
Taming Hyper-parameters in Deep Learning Systems

Luo Mai, Alexandros Koliousis, Guo Li, Andrei-Octavian Brabete, Peter Pietzuch

Imperial College London

Abstract

Deep learning (DL) systems expose many tuning parameters

(“hyper-parameters”) that affect the performance and accu-

racy of trained models. Increasingly users struggle to con-

figure hyper-parameters, and a substantial portion of time is

spent tuning them empirically. We argue that future DL sys-

tems should be designed to help manage hyper-parameters.

We describe how a distributed DL system can (i) remove

the impact of hyper-parameters on both performance and ac-

curacy, thus making it easier to decide on a good setting,

and (ii) support more powerful dynamic policies for adapt-

ing hyper-parameters, which take monitored training metrics

into account. We report results from prototype implementa-

tions that show the practicality of DL system designs that are

hyper-parameter-friendly.

1. Introduction

As deep learning (DL) models are used across many applica-

tion domains such as speech and image classification [22, 6],

users face the challenge of tuning hyper-parameters during

the training of DL models to achieve high accuracy and good

training performance. Today’s distributed DL systems such

as TensorFlow [1], PyTorch [44], and MXNet [11] expose a

wide range of hyper-parameters, including the training batch

size [46], the learning rate [46], momentum [40], floating

point precision [21] and so on. Evidence from practitioners

suggests that users spend a tremendous amount of resources

tuning these hyper-parameters [35, 24, 20], mostly empiri-

cally, when training complex state-of-the-art models such as

ResNet [22] and BERT [15]. Such manual hyper-parameter

tuning leads to the highest reported accuracies and fastest

training times in DL competitions such as ImageNet [14]

and SQuAD [45].

The plethora of proposed approach for automated hyper-

parameter tuning [50, 18, 25] shows the desire to remove

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to

lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

c© Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN [to be supplied]. . . $15.00

the burden of hyper-parameter tuning from users, but current

approaches either exhaustively search the space of possible

settings at a high time and resource cost [49, 35, 17], or

offer only brittle tuning strategies based on model-specific

heuristics [20, 24, 54].

We observe that there are several reasons why current

DL systems make it cumbersome for users to tune hyper-

parameters: (1) they expose hyper-parameters that affect

both training accuracy and performance, often introducing a

tension between the two goals. Users now need to strike a

balance between achieving the highest accuracy and training

the model in the shortest amount of time, facing the chal-

lenge that there is no single good setting [26]; (2) DL sys-

tems do not support expressive strategies for tuning hyper-

parameters. Typically hyper-parameters must be configured

offline as part of a driver program, e.g. by defining a static

training schedule that adapts parameters such as the learning

rate or batch size based on the epoch number in the training

process [22, 49]. This makes tuning policies brittle [20] and

unable to react to the progress of the training process [35].

To tame hyper-parameters, we believe that future scalable

DL systems must be designed with hyper-parameters friend-

liness in mind. Similar to self-driving database systems [39],

which avoid exposing configuration parameters, DL systems

should achieve two goals:

(1) DL systems should remove performance-focused hyper-

parameters as much as possible. Users should be able to

freely adjust hyper-parameters to achieve the highest model

accuracy without having to worry about reducing training

performance. A DL system should ensure the best possible

resource utilisation and parallelisation of computation inde-

pendently of hyper-parameter settings.

(2) DL systems should provide richer support for poli-

cies that dynamically adapt hyper-parameters during the

training process. They should continuously monitor metrics,

such as gradient noise scale [35], gradient variance [53] and

second-order gradient [33], and allow users to express dy-

namic policies that react to monitored metrics.

