence number s if it has been prepared by N− f replicas
in the same view. A client has received a complete response
when it has a receipt consisting of replies from N− f replicas.

request pre-prepare

Client

prepare reply & commit

Primary

Backup

Backup

Backup

execution receipt

Fig. 2: L-PBFT protocol with early execution and receipts

A naive approach would require each replica to sign two
protocol messages, i.e., the pre-prepare/prepare and the
commit message, for each committed batch. Instead, L-PBFT
uses a novel nonce commitment scheme, in which replicas
only sign the pre-prepare/prepare messages after including
a hashed nonce. Instead of signing the commit, a replica
includes the unhashed nonce. This effectively halves the
signatures that replicas emit to commit batches successfully.

Alg. 1 presents the pseudocode of L-PBFT. The replica
state includes: the current view v and batch sequence num-
ber s; a set of transaction requests T waiting to be ordered;
a message store M ; a nonce store K ; a boolean ready indi-
cating if the replica can send/accept pre-prepare messages;
a replica identifier r; the key-value store kv; the ledger L ; and
the Merkle tree M that binds the ledger entries.

In receiveTransactionRequest (line 1), a replica adds a
request message to T , where a identifies the invoked stored
procedure and its arguments, c is the client identifier, H(gt)
is the genesis transaction hash, mi is the minimum index after
which the request can be added to the ledger, and σc is the
client signature. σc and H(gt) ensure that requests cannot be
forged or moved to a different ledger, and mi allows clients
to create an ordering dependency between the request and
a previously executed transaction.

The function sendPrePrepare (line 4) uses early execution
to include the execution result in the batch’s Merkle tree
root. The primary p=v mod N collects a batch of transaction
requests, executes them, and appends them to a new Merkle
tree G. Then, the primary retrieves the commitment evidence
Ps−P and Ks−P for the batch at s−P from the message
store M and appends it to the ledger. Es−P is a bitmap that
records the replicas that supplied commitment evidence.

Next, the primary creates the pre-prepare message with the
hash of a fresh nonce K [v,s], the root of the Merkle trees, M̄
and Ḡ, and signs it. G is a Merkle tree that contains all ⟨t,i,o⟩
entries in a batch. The complete pre-prepare message has two
extra fields: ig, the index of the last governance transaction,
which allows clients to verify receipts with a changing set of
replicas (see §5.2); and dC, a digest of the key-value store state
at the last checkpoint, which enables auditing from a check-
point without replaying the ledger from the start (see §4).

By signing M̄, the primary commits to the contents of the
ledger, including the commitment evidence for s−P that it
retrieved and added to the ledger. It is important for the pri-
mary to order the evidence to ensure that replicas agree on the
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Fig. 3: Ledger with evidence and Merkle trees

ledger: if replicas added their own evidence to the ledger when
they received prepare and commit messages, their ledgers
could diverge. The commitment evidence Ps−P contains
N− f−1 prepare messages for sequence number s−P and
view v that match the pre-prepare at sequence number s−P in
the ledger. Ks−P are the N− f nonces with hashes in the pre-
prepare/prepare messages in Ps−P. This evidence is sufficient
to prove to a third party that the batch at s−P prepared at N− f
replicas and therefore committed with s. The pre-prepare mes-
sage along with the leaves of G are then added to the ledger.

The primary communicates its ordering decision by
sending the pre-prepare message to all replicas, together with
a list B of the hashes of transaction requests in execution
order. The requests are sent separately by the clients, and
the commitment evidence for s−P is not included in the
message. The pre-prepare messages are O(N) in size but
the constant is small. Our implementation uses 8 bytes in
the Es−P bitmap to support up to 64 replicas, making the
pre-prepare messages effectively O(1).

Fig. 3 gives an example of the ledger state after this step.
For each transaction in the batch, the primary adds a ledger en-
try in the order executed. The entry for Ti has the form ⟨t,i,o⟩
where o includes the reply sent to the client and the hash of
the transaction’s write-set; pps is the pre-prepare for s, and
Ps−P and Ks−P are evidence that the batch at sequence number
s−P committed. L-PBFT pipelines the ordering of up to P≥1
concurrent batches to improve performance. Therefore, the
commitment evidence lags P behind s, because it is unavail-
able when the primary sends the pre-prepare for s. Appx. A,
Lemma 2 shows that early execution maintains linearizability.

When a backup replica receives the pre-prepare (line 15),
it rejects the message if it already sent a prepare for the
same view and sequence number (K [v,s] ̸=nil). Otherwise, it
checks if it already has the requests and commitment evidence
referenced by the pre-prepare. Replicas store received re-
quests, prepare, and commit messages in non-volatile storage
(M ) until they receive (or send) a corresponding pre-prepare.
To reduce network load, the primary does not resend requests
or messages used as commitment evidence. If the backup
is missing messages, it requests that the primary retransmit
them, because a correct primary is guaranteed to have them.

The backup then executes the requests in the order
prescribed by the primary, and adds the resulting transaction
entries to a new Merkle tree G (line 19). Then, it adds the
same Ps−P and Ks−P as the primary to the ledger. At this
point, the ledger at the backup should be identical to the one at
the primary just before the pre-prepare message is added. The
backup checks that the roots of its Merkle trees match M̄ and

Ḡ in the pre-prepare, respectively. If not, the message is re-
jected, the entries for batch s are removed from the ledger, and
the transactions are rolled back. Otherwise, the backup adds
the pre-prepare to the ledger, followed by the leaves of the
Merkle tree G, and sends a matching prepare message with
the format ⟨prepare,r,H(K [v,s]),H(pp)⟩σr , where H(K [v,s])
commits a fresh nonce, and H(pp) is the pre-prepare’s hash.

L-PBFT ensures deterministic transaction execution by
agreeing on non-deterministic inputs [18]. Line 22 ensures
that a backup’s execution of batch B and its ledger are identi-
cal to those of the primary by comparing the Merkle roots Ḡ
and M̄. If this check fails, the backup rolls back execution and
attempts to view change (§3.2). This way divergent execution
due to bugs, i.e., failing to identify non-deterministic inputs,
can affect liveness but not diverge the ledger.

In batchPrepared (line 30), the nonce commitment and
early execution allow replicas to return replies to clients in two
message round trips without signing reply or commit messages.
When the batch prepares at replica r, it sends a commit mes-
sage with the format ⟨commit,v,s′,r,K [v,s′]⟩ where K [v,s′] is
the nonce the replica committed to in the pre-prepare/prepare
messages that it sent for v and s′. Since the nonce K [v,s′] is
revealed to clients and replicas only when a replica prepares
the batch having a pre-prepare/prepare message and the
corresponding nonce can prove to a third party that the replica
prepared the batch at v and s′ (see Appx. A, Lemma 3).

Finally, a replica r commits a prepared batch v, s′ after
it receives N− f commit messages, including its own. The
nonce hashes in the commit messages must match the ones
in the pre-prepare/prepare messages.

We prove that L-PBFT produces a linearizable execution
order in Appx. A, Thm. 1.

3.2 View changes

During the L-PBFT protocol execution, the primary may mis-
behave or be slow, which requires a view change. The change
of the primary must be done in a manner that does not pre-
clude auditing, which is a new requirement that goes beyond
PBFT’s view change protocol. L-PBFT view changes are
auditable and must provide proof that a batch’s re-execution
produces the same result as the original execution.

L-PBFT addresses this as follows: it sends the evidence
that batches prepared during view changes and includes
the Merkle tree root Ḡ of a batch and its execution in
the pre-prepare message, which ensures that batches are
re-executed consistently. During a view change, each replica
sends a view-change message with information about
prepared requests. The primary for a new view v′ sends a
new-view message backed by N− f view-change messages
for v′. For each sequence number with a prepared batch in
the view-change messages, the primary picks the batch that
prepared with the largest view and proposes it in v′. Since
all committed requests have also prepared, this ensures
linearizability with batch execution ordered by the sequence

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation    471



Alg. 2: View Changes in L-PBFT

1 on sendViewChange()
2 Pre: primaryAppearsFaulty(v)
3 P P =getPLastPrepared(msgs(L)∪M )
4 v=v+1; ready← false;vc=⟨view-change,v,r,P P ⟩σr
5 sendToAllReplicas(vc); M ←M ∪{vc}
6 on receiveViewChange(vc=⟨view-change,v′,r′,P P ⟩σr)
7 Pre: v′>=v∧ verify(vc)∧ hasPrepares(msgs(L)∪M ,getLast(P P ))
8 M ←M ∪{vc}
9 if |getViewChanges(M ,v′)|> f ∧ v′>v then

10 v=v′−1; setPrimaryApearsFaulty()
11 sendViewChange()
12 on sendNewView(v)
13 Pre: isPrimary(v) ∧¬ready∧ |getViewChanges(M ,v)|>N− f
14 ⟨M̄,Evc,hvc,P P ov⟩=processViewChanges(getViewChanges(M ,v))
15 nv=⟨new-view,v,M̄,Evc,hvc⟩σr ;L←L ||nv;M←M ||nv
16 sendToAllReplicas(nv)
17 resendPreparesInNewView(P P ov); ready←true

18 on receiveNewView(nv=⟨new-view,v,M̄,Evc,hvc⟩σr′
,P P nv)

19 Pre: isPrimary(r′,v)
∧ hasRequests(T ,P P nv) ∧ hasEvidence(M ,P P nv)
∧r′ ̸=r∧¬ready∧ |getViewChanges(M ,Evc,hvc)|>N− f

20 ⟨M̄′,P P ′ov⟩=processViewChanges(getViewChanges(M ,Evc,hvc))

21 if M̄′=M̄ then
22 L←L ||nv;M←M ||nv
23 if ready←processPreparesInNewView(P P nv,P P ′ov) then return
24 undo(nv,s,M ,L)

numbers at which batches committed.
Alg. 2 formalizes the pseudocode for view changes. If the

primary for view v appears faulty or slow, a replica sends
a view-change message, ⟨view-change,v+1,r,P P ⟩σr , to all
other replicas (line 1), where P P contains the last P pre-
prepare messages that prepared locally (line 3). Only the last
message in P P is required to provide linearizability, because
it includes the Merkle tree roots M̄ and Ḡ that determine
the ledger contents up to that point. The other pre-prepare
messages are used during auditing to verify that replicas
reported the batches they prepared in view-change (§4).

When replicas receive a view-change message (line 6),
before processing it, they fetch missing prepare messages
from the sender to prove that the last pre-prepare in P P has
prepared. When replicas increment v, they set ready to false
(lines 4, 11), which ensures that they do not send or accept
pre-prepare messages until they have completed the new-view.

After accepting N− f view-change messages for the new
view (line 12), the new primary calls processViewChanges,
which picks the view-change message vclp with the last pre-
pared pre-prepare message pplp from those with the largest
view number. It then updates the ledger to match the Merkle
roots in pplp by fetching missing ledger entries from replicas
that sent matching prepare messages. Since at least f+1 of
those are correct, this is always possible. The primary checks
that all messages in P P of vclp appear at the right ledger posi-
tions; if not, it discards vclp and re-tries (omitted from Alg. 2).

