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Abstract

Deep learning (DL) systems expose many tuning parameters

(“hyper-parameters”) that affect the performance and accu-

racy of trained models. Increasingly users struggle to con-

figure hyper-parameters, and a substantial portion of time is

spent tuning them empirically. We argue that future DL sys-

tems should be designed to help manage hyper-parameters.

We describe how a distributed DL system can (i) remove

the impact of hyper-parameters on both performance and ac-

curacy, thus making it easier to decide on a good setting,

and (ii) support more powerful dynamic policies for adapt-

ing hyper-parameters, which take monitored training metrics

into account. We report results from prototype implementa-

tions that show the practicality of DL system designs that are

hyper-parameter-friendly.

1. Introduction

As deep learning (DL) models are used across many applica-

tion domains such as speech and image classification [22, 6],

users face the challenge of tuning hyper-parameters during

the training of DL models to achieve high accuracy and good

training performance. Today’s distributed DL systems such

as TensorFlow [1], PyTorch [44], and MXNet [11] expose a

wide range of hyper-parameters, including the training batch

size [46], the learning rate [46], momentum [40], floating

point precision [21] and so on. Evidence from practitioners

suggests that users spend a tremendous amount of resources

tuning these hyper-parameters [35, 24, 20], mostly empiri-

cally, when training complex state-of-the-art models such as

ResNet [22] and BERT [15]. Such manual hyper-parameter

tuning leads to the highest reported accuracies and fastest

training times in DL competitions such as ImageNet [14]

and SQuAD [45].

The plethora of proposed approach for automated hyper-

parameter tuning [50, 18, 25] shows the desire to remove
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the burden of hyper-parameter tuning from users, but current

approaches either exhaustively search the space of possible

settings at a high time and resource cost [49, 35, 17], or

offer only brittle tuning strategies based on model-specific

heuristics [20, 24, 54].

We observe that there are several reasons why current

DL systems make it cumbersome for users to tune hyper-

parameters: (1) they expose hyper-parameters that affect

both training accuracy and performance, often introducing a

tension between the two goals. Users now need to strike a

balance between achieving the highest accuracy and training

the model in the shortest amount of time, facing the chal-

lenge that there is no single good setting [26]; (2) DL sys-

tems do not support expressive strategies for tuning hyper-

parameters. Typically hyper-parameters must be configured

offline as part of a driver program, e.g. by defining a static

training schedule that adapts parameters such as the learning

rate or batch size based on the epoch number in the training

process [22, 49]. This makes tuning policies brittle [20] and

unable to react to the progress of the training process [35].

To tame hyper-parameters, we believe that future scalable

DL systems must be designed with hyper-parameters friend-

liness in mind. Similar to self-driving database systems [39],

which avoid exposing configuration parameters, DL systems

should achieve two goals:

(1) DL systems should remove performance-focused hyper-

parameters as much as possible. Users should be able to

freely adjust hyper-parameters to achieve the highest model

accuracy without having to worry about reducing training

performance. A DL system should ensure the best possible

resource utilisation and parallelisation of computation inde-

pendently of hyper-parameter settings.

(2) DL systems should provide richer support for poli-

cies that dynamically adapt hyper-parameters during the

training process. They should continuously monitor metrics,

such as gradient noise scale [35], gradient variance [53] and

second-order gradient [33], and allow users to express dy-

namic policies that react to monitored metrics.

We demonstrate the above two goals can by achieved

by two proof-of-concept implementations, CROSSBOW and

KUNGFU. CROSSBOW [28] removes the performance effect

of a critical hyper-parameter, namely the batch size, enabling
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Figure 3: Training performance of Crossbow and TensorFlow (Crossbow uses different numbers of replicas m.)

central average model. The average model is used to com-

pute corrections for each replica. This ensures that they fol-

low the trajectory of the central average model, while still

maintaining their independence.

Crossbow implementation. To explore the feasibility of ef-

ficient small batch training with independent model replicas

and model averaging, we have a prototype implementation

of a multi-GPU DL system called CROSSBOW [28]. When

the user sets the bach size hyper-parameter to a small value,

CROSSBOW automatically computes the best number of par-

allel replicas to fully utilise all GPU resources. It then sched-

ules the replicas to be trained using the given batch size.