We demonstrate the above two goals can by achieved

by two proof-of-concept implementations, CROSSBOW and

KUNGFU. CROSSBOW [28] removes the performance effect

of a critical hyper-parameter, namely the batch size, enabling

52

✥

�

✁

✂

✄

☎

❈✆✝✞✞✟✝✠
♠ ✡ �

❈✆✝✞✞✟✝✠
♠ ✡ ✁

❈✆✝✞✞✟✝✠
♠ ✡ ✄

❚☛☞✞✝✆✌✍✝✠

✎
✏
✑✒
✓
✔
✏
✕
✓
✖
✗✘
✙
✸
✚✛
✜
✔
✢
✣
✤✣
✦

(a) Hardware efficiency

✧

★✧

✩✧

✪✧

✫✧

✬✧

✭✧

✮✯✰✱✱✲✰✳
✴ ✵ ★

✮✯✰✱✱✲✰✳
✴ ✵ ✩

✮✯✰✱✱✲✰✳
✴ ✵ ✫

✶✷✹✱✰✯✺✻✰✳
❊
✼
✽
✾
✿
❀
❁✽
❂
❃
❄

❁❅
❀
❁
❆
✾
✾
❇
❉❆
✾
❋

(b) Statistical efficiency

●

❍●●

■●●

❏●●

❑●●

▲●●●

▲❍●●

▼◆❖PP◗❖❘
❙ ❯ ▲

▼◆❖PP◗❖❘
❙ ❯ ❍

▼◆❖PP◗❖❘
❙ ❯ ■

❱❲❳P❖◆❨❩❖❘

❬
❬
❭
❪❫
❴
❵
❛
❪❜
❝
❞
❛

(c) Time-to-accuracy

Figure 3: Training performance of Crossbow and TensorFlow (Crossbow uses different numbers of replicas m.)

central average model. The average model is used to com-

pute corrections for each replica. This ensures that they fol-

low the trajectory of the central average model, while still

maintaining their independence.

Crossbow implementation. To explore the feasibility of ef-

ficient small batch training with independent model replicas

and model averaging, we have a prototype implementation

of a multi-GPU DL system called CROSSBOW [28]. When

the user sets the bach size hyper-parameter to a small value,

CROSSBOW automatically computes the best number of par-

allel replicas to fully utilise all GPU resources. It then sched-

ules the replicas to be trained using the given batch size.

To maximise the number of independent replicas, CROSS-

BOW optimises replicas for data locality and object reuse. It

also prevents synchronisation bottlenecks: the central aver-

age model is replicated across GPUs, enabling the system to

efficiently coordinate a large number of replicas.

Experimental results. We evaluate if CROSSBOW can in-

deed offer the merits of small batch sizes while increas-

ing hardware utilisation. We use CROSSBOW to train the

ResNet-32 model [22] with a batch size of 64 (found to be

the best after exploration) on a NVIDIA Titan X GPU, and

compare to TensorFlow [1].

We show the results in Figure 3. With 4 model replicas

(Figure 3a), CROSSBOW increases the throughput by a fac-

tor of 1.4× compared to one replica. By adding replicas in-

stead of increasing the batch size, we also observe an im-

provement in statistical efficiency, as shown in Figure 3b:

the number of epochs required to converge reduces from 30

to 14. The reason is that the independent replicas can syn-

chronise efficiently using model averaging. Figure 3c shows

that the combined improvements in hardware and statistical

efficiency reduce the overall training time (i.e. time to an

80% accuracy) by 3.2×.

3.2 Supporting dynamic hyper-parameter policies

Our idea for supporting dynamic policies for hyper-parameter

tuning is to embed monitoring and control functionality as

part of a distributed DL system. We demonstrate the benefit

of dynamic hyper-parameter policies through a use case in

which a DL system observes the gradient noise and uses it

to adapt the batch size during the training process.

Dynamic hyper-parameter policies. To achieve high train-

ing accuracy, a DL system must adapt hyper-parameters

over time to fit the search for minima in a complex loss

space [49, 35, 16]. This could be done by monitoring met-

rics that reflect the current training progress [33, 35, 53], and

then tuning different hyper-parameters [8, 55].

As an example, we consider the case in which a user

wants to adapt the batch size based on the gradient noise

scale (GNS) [35]. GNS is a statistical measure for the signal-

to-noise ratio of gradients, and expresses the variation in

the data as seen by the model. Intuitively, when the noise

is small, using large batches of training data is counter-

productive; conversely, when GNS is large, the model learns

better with more data per batch.

Dynamic hyper-parameter policies require the scalable

monitoring of training metrics such as GNS. Existing DL

systems resort to external monitoring functionality as pro-

vided by TensorBoard [51] or Prometheus [43]. Since such

monitoring tools collect logs offline, the metrics become

only available after training, forcing users to derive static

hyper-parameter policies from them.

1 import training as tr

2 import monitoring as mon

3 import communication as comm

4 import control as ctrl

5 test

6 def adapt_batch_size(ctrl, noise):

7 g batch size = tr.exp decay(noise, 0.01)

8 ctrl.global batch size.sync(g batch size)

8

9 def build_driver_program(sample, loss):

10 grads = tr.resnet(sample, loss).auto_diff()

11 avg_grads = comm.all_reduce(grads)

12 optimiser = tr.optimiser(avg_grads)

13 noise = mon.noise(grads, avg grads)

14 avg noise = comm.all reduce(noise)

15 c = ctrl.control(optimiser, avg noise)

16 c.hook(adapt batch size, avg noise)

Listing 1: A dynamic hyper-parameter policy

Expressive policies. Adaptive hyper-parameter tuning re-

quires a high-level abstraction to define dynamic policies.