Next the primary resets the ledger to slp−P, because the
batches up to this point are guaranteed to have committed.
It saves all the request batches and commitment evidence
for sequence numbers between slp−P and slp and returns
it in P P ov. This is needed to resend pre-prepare messages
for the prepared batches in the new view. The function ends

Alg. 3: Verifying Receipts
1 on verifyReceipt(⟨t,i,o⟩,⟨v,s,M̄,H(kp),Es−P,ig,dC),σp,Es,Σs,Ks,S⟩)
2 Ḡ′← pathHash (⟨t,i,o⟩)
3 foreach Gi∈S do
4 Ḡ′← pathHash (Ḡ′, Gi)
5 pp=⟨pre-prepare,v,s,M̄,Ḡ′,H(kp),Es−P,ig,dC⟩
6 if not checkSignature (σp, pp) then return false
7 foreach r∈Es do
8 if r= p∧H(Ks[p]) ̸=H(kp) then return false
9 if r ̸= p∧ not checkSignature

(Σs[r], ⟨prepare,r,H(Ks[r]),H(ppσp )⟩) then return false
10 return true

by adding an entry with the N− f view-change messages
that it accepted to the ledger in order of increasing replica
identifier; hvc is the hash of that entry and Evc is a bitmap
with the replicas that sent the messages. It returns the root of
the Merkle tree M̄, Evc, hvc, and P P ov (line 14). The primary
appends the new-view to the ledger, sends it to all replicas,
resends the prepared batches in pre-prepare messages in the
new view, and adds them to the ledger.

When backups receive the new-view (line 18), they obtain
missing view-change messages, requests and evidence that
it references, and call processViewChanges. If it returns a
Merkle tree root equal to the one in new-view, they accept
the message, add it to the ledger, and process the pre-prepare
messages P P nv. If these match the batches and evidence in
P P ′ov for the same sequence numbers, they are added to the
ledger; otherwise, all changes are undone.

3.3 Receipts

To allow third parties to audit the ledger against the
transaction results returned to clients, L-PBFT returns
receipts, which are statements signed by N− f replicas that
a transaction request t executed at index i and produced
a result o. L-PBFT exploits the per batch Merkle tree G
together with the nonce commitment scheme (§3.1) to avoid
having replicas sign the reply for each request.
Creating receipts. When a transaction batch described by
pre-prepare pp prepares at replica r, view v and sequence
number s′ (Alg. 1, line 30), it sends ⟨reply,v,s′,r,σr,K [v,s′]⟩
to every client with a transaction in the batch. (If the client
has multiple transactions in the batch, only one reply is sent.)
By revealing the nonces, the replicas provide the client with
proof that they claimed to have prepared the batch without
a signed reply.

Only a designated replica, chosen based on t, sends the
result and the rest of the receipt to the client (line 36). The
replica computes a list of sibling hashes S along the path
from the leaf to the root of the per-batch Merkle tree G. For
the example of Ti in Fig. 3, S consists of the digest of Ti−1 and
G1, which is sufficient to recompute Ḡ given Ti. It then sends
the client ⟨replyx, v, s′, M̄,H(kp),Es′−P, ig, dC,H(t), i, o, S⟩,
where ig and dC are used for auditing.
Verifying receipts. The client waits for N− f replicas to send
reply messages with the same v and s, and for a replyx mes-
sage with the same v and s. It then recreates the pre-prepare
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and prepare messages (Alg. 3, line 6), with the information in
replyx and the hashes of the nonces, and verifies the signatures.
(We describe how to determine N and verify signatures under
dynamic membership in §5.2.) This step is shared across all
transaction requests that the client may have sent in the batch.

IA-CCF uses the Merkle tree G to bind signatures in
pre-prepare and prepare messages to transactions in the
batch, enabling replicas to produce a single signature
per batch. In the example in Fig. 3, the client checks if
Ḡ = H(H(H(Ti−1)||H(⟨t, i, o⟩))||G1)) (lines 2–4). If the
hashes match, the client has a valid receipt, i.e., a statement
signed by N− f replicas that a request t executed at index i
and produced a result o; otherwise (or if the client does not
receive replies before a timeout), it retransmits the request and
selects a different replica to send back replyx. (The application
is responsible for ensuring exactly-once semantics if needed.)

Clients store the receipt for ⟨t,i,o⟩ as ⟨v,s,M̄,H(kp),Es−P,
ig,dC,σp,Es,Σs,Ks,S⟩ where Σs is a list of the signatures in
prepare messages, Ks is a list of nonces, and Es is a bitmap
indicating the replicas with entries in Σs, and Ks, sorted in
increasing order of replica identifier. All receipt components,
including common hashes in S , are shared across requests
in the same batch.

Clients must store the receipts together with the transaction
request and the corresponding result to resolve future
disputes. This is not a burden because receipts are concise: all
components have constant size, except |S |, whose number of
entries is logarithmic in the number of requests in a batch; Σs
and Ks have up to N− f entries. In addition, most intermediate
hashes in S can be shared across collections of receipts. We
explored using signature aggregation [13] to reduce the size
of Σs, but, for realistic consortia sizes, verifying the signatures
becomes more expensive than our current implementation.

3.4 Performance optimizations

L-PBFT includes several optimizations to improve transaction
and auditing throughput.
Checkpoints in L-PBFT allow new replicas to start process-
ing requests without having to replay the ledger from the
start (§5.1); slow replicas to be brought up-to-date using a
recent checkpoint; and auditing to start from a checkpoint
instead of the beginning of the ledger(§4.1).

Checkpoints include the key-value store and the Merkle
tree M’s newest leaf, root, and the connecting branches.
Replicas create a checkpoint cps when they execute a batch
with sequence number s such that s mod C=0. The primary
adds a batch to the ledger at sequence number s+C with a
special checkpoint transaction, which records the checkpoint
digest. C is chosen to give replicas enough time to complete
a checkpoint without delaying L-PBFT execution. Backups
only accept the pre-prepare for s+C if they compute the
same checkpoint digest for sequence number s.

When a replica fetches checkpoint cps, it also retrieves the
ledger up to s. It does not need to replay the ledger or check

all signatures (with the exception of governance transactions;
§5.2). Instead, it checks the signatures in checkpoint receipts
and that the ledger contents between consecutive checkpoints
are consistent with the Merkle tree roots in the corresponding
receipts. This is done from the start of the ledger until s+C.
Cryptography. L-PBFT reduces the impact of cryptographic
operations. Signature verification is parallelized for messages
received from replicas and clients [12, 20] to improve
throughput and scalability. All messages are sent over
encrypted and authenticated connections, even signed
messages. This mitigates denial-of-service attacks that
consume replica resources verifying signatures [20].

To further improve performance, backups overlap the ex-
ecution of request batches with the validation of pre-prepare
signatures. They only send the prepare after both completed.
Since pre-prepare messages are received over authenticated
connections, this always succeeds for correct primaries.

4 Auditing and enforcement
In this section, we describe how auditing produces universal
proofs-of-misbehavior (uPoMs) when linearizability is vio-
lated (§4.1), and the role of the enforcer in obtaining ledgers
for auditing and punishing the members responsible for mis-
behaving replicas (§4.2). We first focus on the simpler case
of auditing without governance transactions; §5 describes
governance transactions and their impact on auditing.

4.1 Auditing

An audit is triggered when someone, usually a client, obtains
a sequence of transaction receipts that violate linearizability,
i.e., when no linearizable execution of the stored procedures
that define the transactions can produce the sequence of
receipts. The mechanism to detect linearizability violations
is application dependent. It involves clients, which interact
through a sequence of transactions, exchanging receipts and
using the application semantics to reason about the correct-
ness of the receipt sequence. We describe a banking-inspired
example in the introduction.

The goal of auditing is to detect dishonest behavior
regardless of the number of misbehaving replicas, i.e., it
must find proof of misbehavior even if all replicas collude
and rewrite the ledger. IA-CCF therefore tightly integrates
the ledger with receipts—even if the ledger is rewritten, the
misbehaving replicas are unable to alter the receipts.

An audit can be performed by anyone, and begins when
an auditor receives a collection of receipts. Next, the auditor
requests a checkpoint and a ledger fragment that contains the
section of the ledger spanning the receipts. Any honest replica
that signed the receipts is guaranteed to have the checkpoint
and ledger fragment. When the auditor receives the requested
data, it verifies the ledger structure by checking the protocol
messages and their order, and validating any signatures in
the ledger—but it does not re-execute transactions. Then, the
auditor checks that the transactions referenced by the receipts
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are present at the right positions in the ledger.
If the above steps have not discovered misbehavior, there

remains the possibility that at least N− f of the replicas col-
luded and agreed on an incorrect execution result. Therefore,
the auditor loads the checkpoint and replays the transactions
from the ledger fragment to check if execution results are
correct. Throughout this process, if dishonest behavior is
uncovered, the auditor can produce a universally-verifiable
proof that at least f+1 replicas misbehaved.

More formally, Alg. 4 presents the pseudocode for the
auditing process. First, the auditor receives an ordered set of
receipts R = {⟨⟨t0,i0,o0⟩,x0⟩,...,⟨⟨tk,ik,ok⟩,xk⟩} where k≥ 1
and ∀l∈ [0,k) :sl≤sl+1. Here, si is the sequence number that
is specified in xi. The auditor invokes auditReceipts (line 2)
to check if the receipts are valid and the minimum index
requirements have been satisfied. If there is a receipt that
violates the requirement in the request, all replicas that have
signed the receipt can be blamed.

After that, the auditor must obtain a ledger fragment and
checkpoint that are complete in relation to R (line 3). We
formally define completeness in Appx. B, but intuitively
the ledger fragment must be (i) well-formed; (ii) include
all batches and evidence between sequence numbers sC0

and sk where sC0 is the sequence number of the checkpoint
transaction that is linked in the first receipt; and (iii) include
view-change messages for all views in R . The transaction
and checkpoint at sC0 must match the checkpoint linked
in the first receipt. A ledger fragment is valid if it can be
produced by a sequence of correct primaries in a sequence
of views where there are at most f Byzantine failures. It is
well-formed if it is valid, or if it would be valid if not for the
incorrect execution of some transactions and/or checkpoints.
A correct replica always maintains a well-formed ledger.

In getCheckpointAndLedger (line 3), the auditor, with the
help of an enforcer, obtains ledger fragments and checkpoints
from replicas that signed the latest receipt with the highest
view number in R (line 10). The auditor checks if responses
are complete in relation to the receipts. If a ledger fragment
is not well-formed or misses the required view-change mes-
sages, the auditor can blame the responding replica. Below,
we assume that the responses contain no invalid signatures,
we show in Appx. B how the auditor handles that case.