To maximise the number of independent replicas, CROSS-

BOW optimises replicas for data locality and object reuse. It

also prevents synchronisation bottlenecks: the central aver-

age model is replicated across GPUs, enabling the system to

efficiently coordinate a large number of replicas.

Experimental results. We evaluate if CROSSBOW can in-

deed offer the merits of small batch sizes while increas-

ing hardware utilisation. We use CROSSBOW to train the

ResNet-32 model [22] with a batch size of 64 (found to be

the best after exploration) on a NVIDIA Titan X GPU, and

compare to TensorFlow [1].

We show the results in Figure 3. With 4 model replicas

(Figure 3a), CROSSBOW increases the throughput by a fac-

tor of 1.4× compared to one replica. By adding replicas in-

stead of increasing the batch size, we also observe an im-

provement in statistical efficiency, as shown in Figure 3b:

the number of epochs required to converge reduces from 30

to 14. The reason is that the independent replicas can syn-

chronise efficiently using model averaging. Figure 3c shows

that the combined improvements in hardware and statistical

efficiency reduce the overall training time (i.e. time to an

80% accuracy) by 3.2×.

3.2 Supporting dynamic hyper-parameter policies

Our idea for supporting dynamic policies for hyper-parameter

tuning is to embed monitoring and control functionality as

part of a distributed DL system. We demonstrate the benefit

of dynamic hyper-parameter policies through a use case in

which a DL system observes the gradient noise and uses it

to adapt the batch size during the training process.

Dynamic hyper-parameter policies. To achieve high train-

ing accuracy, a DL system must adapt hyper-parameters

over time to fit the search for minima in a complex loss

space [49, 35, 16]. This could be done by monitoring met-

rics that reflect the current training progress [33, 35, 53], and

then tuning different hyper-parameters [8, 55].

As an example, we consider the case in which a user

wants to adapt the batch size based on the gradient noise

scale (GNS) [35]. GNS is a statistical measure for the signal-

to-noise ratio of gradients, and expresses the variation in

the data as seen by the model. Intuitively, when the noise

is small, using large batches of training data is counter-

productive; conversely, when GNS is large, the model learns

better with more data per batch.

Dynamic hyper-parameter policies require the scalable

monitoring of training metrics such as GNS. Existing DL

systems resort to external monitoring functionality as pro-

vided by TensorBoard [51] or Prometheus [43]. Since such

monitoring tools collect logs offline, the metrics become

only available after training, forcing users to derive static

hyper-parameter policies from them.

1 import training as tr

2 import monitoring as mon

3 import communication as comm

4 import control as ctrl

5 test

6 def adapt_batch_size(ctrl, noise):

7 g batch size = tr.exp decay(noise, 0.01)

8 ctrl.global batch size.sync(g batch size)

8

9 def build_driver_program(sample, loss):

10 grads = tr.resnet(sample, loss).auto_diff()

11 avg_grads = comm.all_reduce(grads)

12 optimiser = tr.optimiser(avg_grads)

13 noise = mon.noise(grads, avg grads)

14 avg noise = comm.all reduce(noise)

15 c = ctrl.control(optimiser, avg noise)

16 c.hook(adapt batch size, avg noise)

Listing 1: A dynamic hyper-parameter policy

Expressive policies. Adaptive hyper-parameter tuning re-

quires a high-level abstraction to define dynamic policies.

Such policies may be expressed as part of a driver program,

and require ideally minimal efforts for implementing the

monitoring and control programs. In addition, the abstrac-

tion must support computation over monitored metrics and
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to a more stable accuracy compared to the others. This im-

plies that the use of online monitoring metrics helps select

hyper-parameters that can best fit in the loss space, thus im-

proving the quality of minima.

4. Conclusions

Today’s DL systems face substantial challenges related to

the configuration of hyper-parameters. In this paper, we have

described how the designs of future DL systems can help

users tame hyper-parameters. We have showed that it is pos-

sible to rethink designs (i) to remove the impact of criti-

cal hyper-parameter, such as the batch size, on both perfor-

mance and accuracy; and (ii) to support the efficient moni-

toring of training metrics, thus enabling a range of dynamic

policies for hyper-parameters to be implemented efficiently.
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