Such policies may be expressed as part of a driver program,

and require ideally minimal efforts for implementing the

monitoring and control programs. In addition, the abstrac-

tion must support computation over monitored metrics and

55

to a more stable accuracy compared to the others. This im-

plies that the use of online monitoring metrics helps select

hyper-parameters that can best fit in the loss space, thus im-

proving the quality of minima.

4. Conclusions

Today’s DL systems face substantial challenges related to

the configuration of hyper-parameters. In this paper, we have

described how the designs of future DL systems can help

users tame hyper-parameters. We have showed that it is pos-

sible to rethink designs (i) to remove the impact of criti-

cal hyper-parameter, such as the batch size, on both perfor-

mance and accuracy; and (ii) to support the efficient moni-

toring of training metrics, thus enabling a range of dynamic

policies for hyper-parameters to be implemented efficiently.

References

[1] ABADI, M., BARHAM, P., CHEN, J., CHEN, Z., DAVIS,

A., DEAN, J., DEVIN, M., GHEMAWAT, S., IRVING, G.,

ISARD, M., KUDLUR, M., LEVENBERG, J., MONGA, R.,

MOORE, S., MURRAY, D. G., STEINER, B., TUCKER, P.,

VASUDEVAN, V., WARDEN, P., WICKE, M., YU, Y., AND

ZHENG, X. Tensorflow: A system for large-scale machine

learning. In 12th USENIX Symposium on Operating Systems

Design and Implementation (OSDI’16) (2016), pp. 265–283.

[2] ALLEN-ZHU, Z., AND LI, Y. Can SGD learn recurrent neu-

ral networks with provable generalization? CoRR abs/1902.01028

(2019).

[3] ALLEN-ZHU, Z., LI, Y., AND LIANG, Y. Learning and

generalization in overparameterized neural networks, going

beyond two layers. CoRR abs/1811.04918 (2018).

[4] AMAZON. Amazon EC2 P3 Instance Product Details. https:

//aws.amazon.com/ec2/instance-types/p3/,

2019. Online; accessed: 2019-05-17.

[5] AMAZON. Amazon Spot Instance Prices. https://aws.

amazon.com/ec2/spot/pricing/, 2019. Online; ac-

cessed: 2019-05-17.

[6] ARIK, S. Ö., CHRZANOWSKI, M., COATES, A., DIAMOS,

G., GIBIANSKY, A., KANG, Y., LI, X., MILLER, J., RAIMAN,

J., SENGUPTA, S., AND SHOEYBI, M. Deep voice: Real-

time neural text-to-speech. CoRR abs/1702.07825 (2017).

[7] BA, L. J., AND FREY, B. Adaptive dropout for training

deep neural networks. In Proceedings of the 26th Interna-

tional Conference on Neural Information Processing Systems

- Volume 2 (USA, 2013), NIPS’13, Curran Associates Inc.,

pp. 3084–3092.

[8] BAYDIN, A. G., CORNISH, R., MARTÍNEZ-RUBIO, D.,

SCHMIDT, M., AND WOOD, F. D. Online learning rate adap-

tation with hypergradient descent. CoRR abs/1703.04782

(2017).

[9] BOTTOU, L. On-line learning and stochastic approximations.

In On-line Learning in Neural Networks, D. Saad, Ed. 1998.

[10] BOTTOU, L., CURTIS, F., AND NOCEDAL, J. Optimization

methods for large-scale machine learning. SIAM Review 60,

2 (2018), 223–311.

[11] CHEN, T., LI, M., LI, Y., LIN, M., WANG, N., WANG, M.,

XIAO, T., XU, B., ZHANG, C., AND ZHANG, Z. MXNet:

A flexible and efficient machine learning library for heteroge-

neous distributed systems. CoRR abs/1512.01274 (2015).

[12] DEAN, J., CORRADO, G., MONGA, R., CHEN, K., DEVIN,

M., MAO, M., AURELIO RANZATO, M., SENIOR, A.,

TUCKER, P., YANG, K., LE, Q. V., AND NG, A. Y. Large

Scale Distributed Deep Networks. In Advances in Neural

Information Processing Systems 25, F. Pereira, C. Burges,

L. Bottou, and K. Weinberger, Eds. Curran Associates, Inc.,

2012, pp. 1223–1231.

[13] DEAN, J., PATTERSON, D., AND YOUNG, C. A new golden

age in computer architecture: Empowering the machine-

learning revolution. IEEE Micro 38, 2 (Mar 2018), 21–29.