If the batch at sC0 is not a checkpoint or the checkpoint
digest does not match the first receipt, the auditor can assign
blame to the intersection of replicas that have signed the
batch at sC0 + C and the first receipt, as the checkpoint
reference in a receipt must always link to the last committed
checkpoint. If the fragment is not long enough to include
the sequence number in one of the receipts, there must be
misbehavior during a view change. The auditor can then
blame at least f+1 misbehaving replicas: the intersection
of the replicas that participated in a view change and that
also signed the receipt. A correctness proof and the details
of obtaining a complete ledger fragment and checkpoint are

Alg. 4: Ledger Auditing (simplified)

1 on audit(R ={⟨⟨t0,i0,o0⟩,x0⟩,...,⟨⟨tk,ik,ok⟩,xk⟩})
2 auditReceipts(R )
3 C0,sC0 ,L←getCheckpointAndLedger(x0,xk)

4 verifyReceiptsInLedger(R ,L)
5 replayLedger(C0,sC0 ,L)

6 on auditReceipts(R ={⟨⟨t0,i0,o0⟩,x0⟩,...,⟨⟨tk,ik,ok⟩,xk⟩})
7 foreach ⟨⟨ti,ii,oi⟩,xi⟩∈R do
8 if not verifyReceipt(⟨ti,ii,oi⟩,xi) then return invalidReceipt
9 on getCheckpointAndLedger(x0,xk)

10 for C0,sC0 ,L ,r←enforcerGetLedgerPackage(xo,xk) do
11 uPoM←nil
12 foreach s∈sC0 ,...,seqno(xk+P) do
13 if not isBatchWellformed(L ,s) then
14 F ←createLedgerFragment(nil,s,L)
15 uPoM←⟨nil,F ,r⟩; send(uPoM); return
16 if uPoM=nil then return C0,sC0 ,L
17 on verifyReceiptsInLedger(R ,L)
18 foreach ⟨⟨ti,ii,oi⟩,xi =⟨v,s,H(kp),...Ks,S⟩⟩∈R do
19 if not isReceiptInBatch(xi,L) then
20 F ←createLedgerFragment(nil,s,L)
21 uPoM←⟨F ,⟨⟨ti,ii,oi⟩,xi⟩⟩; send(uPoM); return
22 on replayLedger(C0,sC0 ,L)
23 scp←sC0 ; cp←C0; kv← loadCheckpoint(sC0 ,C0)

24 foreach s∈sC0 ,...,seqno(xk) do
25 foreach ⟨ti,ii,oi⟩∈s do
26 L ,kv←replayRequest(L ,kv,ti)
27 if not verifyReplay(L ,kv,⟨ti,ii,oi⟩) then
28 F ←createLedgerFragment(scp,s,L)
29 uPoM←⟨ii,F ,cp⟩; send(uPoM); return
30 if s mod C=0 then
31 scp←s; cp←createCheckpoint(kv)

described in Appx. B, Lemmas 4 and 6.
After obtaining a well-formed ledger, in verifyReceiptsIn-

Ledger (line 4), the auditor compares the receipts with the
ledger. If a receipt ⟨⟨tk,ik,ok⟩,xk⟩ does not match the batch
at sk in the ledger fragment, we show in Lemma 5 that the
auditor can assign blame to f+1 misbehaving replicas. In
summary, there are three cases: (i) the pre-prepare with
sequence number sk in L has a view number vl = vk;
(ii) vl > vk; or (iii) vl < vk. In case (i), the ledger fragment
contains evidence that the batch with sequence number sk has
prepared at N− f replicas. Since at least f+1 of the replicas
that have prepared the batch also signed the receipt, they
can be blamed. In case (ii), since vl > vk, there must be at
least N− f view-change messages from different replicas that
transition to a view greater than vk in the ledger fragment
but claim not to have prepared the batch in the receipt in
view vk. Since there are at least f+1 of those replicas that
also signed the receipt, they can be blamed. In case (iii), since
vk >vl and the ledger fragment is complete in relation to the
receipt, there must be at least N− f view-change messages
from different replicas that transition to a view greater than
vl in the ledger fragment. Similarly, the intersection of those
replicas and the ones that signed the receipt can be blamed.

Since N− f or more replicas may have misbehaved, it is
necessary to replay transaction execution to check if the re-
sults are correct. The auditor does not need to understand the
semantics of the service; it can retrieve the code of the stored
procedures from C0. The auditor sets the service state to the
checkpoint value and replays transactions. If replaying a trans-
action fails to match the result in the ledger, the auditor can
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assign blame to any replica that signed the batch that contains
the transaction. This is shown in replayLedger (line 5).

4.2 Enforcement

Since IA-CCF provides individual accountability even if all
replicas and members misbehave, there must be an enforcer
outside of the system to obtain checkpoints and ledger
fragments for auditing, and to punish members responsible
for misbehaving replicas. For example, consortium members
may sign a binding contract to establish penalties if a uPoM
proves that one of their replicas misbehaved, or if they fail
to produce checkpoints and ledgers for auditing by an agreed
deadline. These penalties may be imposed by the enforcer
via arbitration [8] or a court of law [9].

The enforcer receives a set of receipts R from the
auditor (Alg. 4, line 10). It then verifies that the receipts are
valid, and requests all of the replicas that signed the latest
receipt with the highest view for a ledger fragment that is
complete in relation to R .

Correct replicas will respond to the enforcer quickly. If
the enforcer does not receive a response from a replica within
a reasonable duration, e.g., within minutes, it contacts the
controlling consortium member to obtain the checkpoint and
ledger. If the member fails to provide this information by an
agreed deadline, e.g., within days, it is punished according
to the contract. This is important to ensure that misbehaving
members cannot escape punishment by failing to produce
information for auditing. However, it introduces a weak
synchrony assumption that may lead to the punishment of
honest but slow members. We expect that the deadline will be
chosen conservatively to make this unlikely in practice. After
the deadline elapses, the enforcer either returns to the audi-
tor f+1 responses, or it penalizes f+1 unresponsive replicas.

The enforcer also punishes members if a uPoM proves that
one of their replicas misbehaved. When it receives a uPoM,
it checks its validity by carrying out an audit, as described
in §4.1, but the ledger fragment size and the number of
transactions to replay is bounded by the transactions between
two consecutive checkpoints. Furthermore, if there are fewer
than N− f misbehaving replicas, the uPoM does not require
the enforcer to replay transactions. If the uPoM is incorrect,
the enforcer punishes the auditor; otherwise, it punishes the
members responsible for at least f+1 misbehaving replicas.

In practice, we expect the load placed on the enforcer
to be small, because auditing is rare—IA-CCF provides
linearizability with up to f misbehaving replicas and the
enforcer penalizes entities that request information for
auditing and fail to produce a valid, minimal uPoM.

5 Reconfiguration and auditing
In this section, we describe how IA-CCF can change the
consortium membership and the active replica set (§5.1).
We explain how this impacts receipt validation (§5.2) and
auditing (§5.3).

5.1 Reconfiguration

An IA-CCF deployment must handle changes to the active
member and replica set while supporting auditing, regardless
of how many replicas misbehave. For this, IA-CCF maintains
governance data in the form of a configuration, which
includes the public signing keys for members and replicas
and an endorsement of each replica’s signing key signed by
the member responsible.

Changing the configuration enables members to change
the active replica set. This is initiated by a referendum:
members propose an updated configuration followed by the
other members voting on the proposal. The number of votes
required to pass the proposal is part of the service’s state.

When voting on proposals, members must ensure the in-
tegrity of the service, e.g., disallowing an individual member
from controlling too many replicas. Members are also limited
to adding or removing at most f replicas, which ensures that
the configuration change does not effect the service’s liveness.

A referendum is carried out through governance transac-
tions: a member proposes a new configuration by sending
a propose transaction request. This is followed by members
sending vote requests. Upon executing the final vote
transaction required for a referendum to pass at sequence
number s, the primary ends the current batch, and initiates
the reconfiguration process.

A reconfiguration first adds evidence for the referendum
to the ledger. This is done as part of the old configuration by
the primary sending P pre-prepare messages without batched
requests, called the end-of-configuration batches. The
pre-prepare message for the end-of-configuration batch at se-
quence number s+P contains evidence that the batch at s com-
mitted (§3). In addition, these pre-prepare messages include
an extra field: the committed Merkle root, which is the root of
the Merkle tree at s. This evidence is required for auditing: it
commits the replicas that signed the Pth end-of-configuration
batch to triggering the reconfiguration. Similarly, the signa-
tures of the replicas that prepared the Pth end-of-configuration
batch must be included in the ledger in the same configura-
tion. Following the first P end-of-configuration batches, the
primary pre-prepares another set of P end-of-configuration
batches. The configuration change takes effect at s+2P.

The replicas in the new configuration create a checkpoint
of the key-value store at sequence number s+2P. The
primary creates a pre-prepare for the checkpoint at s+2P+1,
followed by P start-of-configuration pre-prepare messages
with empty request batches. This ensures that a correct
replica commits the checkpoint transaction before other trans-
actions are executed in the new configuration. If any of the
end/start-of-configuration batches correspond to a checkpoint
sequence number, the checkpoint is skipped. Therefore, the
checkpoint digests dc in the pre-prepare messages always
refer to checkpoints in the same configuration.

A newly added replica first obtains the ledger and a recent
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checkpoint, and replays the ledger from that checkpoint (§3.4).
Replicas that are no longer part of the new configuration retire
after sending the pre-prepare for s+2P. Removed members
and replicas should delete their private signing keys to pro-
vide forward security. This prevents them from being blamed
for future compromises, while still allowing authentication
of transactions in the ledger using their public keys.

5.2 Governance sub-ledger and receipts

When a client verifies a receipt, it must know which replicas
were active when the receipt was created. IA-CCF addresses
this with the help of the governance sub-ledger.

Governance transactions are recorded in the ledger and
used by auditors to determine the active configuration.
Clients, however, do not have a copy of the ledger, but need
to verify receipt signatures. To do this, they store receipts
for all governance transactions and, for each reconfiguration,
they also store the receipts for the Pth end-of-configuration
batch. We refer to this as the receipts of the governance
sub-ledger. A client checks that a transaction receipt for
index i is valid by considering the governance sub-ledger
from the genesis transaction gt up to i. The client verifies
the governance receipts, and if successful, the replica signing
keys at index i are used to validate the receipt (§3).

This raises the challenge of how a client determines that
it has all required governance receipts. IA-CCF includes
the ledger index of the last governance transaction in
each pre-prepare message and receipt (ig). A client can
request missing receipts from replicas by traversing the
sequence of governance receipts. It verifies received receipts
incrementally and caches them locally.

With reconfiguration, the definition of a valid receipt is
extended: a valid receipt R must include valid governance
receipts from gt up to the configuration that produced R.

5.3 Auditing

Reconfiguration introduces several new tasks for the auditor:
it must consider the governance sub-ledger with receipts;
validate that reconfigurations were executed correctly;
and ensure that that only one configuration was active for
any given index or sequence number. Next, we provide a
summary of the required changes to the auditing process; a
detailed correctness proof is included in Appx. B.2.

A client initiates an audit by sending inconsistent receipts
and the supporting governance receipts to an auditor. The
auditor replays these governance transactions to determine
the signing keys required to verify each client receipt. After
verifying the receipts, the auditor requests a ledger fragment
and checkpoint from the enforcer.

The auditor may uncover that multiple configurations were
active for a given index or sequence number, this can happen
when misbehaving replicas fork or rewrite the ledger. We call
this a fork in governance. If the auditor finds a fork, there
are two Pth end-of-configuration batch receipts with the same

preceding configuration that are not equivalent: they are at
different indices or sequence numbers, or their pre-prepare
messages do not contain the same committed Merkle root, i.e.,
they are not preceded by the same governance transactions.
In this case, the auditor assigns blame to the replicas that
signed both receipts, as a correct replica that prepares a Pth

end-of-configuration batch commits the final vote transaction
that triggers reconfiguration.

If the enforcer cannot obtain the required information for a
valid receipt R from the sequence of provided receipts, there
must be misbehaving replicas. In addition to the misbehavior
described in §4.1, the misbehaving replicas may have
created a fork in governance or incorrectly prepared the Pth

end-of-configuration batch that succeeds the configuration
that produced the receipt R (see Lemmas 8 and 11).

Another possibility is that the configuration that produced a
receipt R for a sequence number s may not match the configu-
ration that prepared the batch at s in a well-formed ledger frag-
ment. In this case, blame is again assigned to the replicas that
signed R and prepared the Pth end-of-configuration batch that
succeeds the configuration that produced R (see Lemma 9).

After assigning blame, the auditor sends a uPoM to the
enforcer with the supporting governance receipts.

6 Evaluation
We evaluate IA-CCF to understand the cost of providing
receipts (§6.1), its scalability (§6.2), the overheads of receipt
validation (§6.3), and auditing (§6.5). We finish with a
performance breakdown of IA-CCF’s design features (§6.8).
Testbeds. Our experimental setup consists of three environ-
ments: (a) a dedicated cluster with 16 machines, each with an
8-core 3.7-Ghz Intel E-2288G CPU with 16 GB of RAM and
a 40 Gbps network with full bi-section bandwidth; (b) a LAN
environment in the Azure cloud, with Fsv2-series VMs with
16-core 2.7-GHz Intel Xeon 8168 CPUs and 7 Gbps network
links; and (c) a WAN environment with the same VMs across
3 Azure regions (US East, US West 2, US South Central). All
machines run Ubuntu Linux 18.04.4 LTS.
Implementation. Our IA-CCF prototype is based on
CCF v0.13.2 [45] and has approx. 40,000 lines of C++ code.
It uses the formally-verified Merkle trees and SHA functions
of EverCrypt [51], the MbedTLS library [41] for client
connections, and secp256k1 [61] for all secure signatures.
Replicas create secure communication channels using a
Diffie–Hellman key exchange.

Pipelining batch execution (P in Alg. 1) improves IA-
CCF’s throughput. We use P=2 for the LAN and P=6 for the
WAN, with maximum batch sizes of 300 and 800 requests, re-
spectively. Checkpoints are created every 10K or 4K sequence
numbers in the LAN and WAN environments, respectively.
Benchmarks. We use the SmallBank benchmark [2], which
models a bank with 500K customer accounts. Clients
randomly execute 5 transaction types: deposit, transfer, and
withdraw funds; check account balances; and amalgamate ac-
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Tab. 1: Size of ledger entries (SmallBank)

Ledger entry type Size (bytes)
f = 1 f = 3

Transaction (SmallBank) 216–358
Pre-prepare 277
Prepare Evidence 298 894
Nonces 32 64
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Fig. 4: Transaction throughput/latency ( f=1, dedicated cluster)

counts. The size of the ledger entries is shown in Tab. 1 where
only the Prepare Evidence and Nonces entries depend on f .

Since IA-CCF’s design targets accountability with more
than f failures, we omit results from experiments with fewer
failures. In such cases, IA-CCF’s performance matches that of
prior work, because it uses well-established BFT techniques,
such as view changes, sending messages via authenticated
channels and client-signed requests [12, 20]. Instead, we
consider the performance of receipt validation (§6.3) and
auditing (§6.5), which are new contributions of IA-CCF.

Transaction throughput is measured at the primary replica
and latency at the clients. All experiments are compute-bound.
Results are averaged over 5 runs, with min/max error bars.
Baselines. We compare against four baselines: IA-CCF-
PeerReview, which uses PeerReview for accountability [27],
i.e., replicas sign all messages and send signed acknowl-
edgements for all messages; IA-CCF-NoReceipt, an IA-CCF
variant that produces a ledger but no receipts; HotStuff [62], a
state-of-the-art BFT protocol, which is at the core of the Diem
permissioned ledger system [3]; and Hyperledger Fabric
(v. 2.2) [4], a popular open-source permissioned ledger
system. We compare against Fabric’s latest major release
that does not include a BFT consensus protocol [33] and only
tolerates crash failures using Raft [49].

6.1 Transaction throughput and latency

We explore the throughput and latency of transaction execu-
tion with 4 replicas ( f=1) in the dedicated cluster, comparing
IA-CCF, IA-CCF-NoReceipt, IA-CCF-PeerReview, and Fabric.

Fig. 4 shows a throughput/latency plot as transaction load
increases. IA-CCF achieves 47,841 tx/s while maintaining
latencies below 70 ms. As the load increases, queueing
delays increase latency. IA-CCF-NoReceipt’s throughput
is 51,209 tx/s, which is only 3% higher than IA-CCF,
demonstrating the low cost of receipts.

IA-CCF-PeerReview exhibits an order of magnitude lower

Tab. 2: Request latency under low load (WAN)

average 99th percentile network
latency latency round trips

IA-CCF 183 ms 194 ms 2
HotStuff 340 ms 393 ms 4.5
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Fig. 5: Transaction throughput vs. replica count (WAN)

throughput because all messages must be signed, e.g., a replica
must sign a reply message for each transaction in a batch. This
causes IA-CCF-PeerReview to perform two orders of magni-
tude more asymmetric cryptographic operations than IA-CCF.

Fabric’s throughput is only 1,222 tx/s, with a latency of
1.9 s. This is substantially worse than IA-CCF, despite not
using a BFT protocol. Our analysis reveals two reasons:
Fabric’s execute-order-validate model requires that replicas
issue a signature for each executed transaction, while
IA-CCF replicas only require one signature per batch; and
Fabric suffers from documented inefficiencies related to its
key-value store implementation [48].

6.2 Scalability

Next we consider the effect on transaction throughput when
increasing the number of IA-CCF replicas in the Azure WAN
environment, spanning multiple regions to reduce correlated
failures [10]. We compare against IA-CCF deployed in the
Azure LAN environment, IA-CCF-PeerReview, and HotStuff,
a BFT consensus protocol without a ledger or key-value store.

Fig. 5 shows that, as expected, IA-CCF’s throughput
decreases with more replicas because more signatures are
verified by each replica. Since each replica has a fixed
number of threads for checking signed pre-prepare/prepare
messages in parallel, throughput decreases when the replica
count exceeds the number of hardware threads, which is only
16 in this deployment. IA-CCF is only marginally affected
by the higher WAN latencies due to its use of pipelining, as
shown by the comparison to the LAN deployment.

HotStuff [63] achieves a throughput of 5,862 tx/s in the
WAN environment, which is worse than its reported LAN
throughput [66]. While it degrades slowly with more replicas,
even with 64 replicas its throughput remains 71% lower than
that of IA-CCF. The throughput of IA-CCF-PeerReview is
even lower since it performs more cryptographic operations.

We also measure the request latency of HotStuff and
IA-CCF under low load. As reported in Tab. 2, HotStuff’s
request latency is approximately twice that of IA-CCF’s. For
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Fig. 6: Transaction throughput/latency when varying the number of accounts and checkpoint interval ( f=1, dedicated cluster)

both systems, request latency is dominated by the number
of network round trips and clients receive transaction results
with receipts in only 2 round trips in IA-CCF.

6.3 Receipt validation

We measure the time required to verify receipts, which
depends on (i) the length of the path in the Merkle tree G
and (ii) the number of signatures to be checked. Since the
number of leaves in G is bounded by the batch size, the path
length remains small: verification takes 2.1 µs and 2.3 µs for
batches of 300 and 800 requests, respectively. The overall
cost is dominated by the signature verification, which takes
18 ms and 52 ms for f=1 and f=3, respectively.

6.4 Governance sub-ledger

Next, we consider the size of the governance sub-ledger,
which is stored by clients. The sub-ledger is a collection
of receipts for every transaction that has updated the
governance of an IA-CCF deployment. A receipt’s size is
623 bytes or 1,565 bytes for f=1 or f=3, respectively. In
addition, the client must store the governance request and the
corresponding response, which have variable size. We expect
governance operations to be rare. Therefore, storing and
verifying governance sub-ledger receipts has low overhead.

6.5 Ledger auditing

Next, we want to understand auditing performance. For the
SmallBank workload, we compare execution time to auditing
time. When measuring throughput at f=1, auditing is 23%
faster than execution, because there is no network overhead,
message signing, or ledger writes. In each batch, IA-CCF
only verifies 2 f+1 rather than up to 3 f+1 signatures. For
f=4, the performance gap increases to 67%, as more replicas
add communication and cryptographic load during execution.
We observe that the bottleneck for auditing is verification of
client request signatures, which can be trivially parallelized.

6.6 Key-value store

We explore the performance impact of varying the number of
entries in the key-value store by varying the number of Small-
Bank accounts. Fig. 7 shows a throughput vs. latency plot. As
expected, throughput decreases when the number of entries in
the key-value store increases. CCF’s implementation [54] of
the key-value store uses a CHAMP map [58], whose access
time grows logarithmically with the number of items.
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Fig. 7: Transaction throughput/latency with different account
numbers ( f=1, dedicated cluster)

6.7 Checkpointing

We also explore the effect of checkpointing on performance.
We vary the size of the key-value store and the checkpoint
interval for the SmallBank workload. Fig. 6 shows the results
as throughput vs. latency plots. As expected, the checkpoint
overhead increases with the size of the key-value store
and the checkpoint frequency, but the overhead is low for
checkpoint intervals between 10 and 100K (approximately 1
to 10 minutes). The checkpoint interval impacts the overhead
to check uPoMs at the enforcer. We expect checkpointing
every 10 minutes to be acceptable in practice; it requires the
enforcer to replay at most 10 minutes of transactions.

6.8 Overhead breakdown

To provide a permissioned ledger with individual account-
ability, IA-CCF implements functionality that goes beyond
traditional BFT consensus protocols, e.g., generating receipts.
We now explore the impact of implementing this functionality
on IA-CCF’s throughput in the dedicated cluster.

We compare several variants of IA-CCF, each limiting
functionality further: (a) IA-CCF; (b) IA-CCF-NoReceipt, i.e.,
without creating receipts; (c) without creating checkpoints;
(d) with a small key-value store, i.e., the key-value store
fits in the CPU cache; (e) without signed client requests;
(f) using only MACs for message authentication between
replicas; (g) without a ledger; and (h) with empty requests,
i.e., without the overhead of executing transactions against
the key-value store.

Tab. 3 shows that (a)–(d) have comparable throughput, but
not verifying client signatures (e) doubles throughput. Only
using MACs instead of signatures (f) or removing the ledger
altogether (g) does not increase throughput substantially, but
removing the overhead of executing transactions against the
key-value store (h) again doubles throughput.
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Tab. 3: Breakdown of IA-CCF features ( f=1, dedicated cluster)

Variant Throughput (tx/s)

(a) Full IA-CCF 47,841
(b) IA-CCF-NoReceipt 51,209
(c) + without checkpoints 51,288
(d) + small key-value store 53,759
(e) + without signed client requests 111,926
(f) + with MACs only 128,921
(g) + without ledger 131,959
(h) + with empty requests 299,321

HotStuff (with empty requests) 307,997
Pompē (with empty requests) 465,646

For context, we compare with two Byzantine consensus
protocols with similar functionality to (h) above, HotStuff [62]
and Pompē [66, 67]. HotStuff’s throughput is 307,997 tx/s,
but with higher latency (§6.2). By separating request ordering
and consensus, Pompē achieves a throughput of 465,646 tx/s,
also with worse latency (IA-CCF’s 12 ms to Pompē’s 73 ms).
IA-CCF could utilize Pompē’s techniques for increased
throughput by sacrificing its two round-trip latency.

These breakdown results show that IA-CCF’s overhead
comes primarily from the cryptographic operations required
for verifying client requests, followed by the transactional
key-value store, rather than the consensus protocol or the
mechanisms specific to providing individual accountability.