[14] DENG, J., DONG, W., SOCHER, R., LI, L.-J., LI, K., AND

FEI-FEI, L. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and

pattern recognition (2009), Ieee, pp. 248–255.

[15] DEVLIN, J., CHANG, M., LEE, K., AND TOUTANOVA, K.

BERT: pre-training of deep bidirectional transformers for lan-

guage understanding. CoRR abs/1810.04805 (2018).

[16] DUCHI, J., HAZAN, E., AND SINGER, Y. Adaptive subgra-

dient methods for online learning and stochastic optimization.

Journal of Machine Learning Research 12, Jul (2011), 2121–

2159.

[17] ELSKEN, T., METZEN, J. H., AND HUTTER, F. Neural ar-

chitecture search: A survey. arXiv preprint arXiv:1808.05377

(2018).

[18] FEURER, M., KLEIN, A., EGGENSPERGER, K., SPRINGEN-

BERG, J. T., BLUM, M., AND HUTTER, F. Efficient and ro-

bust automated machine learning. In Proceedings of the 28th

International Conference on Neural Information Processing

Systems - Volume 2 (Cambridge, MA, USA, 2015), NIPS’15,

MIT Press, pp. 2755–2763.

[19] GOODFELLOW, I., POUGET-ABADIE, J., MIRZA, M., XU,

B., WARDE-FARLEY, D., OZAIR, S., COURVILLE, A., AND

BENGIO, Y. Generative adversarial nets. In Advances in neu-

ral information processing systems (2014), pp. 2672–2680.

[20] GOYAL, P., DOLLÁR, P., GIRSHICK, R. B., NOORDHUIS,

P., WESOLOWSKI, L., KYROLA, A., TULLOCH, A., JIA,

Y., AND HE, K. Accurate, Large Minibatch SGD: Training

ImageNet in 1 Hour. CoRR abs/1706.02677 (2017).

[21] GUPTA, S., AGRAWAL, A., GOPALAKRISHNAN, K., AND

NARAYANAN, P. Deep learning with limited numerical pre-

cision. In International Conference on Machine Learning

(2015), pp. 1737–1746.

[22] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep resid-

ual learning for image recognition. CoRR abs/1512.03385

(2015).

[23] HOFFER, E., HUBARA, I., AND SOUDRY, D. Train longer,

generalize better: closing the generalization gap in large batch

training of neural networks. In Advances in Neural Informa-

tion Processing Systems 30, I. Guyon, U. V. Luxburg, S. Ben-

gio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,

57

Eds. Curran Associates, Inc., 2017, pp. 1731–1741.

[24] JIA, X., SONG, S., HE, W., WANG, Y., RONG, H., ZHOU,

F., XIE, L., GUO, Z., YANG, Y., YU, L., CHEN, T., HU,

G., SHI, S., AND CHU, X. Highly scalable deep learning

training system with mixed-precision: Training imagenet in

four minutes. CoRR abs/1807.11205 (2018).

[25] JIN, H., SONG, Q., AND HU, X. Efficient neural architec-

ture search with network morphism. CoRR abs/1806.10282

(2018).

[26] KESKAR, N. S., MUDIGERE, D., NOCEDAL, J., SMELYAN-

SKIY, M., AND TANG, P. T. P. On Large-Batch Training

for Deep Learning: Generalization Gap and Sharp Minima.

CoRR abs/1609.04836 (2016).

[27] KINGMA, D. P., AND BA, J. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980 (2014).

[28] KOLIOUSIS, A., WATCHARAPICHAT, P., WEIDLICH, M.,

MAI, L., COSTA, P., AND PIETZUCH, P. R. CROSSBOW:

scaling deep learning with small batch sizes on multi-gpu

servers. CoRR abs/1901.02244 (2019).

[29] KRIZHEVSKY, A. Convolutional deep belief networks on

cifar-10, 2010.

[30] LECUN, Y. A., BOTTOU, L., ORR, G. B., AND MÜLLER,

K.-R. Efficient BackProp. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2012, pp. 9–48.

[31] LI, M., ANDERSEN, D. G., PARK, J. W., SMOLA, A. J.,

AHMED, A., JOSIFOVSKI, V., LONG, J., SHEKITA, E. J.,

AND SU, B.-Y. Scaling distributed machine learning with

the parameter server. In 11th USENIX Symposium on Oper-

ating Systems Design and Implementation (OSDI’14) (2014),

pp. 583–598.

[32] LIN, Y., HAN, S., MAO, H., WANG, Y., AND DALLY, W. J.

Deep gradient compression: Reducing the communication

bandwidth for distributed training. CoRR abs/1712.01887

(2017).