7 Related work
Permissioned ledgers. Many permissioned ledger sys-
tems [3, 4, 32, 52] rely on BFT consensus protocols to order
transactions. Hyperledger Besu [32] and Quorum [52] use
variants of PBFT [47, 55], which do not retain proof of
a replica’s operations, and therefore cannot assign blame.
Diem [3] uses the DiemBFT [11] consensus protocol, which is
based on HotStuff [62] and also lacks accountability features.

The IA-CCF prototype is built on top of CCF [54], an
open source [44] distributed ledger framework deployed
in the Azure cloud [43], which utilizes trusted execution
environments (TEEs) [21,35] to harden replicas. Russinovich
et al. [54] describe CCF’s programming model, receipts,
governance, and replication protocols. CCF produces
hardware attestation reports for the code running on each
replica and adds them to the ledger. The ledger is signed by
the CCF service and in the process binds CCF’s public key to
the code and hardware platform. While CCF enables auditing
and can recover a ledger when all replicas crash, it relies
on the security of TEEs, and its auditing does not guarantee
individual accountability.
Byzantine consensus [17, 20, 37] distributes trust. Recent
work on BFT protocols has focused on improving guaran-
tees [5,22,46] or performance for particular use cases [57,67].
SBFT [25] and HotStuff [62] scale to hundreds of replicas
using threshold cryptography, which prevents blame assign-
ment. For permissioned ledgers, scaling to many replicas
without growing the consortium size does not improve trust-
worthiness, and consortia typically cannot grow arbitrarily.

Other work has explored misbehavior and its impact on
Byzantine consensus. BFT2F [39] formalizes safety and
liveness guarantees after more than f replicas are compro-
mised. It provides PBFT’s guarantees with up to f failures
and provides fork* consistency with up to 2 f failures. For
permissioned ledgers, fork* consistency is not sufficient,
because it is susceptible to double-spending attacks.

Depot [40] issues proofs-of-misbehavior after observing
misbehavior, but it adopts eventual consistency, which is
incompatible with permissioned ledgers. Pompē [67] prevents
dishonest primaries from controlling the ordering of requests.
It does not address scenarios in which there are more than
f dishonest replicas though.
Accountability. PeerReview [27] ensures that distributed
nodes remain accountable for their actions. As shown in
§6.1, PeerReview incurs a high overhead when applied
to a permissioned ledger. In contrast, IA-CCF introduces
mechanisms specific to BFT state machine replication, such
as a shared ledger with a Merkle tree, to improve both regular
transaction execution and auditing.

Accountable virtual machines [26] carries out auditing
through spot checking of checkpoints, but has the same
performance overheads as PeerReview for ledgers. SNP [68]
is a networking-specific implementation of accountability,
offering provenance for routing decisions. Such specializa-
tions improve performance in particular domains, but are not
directly applicable to permissioned ledgers.

BAR [1] and Prosecutor [65] incentivize replicas to act
honestly by having honest replicas penalize misbehavior.
This weaker model allows BAR to tolerate more than 1/3
faulty replicas, while Prosecutor uses these incentives to
improve performance. If these incentives fail [31], however,
replicas share the blame.

Accountability with more than f+1 misbehaving replicas
has been discussed before [14, 15, 28]. BFT Protocol
Forensics [56] and Polygraph [19] propose a ledger auditing
mechanism, but assume that fewer than N− f replicas
misbehave. They also do not support changing replica sets.
ZLB [53] and Tendermint [14] support changes to the replica
set but also assume that fewer than N− f replicas misbehave.

8 Conclusions
In permissioned ledger systems, individual accountability is a
strong disincentive for misbehavior. IA-CCF provides the evi-
dence required to prove that f+1 or more replicas misbehaved
when clients observe safety violations (even if all replicas
fail). It offers strong consistency and security properties while
providing state-of-the-art performance compared to existing
ledger systems with weaker security guarantees. IA-CCF
achieves this by integrating evidence collection for assigning
blame with a novel ledger-based BFT consensus algorithm.
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A Proof of L-PBFT linearizability
We present a correctness proof for L-PBFT. In particular, we
show that early execution (Lemma 2) and the nonce commit-
ment scheme (Lemma 3) are equivalent to their counterpart
features in PBFT. In Thm. 1, we show linearizability of
L-PBFT.
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Lemma 1 (Rollback). Any honest L-PBFT replica can
roll back a suffix of the sequence of previously executed
transaction batches.

Proof. L-PBFT’s state is distributed across several entities:
a key-value store kv; a Merkle tree M; a ledger L; a set of
requests waiting to be ordered T ; a message store M ; and a
nonce store K . Therefore, to roll back a batch of transactions,
it must be possible to roll back all of these entities.

Key-value store kv. The key-value store maintains a roll back
transaction log. This enables transactions to be rolled back at
a single transaction granularity. Thus, the last executed batch
of transactions can be rolled back.

Merkle tree M. When a new node is added to L-PBFT’s
Merkle tree, it becomes the right-most leaf of the tree. The
value of a node in the tree is never updated, and a node can
only be deleted if it is the right-most node in the tree. Thus,
during roll back, it is possible to remove the nodes from
the right of the tree that represent the last batch of executed
transactions (in reverse order).

Ledger L . The ledger is represented by a file written to the
disk by each replica. L-PBFT stores the index of all entries
written to the ledger. To roll back the last executed batch,
a L-PBFT replica truncates the ledger file to just before the
first entry of the batch.

Transaction store T . It is not necessary to undo changes to
the transaction store. Transaction requests that are removed
can be retransmitted by the client or other replicas if needed.

Message store M , nonce store K . All items in the trans-
action and nonce stores are indexed by sequence number
and view. Since roll back occurs only during a view change,
and each item is associated with a view, it is not necessary
to modify the message and nonce stores, because honest
replicas never send more than one item of a given type for
the same sequence number and view.

Therefore, it is possible to roll back a suffix of the sequence
of transaction batches executed by L-PBFT replicas.

Lemma 2 (Early execution). L-PBFT’s early execution and
PBFT execution agree on all committed transactions.

Proof. In both PBFT and L-PBFT, the primary determines
the order of request execution by ordering requests into
batches and assigning numbers to batches in pre-prepare
messages. In PBFT, requests are executed after commit
and clients only accept results after transactions commit. In
L-PBFT, requests are executed earlier, before the request
even prepare, but the replicas only reply to clients after they
prepare the requests and clients wait for matching replies
from N− f replicas. This ensures that they only obtain the
transaction results after they commit as in PBFT.

As in PBFT, a faulty primary may cause requests for which
pre-prepares are sent not to commit. L-PBFT deals with this
case by rolling back early execution (see Lemma 1).

Lemma 3 (Nonce commitment). The nonce commitment
scheme is equivalent to replicas signing commit messages.

Proof. L-PBFT, like PBFT, signs pre-prepare and prepare
messages. Unlike PBFT, L-PBFT does not sign commit
messages. Replicas sample a fresh random nonce for each
pre-prepare or prepare message with sequence number s at
view v, and add a hash of this nonce to the signed payloads.
Later in the protocol, replicas include the nonce in the commit
message, instead of an extra signature.

We show that this provides the same standard crypto-
graphic security as the signature scheme (namely, resistance
to existential forgery against chosen-message attacks) as
long as the cryptographic hash function is second pre-image
resistant on random inputs. Since the addition of a nonce
to the signed payloads is injective, a forgery of a L-PBFT
authenticator for a pre-prepare or prepare message yields
a forgery against the signature scheme. A forgery of an
authenticator for a commit message, i.e., a value with the
same hash as a fresh random nonce that has not yet been
revealed, is a second pre-image collision.

Theorem 1. L-PBFT is linearizable.

Proof. L-PBFT changes the PBFT algorithm by adding early
execution and the nonce commitment scheme. Lemmas 2 and
3 show that these preserve the behavior of PBFT.

B Proof of auditing correctness
First, we present the correctness proof for auditing without
governance transactions and reconfiguration (§B.1). Then,
we extend the proof to include governance transactions and
reconfiguration (§B.2).

B.1 Correctness of auditing without reconfiguration

We begin with a description of terminology and notation.
In §B.1.1 and Lemma 4, we then prove that, given a set of
receipts, the auditor, with the help of the enforcer, can obtain
a ledger package that is complete in relation to the receipts
(or assign blame to f+1 misbehaving or slow replicas).
A complete ledger package contains all evidence that is
necessary for the auditor to assign blame to misbehaving
replicas if the receipts reflect any linearizability violation.
In §B.1.2 and Lemma 5, we show that, if a receipt does
not appear correctly in a ledger package that is complete in
relation to it, the auditor can assign blame to at least f+1
misbehaving replicas. In §B.1.3 and Lemma 6, using the
previous lemmas, we first prove that the auditor can assign
blame correctly if it is given a set of receipts that reflects a
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serializability violation. Finally, Theorem 2 proves that, if a
set of receipts reflects any linearizability violation, the auditor
can assign blame to f+1 misbehaving or slow replicas.

Minimum ledger index. Each client transaction request
includes a field that specifies the minimum ledger index
that it can be executed at. Correct replicas do not order a
transaction t at ledger index i, unless i≥mi where mi is the
minimum index value of t. Correct clients set the minimum
index of a transaction to at least Mi+1 where Mi is the largest
value of the ledger index that they know of from the receipts
that they have collected. The minimum index value is used to
capture transaction dependencies efficiently and to reduce the
amount of information that needs to be stored and transmitted
to audit linearizability violations.

Ledger well-formedness and validity. A ledger fragment is
valid if it can be produced by a sequence of correct primaries
when there are at most f misbehaving replicas.

A ledger fragment is well-formed if either (i) it is valid,
or (ii) it would be valid if not for the incorrect execution of
one or more transactions, one or more incorrect checkpoint
digests, or one or more invalid signatures or nonces.

A well-formed ledger matches the structural specifications
of the L-PBFT protocol, i.e.,

• it specifies a serial ordering of transactions/entries, which
respects their minimum ledger indices; and

• it includes evidence, and checkpoints at the required places.

A valid ledger is always well-formed, but a well-formed
ledger can be invalid. A correct replica will never have
a malformed ledger fragment, because replicas check the
well-formedness of ledgers that they fetch. A correct replica
may have an invalid ledger fragment. A ledger fragment can
be well-formed but invalid only if there have at some point
existed more than N− f−1 misbehaving replicas.

Notation. Given a receipt ⟨⟨t j,i j,o j⟩,x j⟩, we denote ⟨t j,i j,o j⟩
by tio j. Unless explicitly defined otherwise, s j refers to the
sequence number in x j of the receipt ⟨tio j,x j⟩.

We say that a replica has “signed a receipt” if its signa-
ture is recorded in the receipt in the pre-prepare/prepare
signatures’ fields (σp or in ∑s).

Receipt validity. A receipt is valid if it is verifiable by Alg. 3.

Preparement evidence for a batch. The preparement
evidence for a batch is N− f signed pre-prepare/prepare
messages for the batch, i.e., P in §3.

Checkpoint sequence numbers. Let ⟨tio j, x j⟩ be a valid
receipt, dC j be the checkpoint digest in x j, and C be the
checkpoint interval. Anyone can calculate the sequence
number at which the digest of the checkpoint is expected to
be equal to dC j as follows: checkpoints are always taken at
sequence numbers that are multiples of C and the digest in
the receipt refers to the digest at the sequence number of the
penultimate checkpoint transaction before s j (except the first

C transactions, which have the digest at genesis). So given
s j, the sequence number with the corresponding checkpoint
digest, scp, can be calculated as

scp=

{
0 if s j <C
C
(
⌈ s j

C ⌉−2
)

otherwise.

Note that the value of the digest itself is recorded in
the last checkpoint transaction before s j (except the first
C transactions), i.e., the checkpoint transaction that follows
the one at scp. That checkpoint transaction is at{

0 if s j <C
scp+C otherwise.

We assume that the genesis transaction gt is at sequence
number 0.

Fetching checkpoints. Slow replicas can be brought up to
date by fetching checkpoints and ledger fragments. When a
correct replica fetches a checkpoint at sequence number s, it
retrieves the ledger up to s+C+P. It first verifies the signa-
tures in the evidence for the checkpoint transactions at s and
s+P. Note that the replicas that signed the checkpoint transac-
tion at s vouch for the validity of the ledger fragment between
s−C and s, whereas the replicas that signed the checkpoint
transaction at s+C vouch for the digest of the checkpoint at s.

A correct replica, then, verifies that the digest of the check-
point that it fetched matches the value recorded at s+C. It also
checks, for each checkpoint transaction at sequence number
s′ in the ledger, that the ledger’s Merkle root at s′ matches
the root in the evidence for the transaction at s′. Finally, the
replica replays the ledger fragment between s+1 and s+C.

As noted previously, a correct replica may have a well-
formed ledger fragment that includes invalid signatures as
replicas do not verify all signatures in the ledger fragments
that they fetch. Therefore, when contacted for an audit, a
correct replica never returns a ledger fragment that it fetched
with a checkpoint at sequence number s, without including
the checkpoint transaction at s+C and the evidence for that
transaction.

B.1.1 Obtaining the ledger

Ledger package. A ledger package from a replica consists
of one to four components:

1. a ledger fragment F that contains entries that locally
prepared at the replica;

2. an optional suffix U that contains entries that were
preprepared atomically after a view-change but not yet
prepared at the replica;

3. an optional message box E that contains some of the
messages from the replica’s message box M ; and

4. an optional checkpoint cp.
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Complete ledger package. Let R be a set of valid receipts;
smax be the maximum sequence number in R ; smin be the
sequence number of the checkpoint whose digest is expected
to equal the checkpoint digest in the receipt with the smallest
sequence number in R (smin can be calculated as described
in the previous section); vmin and vmax be the minimum and
maximum view numbers in the receipts in R , respectively.

A ledger package is complete in relation to R if all of the
following are true:

• F +U is well-formed;
• if smin=0, cp contains the checkpoint at genesis (empty);

otherwise, the digest of cp is equal to the one in the second
checkpoint transaction in F +U;

• F includes at least one set of view-change and new-view
messages for a view less than or equal to vmin + 1 (vmin
requirement), and one set of view-change and new-view
messages for a view greater than or equal to vmax (vmax
requirement);

• All signatures in F +U and E are valid.

and one of the following is true:

• F includes entries between smin and smax+P;
• F includes entries between smin and smax + c where

c∈ [0,P). E contains P−c valid preparement evidence for
entries from smax−c to smax; or

• F includes entries between smin and e=max(smin,smax−c)
where c∈ [1,P]. E contains valid preparement evidence for
entries from max(smin,e−P) to e. The suffix U contains
entries between e + 1 and smax that are preprepared but
not prepared in some view v′ ≥ vmax and E contains
preparement evidence from a view <v′ for entries between
e+1 and smax.

Lemma 4 (Obtaining a complete ledger package). Given a
set of valid receipts R , an auditor can either obtain a ledger
package that is complete in relation to R , or assign blame
to at least f +1 misbehaving or slow replicas.

Proof. Select from the receipts in R , the receipts with the
highest view number vmax. Then, from those receipts select
the receipts with the highest sequence number. Finally,
among those, let Rvmax be the receipt with the highest index
number. (We assume there is no tie; otherwise, the auditor
assigns blame to the replicas that signed both tied receipts.)

The enforcer asks all replicas that signed Rvmax for a ledger
package that is complete in relation to R . We assume that
correct replicas or members respond to the enforcer before
the agreed deadline. Once the enforcer has responses from
f +1 replicas, it relays the responses to the auditor; otherwise
at the deadline, the enforcer assigns blame to at least f +1
misbehaving or slow replicas.

We show that a correct replica can either respond with:
a ledger package that is complete in relation to R or a

ledger package with which the auditor can assign blame to
f +1 misbehaving replicas. Therefore, after checking f +1
responses, the auditor either finds a complete ledger package,
or assigns blame to f +1 misbehaving replicas.

Note that a correct replica that is contacted by the enforcer
can always satisfy the first three conditions of completeness:
(1) correct replicas always maintain well-formed ledgers
and they record/can recalculate checkpoints; (2) the vmin
requirement can always trivially be satisfied by including
the set of view-change and new-view messages for view 0
in F . In practice, for efficiency, correct replicas would satisfy
this requirement by including the set of view-change and
new-view messages for some view v′, where v′ is the latest
possible in [0,vmin + 1]; and (3) since the replicas that are
asked are the replicas that signed Rvmax, they must have view-
change and new-view messages for view vmax. Therefore, any
replica that returns a ledger package that violates any of the
first three conditions can be assigned blame.

The fourth condition of completeness requires that all
signatures and the matching nonces in the ledger package are
correct. Let ⟨F ,U,E ,cp⟩ be a ledger package returned by a
replica. If U or E contains a message or transaction with an
invalid signature, the auditor can assign blame to the replica.
E contains messages from the replica’s message box and U
contains batches that pre-prepared at the replica. A correct
replica never considers a message or pre-prepares a batch that
includes an invalid signature. Otherwise, let sw be a sequence
number where there is a transaction or message with an
invalid signature. The auditor can look for the first checkpoint
transaction that follows sw that has no invalid signatures in
its evidence. If one exists, the auditor can assing blame to
all N− f replicas that signed that checkpoint transaction. If
no such checkpoint transaction exists, the auditor can assign
blame to the responding replica, since a correct replica never
returns a ledger fragment that it has fetched with a checkpoint
without including the committed checkpoint transaction that
records that checkpoint’s digest. So given a ledger package
from a replica, the auditor can always verify all signatures
and nonces in the package or assign blame to the responding
replica or N− f misbehaving replicas. So below, for brevity,
we can assume that the ledger package that a replica returns
has no invalid signatures or nonces.

Additionally, for a correct replica that is contacted by the
enforcer, one of the following must hold:

• The correct replica has locally prepared entries up to
at least smax: In this case, the replica can form a complete
ledger package that includes either:

(i) a well-formed ledger fragment F that contains
entries from smin to smax+P; or

(ii) a well-formed F that contains entries from smin to
smax+c where c∈ [0,P), and E that contains P−c
valid preparement evidence for entries from smax−c
to smax.
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• The correct replica has not locally prepared entries up to
smax and it has locally prepared entries up to e=smax−c
where c≥1: In this case, (1) a correct replica can include
entries between smin and e in a well-formed ledger fragment
F , and it can include the necessary preparement evidence
in E (if smin≤e); and (2) if the replica has any batches that
it has preprepared but not prepared due to a view-change, it
can include the related view-change and new-view messages
in F and the batches in U. Let p be the last sequence
number for which there is a batch in F +U. If p> e, the
correct replica can include the preparement evidence for
entries between e+1 and p in E as well. A correct replica
can form a ledger package as described above. If p≥smax,
the ledger package is complete, and the replica can return it.
Otherwise, p<smax. Let Rsmax be the receipt in R with the
largest sequence number smax and let vsmax be the view num-
ber in Rsmax. Note that vsmax≤vmax by definition, and in the
correct replicas’ ledger, there must exist at least one set of
view-change and new-view messages for a view v′>vsmax
such that none of the view-change messages include a
pre-prepare message for any batch at smax. The correct
replica can return a ledger package that contains these view-
change and new-view messages. The auditor can use the
returned ledger package to assign blame to the intersection
of replicas that signed Rsmax and that sent the set of view-
change messages for v′, as these replicas have prepared a
batch at smax but did not report it during the view change.

Thus, for each of the f +1 responses, either the response
is complete in relation to R , or the auditor can assign blame
to the misbehaving responder, or at least f +1 misbehaving
replicas.

By definition of completeness, if a ledger package is
complete in relation to a set of valid receipts R , it is complete
in relation to any subset of R .
Finding preparement evidence. For a batch at sr, the auditor
can find the preparement evidence for the batch as follows:

• if F contains an entry at sr+P, it is collected from there;
• if F contains the entry at sr but not at sr+P, it is collected

from E ; and
• if F does not contain an entry at sr but U contains an entry

at sr, it is also collected from E , albeit it is for the same
batch from a prior view.

B.1.2 Incompatibility

Let R = ⟨tior,xr⟩ be a valid receipt at sequence number sr.
Let ⟨F ,U,E ,cp⟩ be a ledger package that is complete in
relation to R. Let Bl be the batch that is at sr in F +U. R is
incompatible with Bl if any of the following hold:

• tr does not appear in Bl ;
• it does not appear in the irth position; or
• or is different.

Lemma 5 (Receipt-ledger incompatibility). Let R=⟨tior,xr⟩
be a valid transaction receipt for sequence number sr.
Let ⟨F ,U,E ,cp⟩ be a ledger package that is complete in
relation to R. Let Bl be the batch in the package at sr. If R
is incompatible with Bl , the auditor can assign blame to at
least f +1 misbehaving replicas.

Proof. The auditor can calculate the set of replicas that
signed Bl using the preparement evidence that can be found
as described above. These replicas are called El .

Let Er be the set of replicas that have signed the receipt.
Let vr be the view number in the receipt and vl be the view
number in the preparement evidence of Bl .

• vr = vl: Correct replicas never sign pre-prepare or
prepare messages for different batches in the same view.
Therefore, the auditor can assign blame to the replicas in
the intersection of Er and El , and |Er∩El |≥ f +1.

• vl >vr: Correct replicas include the pre-prepare messages
for the last P prepared batches in their view-change
messages until the batches commit or a different batch is
prepared at the sequence number. A correct primary always
re-preprepares the latest batch that it finds in the set of
N− f view-change messages that it receives. Thus, there
exists at least one view vc ∈ [vr +1,vl ] where zero of the
N− f view-change messages for vc contain a pre-prepare
message for the batch at sequence number sr that is refer-
enced in R. The ledger package is complete in relation to R,
so F includes at least one set of view-change and new-view
messages for a view less than or equal to vr +1 (the vmin
requirement). It must also include the set of view-change
and new-view messages for vc as vl≥vc≥vr+1.
Let Ec be the set of replicas that have sent the view-change
messages to the primary for view vc. The auditor can assign
blame to the replicas that are in the intersection of Er and
Ec and |Er∩Ec|≥ f +1.

• vl <vr: There exists at least one view vc∈ [vl+1,vr] where
zero of the N− f view-change messages for vc contains a
pre-prepare message for the batch at sequence number sr
that is referenced in R. The ledger package is complete in
relation to R so F includes at least one set of view-change
and new-view messages for a view greater than or equal to
vr, so it must include the set of view-change and new-view
messages for vc as vl +1≤ vc≤ vr (the vmax requirement).
Similar to previous case afterwards.

B.1.3 Violations

Ordering receipts. Given a set of valid receipts, the auditor
can order them lexicographically based on the correspond-
ing (sequence number, index number, view number) tuples.
(We can assume that there is no tie; otherwise, the auditor
assigns blame to the replicas that signed both tied receipts.)
We say that a receipt R1 is earlier/later than a receipt R2, if it
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is ordered before/after R2 with this scheme, respectively. For
example, the earliest receipt in a set of valid receipts is the one
with the lowest view number, among those with the lowest
index number, among those with the lowest sequence number.