[33] MARTENS, J., AND GROSSE, R. B. Optimizing neural net-

works with kronecker-factored approximate curvature. CoRR

abs/1503.05671 (2015).

[34] MASTERS, D., AND LUSCHI, C. Revisiting small batch

training for deep neural networks. CoRR abs/1804.07612

(2018).

[35] MCCANDLISH, S., KAPLAN, J., AMODEI, D., AND TEAM,

O. D. An empirical model of large-batch training. arXiv

preprint arXiv:1812.06162 (2018).

[36] MENG, Q., CHEN, W., WANG, Y., MA, Z.-M., AND LIU,

T.-Y. Convergence analysis of distributed stochastic gradi-

ent descent with shuffling. arXiv preprint arXiv:1709.10432

(2017).

[37] NVIDIA COLLECTIVE COMMUNICATIONS LIBRARY (NCCL),

2018. https://developer.nvidia.com/nccl.

[38] NVLINK FABRIC, 2018. https://www.nvidia.

com/en-us/data-center/nvlink/.

[39] PAVLO, A., ANGULO, G., ARULRAJ, J., LIN, H., LIN, J.,

MA, L., MENON, P., MOWRY, T. C., PERRON, M., QUAH,

I., ET AL. Self-driving database management systems. In

CIDR (2017), vol. 4, p. 1.

[40] POLYAK, B. Some methods of speeding up the convergence

of iteration methods. Ussr Computational Mathematics and

Mathematical Physics 4 (12 1964), 1–17.

[41] POLYAK, B. New stochastic approximation type procedures.

Avtomatica i Telemekhanika 7, 7 (01 1990), 98–107.

[42] POLYAK, B., AND JUDITSKY, A. Acceleration of stochastic

approximation by averaging. SIAM Journal on Control and

Optimization 30, 4 (1992), 838–855.

[43] PROMETHEUS. The Prometheus monitoring system and time

series database. https://github.com/prometheus/

prometheus, 2019. Online; accessed: 2019-05-18.

[44] PYTORCH, 2018. https://pytorch.org.

[45] RAJPURKAR, P., ZHANG, J., LOPYREV, K., AND LIANG,

P. Squad: 100,000+ questions for machine comprehension of

text. arXiv preprint arXiv:1606.05250 (2016).

[46] ROBBINS, H., AND MONRO, S. A stochastic approximation

method. Ann. Math. Statist. 22, 3 (09 1951), 400–407.

[47] RUPPERT, D. Efficient estimators from a slowly convergent

Robbins-Monro process. Tech. Rep. 781, School of Oper-

ations Research and Industrial Enginnering, Cornell Univer-

sity, Ithaka, New York 14853-7501, February 1988.

[48] SEIDE, F., AND AGARWAL, A. CNTK: Microsoft’s Open-

Source Deep-Learning Toolkit. In Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, San Francisco, CA, USA, Au-

gust 13-17, 2016 (2016), B. Krishnapuram, M. Shah, A. J.

Smola, C. C. Aggarwal, D. Shen, and R. Rastogi, Eds., ACM,

p. 2135.

[49] SMITH, S. L., KINDERMANS, P., AND LE, Q. V. Don’t

decay the learning rate, increase the batch size. CoRR

abs/1711.00489 (2017).

[50] SNOEK, J., LAROCHELLE, H., AND ADAMS, R. P. Practical

bayesian optimization of machine learning algorithms. In

Proceedings of the 25th International Conference on Neural

Information Processing Systems - Volume 2 (USA, 2012),

NIPS’12, Curran Associates Inc., pp. 2951–2959.

[51] TENSORFLOW. TensorFlow’s Visualization Toolkit. https:

//github.com/tensorflow/tensorboard, 2019.

Online; accessed: 2019-05-18.

[52] TENSORFLOW BENCHMARKS, 2019. https://github.

com/tensorflow/benchmarks.

[53] TSUZUKU, Y., IMACHI, H., AND AKIBA, T. Variance-based

gradient compression for efficient distributed deep learning.

CoRR abs/1802.06058 (2018).

[54] YOU, Y., LI, J., HSEU, J., SONG, X., DEMMEL, J., AND

HSIEH, C. Reducing BERT pre-training time from 3 days to

76 minutes. CoRR abs/1904.00962 (2019).

[55] ZHANG, J., AND MITLIAGKAS, I. Scaling SGD batch size

to 32K for ImageNet training. CoRR abs/1708.03888 (2017).

[56] ZHANG, J., AND MITLIAGKAS, I. YellowFin and the art of

momentum tuning. CoRR abs/1706.03471 (2017).

58