Lemma 6 (Serializability violations). Let R =
{(tio0, x0), ..., (tiok, xk))} be a set of valid receipts that
violates serializability. Then, the auditor can assign blame
to at least f +1 misbehaving or slow replicas.

Proof. First, the auditor can obtain a ledger package
⟨F ,U,cp,E⟩ that is complete in relation to R ; otherwise,
it can assign blame to at least f + 1 misbehaving or slow
replicas by Lemma 4. Note that, as the ledger package is
complete in relation to R , it is complete in relation to any
receipt R j∈R .

Since the receipts in R violate serializability, no serial
execution of t0, ..., tk can produce io0, ..., iok. F + U is
well-formed, so there are two options for its validity:

Valid ledger. F +U is a valid ledger, so every transaction
in it is ordered and executed serially. However, the receipts in
R violate serializability. Therefore, there must exist at least
one receipt ⟨tiow,xw⟩∈R that is incompatible with the batch
at sw in F +U. By Lemma 5, the auditor can assign blame
to at least f +1 misbehaving replicas.

Invalid ledger. F +U is a well-formed but invalid ledger. So
there exists at least one transaction tw (which does not have
to be in R ) that was executed incorrectly in some batch sw,
or one checkpoint that was created incorrectly.

The auditor can order R as described above. Let Re be
the earliest receipt in R . Let dC0 be the checkpoint digest
in Re. Let sC0 be the sequence number with the expected
checkpoint digest dC0 , calculated by the auditor using se and
the checkpoint interval C as previously described. If sCO =0,
but the digest in Re is not equal to the digest in the genesis
transaction, the auditor can assign blame to all replicas that
signed Re. Otherwise, the ledger package is complete with
respect to Re, and F + U is thus well-formed, so: (i) the
entry at sC0 in F +U is a checkpoint transaction; and (ii) the
checkpoint transaction in sCO+C exists as sC0 <sCO+C<se
and contains the digest of cp. If the digest of cp in the ledger
package is not dC0 , the auditor can assign blame to the
replicas that signed both the checkpoint transaction at sCO+C
and Re. The digest in that checkpoint transaction is for the
previous checkpoint and the batches before the previous
checkpoint have already committed since C>P.

Otherwise, the auditor replays the ledger starting from the
checkpoint transaction at sC0 , creating checkpoints at check-
point sequence numbers. Doing so, the auditor either obtains
⟨tw,iw,oa⟩ ≠ ⟨tw,iw,ow⟩ or finds that an incorrect checkpoint
digest is recorded at sw. In either case, the auditor can assign
blame to all replicas that signed for the batch at sw.

Theorem 2 (Linearizability violations). Let R be a set of
receipts that violate linearizability. Then, the auditor can

assign blame to at least f +1 misbehaving or slow replicas.

Proof. If the receipts also violate serializability, the auditor
can assign blame to at least f + 1 misbehaving or slow
replicas by Lemma 6.

Otherwise, since the receipts violate linearizability but
not serializability, the ordering of the transactions in R must
violate the real-time ordering of the transactions. So there
exists at least two transactions, ta and tb, in R such that
the receipt for tioa was received by the client before tb was
sent, but ia ≥ ib. tb was sent after ⟨tioa, xa⟩ was received,
so a correct client sets the minimum index l of tiob to at
least ia+1. Since ib≤ ia, the auditor can assign blame to all
replicas who have sent the receipt for tiob.

B.2 Correctness of auditing with reconfiguration

In this section, we first summarize how reconfiguration
happens, introduce new terminology, and update prior termi-
nology. Then, in Lemma 7, we prove that, if the auditor detects
a fork in governance, it can assign blame to f +1 misbehav-
ing replicas. In §B.2.1, we update the prior discussion on
obtaining a complete ledger package. In §B.2.2 and Lemma 9,
we prove that, if a receipt and the corresponding batch in a
ledger package are prepared in different configurations, the
auditor can assign blame to f +1 misbehaving replicas. In
§B.2.3, using Lemma 9, we update the prior lemma about
incompatibility. Finally, §B.2.4 updates the prior proofs on
violations, and in Theorem 3, we prove the correctness of
auditing in the complete IA-CCF ledger system.

Summary of reconfiguration. A correct primary ends
the batch it is working on once it executes a governance
transaction. Therefore, each batch includes at most one
governance transaction and ig in a receipt refers to the last
governance transaction executed before the transaction in the
receipt. The final vote transaction that is necessary to pass
a referendum triggers the configuration change. 2P end-of-
config batches follow the final vote before the configuration
change. The governance sub-ledger consists of batches and
evidence for all governance transactions. It also includes,
for each configuration, the Pth and 2Pth end-of-config
batches, which commit the final vote transaction that triggers
reconfiguration and the Pth end-of-config batch respectively.
The Pth end-of-config batch links to the final vote transaction,
because its pre-prepare message includes the Merkle root
of the batch that includes the final vote transaction.

Updates to well-formedness and validity. A ledger
fragment is valid if it can be produced by a sequence of
correct primaries in a sequence of configurations where in
each configuration there are at most f failures.

In addition to the previous structural specifications,
governance changes are serialized and include the required
end-of-config and start-of-config messages.

Note that correct replicas check the validity of the
governance sub-ledger fragments that they fetch, so their
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governance sub-ledgers are valid, in addition to well-formed.

Configuration number. The configuration number of a
configuration C is the distance that it is from the configuration
at the genesis. The genesis has configuration number 0. A
configuration that follows the genesis configuration has
number 1 and so on.

Supporting governance chain of a receipt. Every receipt R
includes the index of the latest governance transaction. A
correct client makes sure that it has a matching chain of valid
governance transaction receipts for each receipt that it has.
This includes the receipts for all governance transactions
from the genesis up to the latest governance transaction,
and the receipt for the Pth end-of-config batch for each
configuration change. The supporting governance chain of a
receipt R is the sequence of governance-related receipts that
starts from the genesis transaction receipt and ends with the
Pth end-of-config batch receipt before the configuration that
signed R takes effect.

A supporting governance chain of a receipt matches a gov-
ernance sub-ledger if each receipt in the chain is compatible
with the governance sub-ledger. (For end-of-config batches,
compatibility considers committed Merkle roots as well.)
Similarly, a supporting governance chain can be a prefix of
a governance sub-ledger.

Updates to receipt validity. A receipt is valid if it is
verifiable by Alg. 3, and it is attached a valid supporting
governance chain.

Updates to calculating checkpoint sequence numbers.
If a sequence number that is multiple of the checkpoint
interval C falls into an end-of-config/start-of-config sequence,
checkpointing is skipped. A checkpoint is taken at the
beginning of each new configuration, and the digest of the
first checkpoint in a configuration is included in the first
checkpoint transaction, as opposed to the one that follows
(this is similar to genesis).

Let ⟨tio j,x j⟩ be a valid receipt and sfv be sequence number
of the final vote transaction for the last configuration change
in the supporting governance chain of the receipt. The first
checkpoint of the configuration that prepared the receipt
is expected at sfcp = sfv + 2P + 1. (Except the genesis
configuration, for which sfcp=0.)

So given s j, the sequence number scp of the checkpoint
whose digest is in x j can be calculated with

scp=

{
sfcp if s j <sfcp+C

C
(
⌈ s j−sfcp

C ⌉−2
)

otherwise.

Updates to fetching checkpoints. Following a configuration
change, a correct new replica fetches the checkpoint at the
penultimate checkpoint sequence number s′ in the previous
configuration (or the first checkpoint sequence number
if there is only one). It also retrieves the full ledger. It

replays the ledger from s′ before creating a checkpoint at the
beginning of the configuration.

Equivalence of Pth end-of-config batches. Two Pth

end-of-config batches are equivalent if they:

(i) are at the same index and sequence number; and
(ii) are preceded by the same valid governance sub-ledger

(their pre-prepares include the same committed Merkle
root).

Two receipts for Pth end-of-config batches are equivalent
if the batches specified in them are equivalent.

Governance fork. There is a fork in governance if there is
a fork in the governance sub-ledger. That is, there are at least
two Pth end-of-config batches for the same configuration
number that belong in valid governance sub-ledgers, but that
are not equivalent.

We say that there is a fork between two valid supporting
governance chains if there are receipts for two Pth end-of-
config batches for the same configuration number that are
not equivalent.

We say that there is a fork between a valid supporting
governance chain and a valid governance sub-ledger, if for
the same configuration number, the Pth end-of-config batch
specified by the receipt in the chain is not equivalent to the
Pth end-of-config batch in the sub-ledger.

Lemma 7 (Governance fork). If there is a fork in governance,
the auditor can assign blame to at least f +1 misbehaving
replicas.

Proof. If there is a fork in governance, there are at least two
Pth end-of-config batches for the same configuration number
that are not equivalent, namely P1 and P2.

A correct replica only prepares a Pth end-of-config batch at
sequence number s once the final vote transaction that passes
the referendum is committed at sequence number s−P. Thus,
all governance transactions preceding it are committed too.
This final vote transaction triggers the configuration change.

So the auditor can assign blame to the replicas that
prepared both P1 and P2, because a correct replica that
prepares one will never prepare another non-equivalent Pth

end-of-config batch in the same configuration number.

Longest supporting governance chain. Let R be a set
of valid receipts. If there is a fork between the supporting
governance chains of the receipts in R , the auditor can assign
blame to at least f + 1 misbehaving replicas by Lemma 7.
So the auditor can always obtain a longest supporting
governance chain for the receipts in R . This chain is the
union of all supporting chains for receipts in R .

Onwards, we assume that, given any set of valid receipts,
the supporting governance chains are fork-free with each
other and that there is a longest supporting governance chain;

488    19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



otherwise, the auditor can assign blame to f +1 misbehaving
replicas by Lemma 7.
Transaction receipts. Onwards, we assume that a receipt
is for a transaction and not for end-of-config/start-of-config
batches. If the receipts for end-of-config/start-of-config
indicate a fork in governance, misbehaving replicas can be
blamed using Lemma 7; otherwise, the end-of-config/start-
of-config batches do not have any usage and do not affect the
key-value store, so do not affect linearizability.

B.2.1 Updates to obtaining the ledger

Updated ledger package. A ledger package includes an
additional required field:

• the committed governance sub-ledger N of the replica.

Updated definition of completeness. Let R be a set of valid
receipts. Define smax,vmin,vmax as previously. Calculate smin
using the receipt with the smallest configuration number,
among those with the smallest sequence number in R . Let
ngmax be the longest supporting governance chain in R .

A ledger package is complete in relation to R if, in
addition to the prior conditions about well-formedness,
length, and vmin/vmax requirements:

• ngmax is a prefix of N (i.e. the package is obtained from
a replica in a configuration which is equal to or succeeds
all configurations in R );

• N is valid; and
• N matches F .

The condition for the checkpoint cp is updated as follows:

• if smin is calculated as the first checkpoint transaction in
a configuration (or zero), the digest of cp is equal to the
one in the checkpoint transaction at smin; otherwise, the
digest of cp is equal to the one in the second checkpoint
transaction in F +U.

Lemma 8 (Obtaining a complete ledger package with recon-
figuration). Given a set of valid receipts R , an auditor can ei-
ther obtain a ledger package that is complete in relation to R ,
or assign blame to at least f +1 misbehaving or slow replicas.

Proof. As mentioned before, we assume that there is no fork
between the supporting governance chains of the receipts in
R . Let Rgmax be the receipt with the highest index number,
among those with the highest sequence number, among
those with the highest view number, among those with the
longest supporting governance chain in R . Let ngmax be the
supporting governance chain of Rgmax.

We assume that there is a reliable mechanism to look up the
most recent system configuration. Using this mechanism, the
auditor looks up the most recent committed governance sub-
ledger and the set of replicas that signed the first checkpoint
transaction of the most recent configuration. If there is a fork

between ngmax and the governance sub-ledger that is looked-
up, the auditor can assign blame to at least f +1 misbehaving
replicas by Lemma 7; otherwise, the auditor checks whether
the sub-ledger that is looked up is longer than ngmax. If so, the
enforcer asks all the replicas that signed the first checkpoint
transaction of the most recent configuration for a ledger pack-
age; otherwise, the replicas that have signed Rgmax are asked.

As in Lemma 4, the enforcer asks replicas for a ledger
package that is complete in relation to R . At the deadline,
the enforcer relays the responses to the auditor. There are
at least f +1 responses, or the enforcer can assign blame to
f +1 misbehaving or slow replicas.

As before, we show that a correct replica can either
respond with: a ledger package that is complete in relation
to R , or a ledger package with which the auditor can assign
blame to f +1 misbehaving replicas.

First, note that a correct replica that is contacted by the
enforcer can always satisfy the updated completeness con-
ditions (related to N ), because the replica is part of the most
recent configuration and the conditions all pertain to keeping
a valid governance sub-ledger. Of the conditions described
previously, the well-formedness and vmin conditions can
be satisfied, and invalid signatures in the package can be
handled, just as in Lemma 4. Since the replicas that are asked
are not necessarily the replicas that signed the receipt with
the highest view in R , it is possible that they cannot satisfy
the vmax requirement even if they are correct.

So, for a correct replica that is contacted by the enforcer
one of the following must hold:

• The replica cannot satisfy the vmax requirement: Let
Rvmax be the latest receipt when the receipts are ordered
lexycographically by (view number, configuration number,
sequence number, index number). Let nvmax be the
supporting governance chain of Rvmax. If there is a fork
between nvmax and the committed sub-ledger N of the
replica, the replica can return its governance sub-ledger and
the auditor can assign blame to at least f +1 misbehaving
replicas by Lemma 7. Otherwise, nvmax must be a prefix
of N since the enforcer asks replicas from the most
recent configuration. There are two possibilities for the
relationship between nvmax and N :

1. N = nvmax. So Rgmax = Rvmax.Therefore, the correct
replica signed Rvmax. Any correct replica that signed
Rvmax has the view-change and new-view messages for
vmax, so this case is a contradiction.

2. N is longer than nvmax. Let Pvmax+1 be the Pth

end-of-config batch that ends Rvmax’s configuration
C. Since the replica is correct and cannot satisfy the
vmax requirement, Pvmax+1 must be prepared in a view
<vmax. Any correct replica that prepared Pvmax+1 must
have committed a final vote transaction that triggers the
configuration change in their ledger in a view less than
vmax. Since correct replicas never reset their ledger by
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more than P sequence numbers, they do not pre-prepare
any batch with view vmax in C. So, the auditor can
assign blame to the intersection of replicas that signed
Rvmax and prepared Pvmax+1.

• The replica can satisfy the vmax requirement: If,
additionally, the replica has prepared (or pre-prepared with
view changes) batches up to at least smax, it can return a
ledger package that is complete in relation to R just as in
Lemma 4.
Otherwise, let Rsmax be the receipt with the largest sequence
number smax. Let nsmax be the supporting governance
chain of Rsmax. If there is a fork between nsmax and the
replica’s N , the replica can return N and the auditor can
assign blame to at least f + 1 misbehaving replicas by
Lemma 7. Otherwise, nsmax must be a prefix of N since
the replicas asked by the enforcer are from the most recent
configuration. Again, there are two possibilities:

1. N is longer than nsmax: Let Psmax+1 be the Pth

end-of-config batch that ends Rsmax’s configuration.
Since the replica is correct and cannot satisfy the smax
requirement, Psmax+1 must be prepared at a sequence
number less than smax. Any correct replica that prepared
Psmax+1 must have committed a final vote transaction
that triggers the configuration change at latest at
sequence number smax − (P + 1). Since a correct
replica never resets its ledger by more than P sequence
numbers, the auditor can assign blame to the replicas
that signed both Rsmax and prepared Psmax+1.

2. N =nsmax: The group of replicas asked by the enforcer
are from the same configuration that signed Rsmax,
which is the most recent configuration. Since the
replica is correct and from the most recent configuration
vsmax≤ vmax by definition. In F , as before, there must
exist at least one set of view-change and new-view
messages for a view v′ > vsmax such that none of the
view-change messages includes a pre-prepare for any
batch at smax. Note that the configuration of the replicas
that have sent these view-change messages must be the
same as the configuration that signed the receipt, as
that is the most recent configuration in the system. So
just as in Lemma 4, the auditor can assign blame to the
replicas that signed both Rsmax and that sent the set of
view-change messages for v′.

So, for each of the f +1 responses, either the response is
complete in relation to R , or the auditor can assign blame
to the responder, or at least f +1 misbehaving replicas.

B.2.2 Mismatching configurations

Lemma 9 (Receipt-ledger configuration mismatch). Let
R = ⟨tior, xr⟩ be a valid receipt that was produced in a
configuration Cr. Let Bl be the batch that is at sr in a ledger
package that is complete in relation to R. Let Cl be the config-

uration of the replicas that signed Bl . If Cr ̸=Cl , the auditor
can assign blame to at least f +1 misbehaving replicas.

Proof. Since R is a valid receipt, it has a valid supporting
governance chain. Since the ledger package is complete, it
includes a valid governance sub-ledger N that leads to Cl ,
which is fork-free with the supporting governance chain of R.

One of the following must hold:

• Cr <Cl: Cr precedes Cl: Let Pr+1 be the Pth end-of-config
batch that ends the configuration Cr. This batch and its ev-
idence is included in N . Since the package is complete, N
is consistent with the ledger fragment in the package. Since
that ledger fragment is well-formed and Bl is at sr, Pr+1 is at
the latest at sequence number sr−(P+1). Any replica that
prepared Pr+1 must have committed a final vote transaction
that triggers the configuration change at the latest at se-
quence number sr−(2P+1). A correct replica that has pre-
pared a batch at sr in Cr never resets its ledger to earlier than
sr−P even with view changes. So the auditor can assign
blame to the replicas that both prepared Pr+1 and signed R.

• Cr > Cl: Cr succeeds Cl: We show that this case is
impossible given that R is valid, and there is no fork
between its supporting governance chain and N . Since the
ledger package is complete in relation to R, N includes
the Pth end-of-config batch leading to Cr and it matches the
well-formed ledger fragment in the package. Since Bl is at
sr, that batch can at earliest be at sequence number sr+P.
So there cannot be a valid receipt produced in Cr at sr.

B.2.3 Updates to incompatibility

Lemma 10 (Receipt-ledger incompatibility with reconfig-
uration). Let R = ⟨tior, xr⟩ be a valid transaction receipt
at sequence number sr. Let ⟨F ,U,E , cp,N ⟩ be a ledger
package that is complete in relation to R. Let Bl be the batch
in the package at sr. If R is incompatible with Bl , the auditor
can assign blame to at least f +1 misbehaving replicas.

Proof. Define El ,Er,vl ,vr as in Lemma 5. Note that we can
assume that both the receipt and Bl are prepared by the same
configuration C ; if not, the auditor can assign blame to f +1
misbehaving replicas by Lemma 9.

• vr =vl: Same as Lemma 5.
• vl > vr: Calculate Ec as described in Lemma 5. If the

replicas in Ec are also from the configuration C , the auditor
can assign blame just as in Lemma 5; otherwise, if the
replicas in Ec are from a preceding configuration, the first
checkpoint transaction of C is at the latest at sequence
number sr−(P+1) since Bl is prepared by C and F +U
is well-formed. Furthermore, that checkpoint transaction
is prepared in a view v′>vr. A correct replica never signs
the receipt at sr in a view vr and then resets its ledger by
more than P sequence numbers while view changing to v′.
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So, the auditor can assign blame to the replicas that signed
both that checkpoint transaction and the receipt.

• vl < vr: Calculate Ec as described in Lemma 5. If the
replicas in Ec are also from the configuration C , the auditor
can assign blame just as in Lemma 5; otherwise the replicas
in Ec are from a configuration that succeeds C . In this case,
the Pth end-of-config batch that ends the configuration C
is at the earliest at sequence number sr + P, since Bl is
prepared by C and F +U is well-formed. Furthermore, that
batch is prepared in a view v′< vr. A correct replica that
prepares that Pth end-of-config batch commits to the con-
figuration change; it never resets its ledger to earlier than sr
and signs R. So, the auditor can assign blame to the replicas
that signed both that end-of-config batch and the receipt.

B.2.4 Updates to violations

Lemma 11 (Serializability violations with reconfiguration).
Let R = {(tio0,x0), ...,(tiok,xk))} be a set of receipts that
violates serializability. Then, the auditor can assign blame
to at least f +1 misbehaving or slow replicas.

Proof. First, the auditor can obtain a ledger package
⟨F ,U,cp,E ,N ⟩ that is complete in relation to R ; otherwise,
IA-CCF can assign blame to at least f + 1 misbehaving
or slow replicas by Lemma 8.

Just as in Lemma 6, since the receipts in R violate serial-
izability, no serial execution of t0,...,tk can produce io0,...,iok.
F is well-formed, so there are two options for its validity:

Valid ledger. Similar to Lemma 6. By Lemma 10, the auditor
can assign blame to at least f +1 misbehaving replicas.

Invalid ledger. Assume that receipts are ordered lexico-
graphically based on the corresponding (sequence number,
configuration number, index number, view number) tuples.
(We can assume that there is no tie; otherwise the auditor can
assign blame to the replicas that signed both tied receipts.)

Let Re be the earliest receipt in the ordered R . Let dC0

be the digest in Re. Let sC0 be the sequence number with
the expected checkpoint digest dC0 . sC0 can be calculated
by the auditor using se, the checkpoint interval C, and the
supporting governance chain. (Note that sC0 is equal to smin
that is calculated while obtaining the ledger.)

We can assume that the batch at se is prepared by the same
configuration that sent the receipt; otherwise the auditor can
assign blame to f + 1 misbehaving replicas by Lemma 9.
We also know that the supporting governance chain of Re
matches F + U and that F + U is well-formed. So, the
checkpoint transactions at sC0 (and sC0 +C if it exists) are
prepared by the same configuration as Re by definition of
sC0 . So, if the digest at sC0 is not dC0 , the auditor can assign
blame to f +1 misbehaving replicas similar to Lemma 6.

Since the supporting governance chains of all receipts
match the ledger fragment by definition of completeness, the

auditor can determine the correct stored procedures for each
transaction to replay the ledger as in Lemma 6.

Theorem 3 (Linearizability violations with reconfiguration).
Let R be a set of receipts that violate linearizability. Then,
the auditor can assign blame to at least f +1 misbehaving
or slow replicas.

Proof. If the receipts also violate serializability, the auditor
can assign blame to at least f + 1 misbehaving or slow
replicas by Lemma 11; otherwise, the minimum ledger index
argument in the proof of Theorem 2 holds.
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