Taming Hyper-parameters in Deep Learning Systems

Luo Mai, Alexandros Koliousis, Guo Li, Andrei-Octavian Brabete, Peter Pietzuch

Imperial College London

Abstract

Deep learning (DL) systems expose many tuning parameters
(“hyper-parameters”) that affect the performance and accu-
racy of trained models. Increasingly users struggle to con-
figure hyper-parameters, and a substantial portion of time is
spent tuning them empirically. We argue that future DL sys-
tems should be designed to help manage hyper-parameters.
We describe how a distributed DL system can (i) remove
the impact of hyper-parameters on both performance and ac-
curacy, thus making it easier to decide on a good setting,
and (ii) support more powerful dynamic policies for adapt-
ing hyper-parameters, which take monitored training metrics
into account. We report results from prototype implementa-
tions that show the practicality of DL system designs that are
hyper-parameter-friendly.

1. Introduction

As deep learning (DL) models are used across many applica-
tion domains such as speech and image classification [22, 6],
users face the challenge of tuning hyper-parameters during
the training of DL models to achieve high accuracy and good
training performance. Today’s distributed DL systems such
as TensorFlow [1], PyTorch [44], and MXNet [11] expose a
wide range of hyper-parameters, including the training batch
size [46], the learning rate [46], momentum [40], floating
point precision [21] and so on. Evidence from practitioners
suggests that users spend a tremendous amount of resources
tuning these hyper-parameters [35, 24, 20], mostly empiri-
cally, when training complex state-of-the-art models such as
ResNet [22] and BERT [15]. Such manual hyper-parameter
tuning leads to the highest reported accuracies and fastest
training times in DL competitions such as ImageNet [14]
and SQuAD [45].

The plethora of proposed approach for automated hyper-
parameter tuning [50, 18, 25] shows the desire to remove

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

(@© Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN [to be supplied]...$15.00

52

the burden of hyper-parameter tuning from users, but current
approaches either exhaustively search the space of possible
settings at a high time and resource cost [49, 35, 17], or
offer only brittle tuning strategies based on model-specific
heuristics [20, 24, 54].

We observe that there are several reasons why current
DL systems make it cumbersome for users to tune hyper-
parameters: (1) they expose hyper-parameters that affect
both training accuracy and performance, often introducing a
tension between the two goals. Users now need to strike a
balance between achieving the highest accuracy and training
the model in the shortest amount of time, facing the chal-
lenge that there is no single good setting [26]; (2) DL sys-
tems do not support expressive strategies for tuning hyper-
parameters. Typically hyper-parameters must be configured
offline as part of a driver program, e.g. by defining a static
training schedule that adapts parameters such as the learning
rate or batch size based on the epoch number in the training
process [22, 49]. This makes tuning policies brittle [20] and
unable to react to the progress of the training process [35].

To tame hyper-parameters, we believe that future scalable
DL systems must be designed with hyper-parameters friend-
liness in mind. Similar to self-driving database systems [39],
which avoid exposing configuration parameters, DL systems
should achieve two goals:

(1) DL systems should remove performance-focused hyper-
parameters as much as possible. Users should be able to
freely adjust hyper-parameters to achieve the highest model
accuracy without having to worry about reducing training
performance. A DL system should ensure the best possible
resource utilisation and parallelisation of computation inde-
pendently of hyper-parameter settings.

(2) DL systems should provide richer support for poli-
cies that dynamically adapt hyper-parameters during the
training process. They should continuously monitor metrics,
such as gradient noise scale [35], gradient variance [53] and
second-order gradient [33], and allow users to express dy-
namic policies that react to monitored metrics.

We demonstrate the above two goals can by achieved
by two proof-of-concept implementations, CROSSBOW and
KUNGFU. CROSSBOW [28] removes the performance effect
of a critical hyper-parameter, namely the batch size, enabling

a user to train a DL model with a small batch size while
still achieving high performance through good scalability;
KUNGFU embeds monitoring functionality in a distributed
DL system, and exposes the monitored metrics to support ex-
pressive policies for advanced hyper-parameter adaptation.

2. The challenge of hyper-parameters

Next we describe the use of hyper-parameters in DL systems
and the associated challenges.

2.1 Hyper-parameters in deep learning systems

When using DL models, increasing the amount of train-
ing data and the size of the model improves their accu-
racy [22, 12]. For training, DL systems therefore exploit the
parallelism of modern hardware accelerators such as GPUs.
Computation is typically expressed as a dataflow graph [1],
which consists of individual operators that can be scaled out.

The DL system trains models using labelled samples,
split into training and test data. A model gradually “learns”
to predict the labels by adjusting its model weights based on
the error. It takes several passes (or epochs) over the training
data to minimise the prediction error. The test data is used
to measure the model accuracy on previously unseen data.
A key metric is fest accuracy, which measures the ability of
the model to make predictions “in the wild”.

A DL system iteratively refines model weights until it
achieves a desired test accuracy. Let w be a vector of the
weights, and 4, (w) be a loss function that, given w, mea-
sures the difference between the predicted label of a sam-
ple (x,y) and the ground truth y. A DL system tries to find
w* that minimises the average loss usually through mini-
batch stochastic gradient descent (SGD) [46, 9, 10]. More
formally,

Whnt1 = Wy, — YTn XEZB Vi (wy)

(D

where y,, is the learning rate in the n-th iteration of the
algorithm, and B,, is a batch of b training samples, and
V/ is the gradient of the loss function, averaged over the
batch samples. The learning rate y,, and the batch size |B,,|
are examples of hyper-parameters, as they affect the overall
training process and must be set by the user.

To scale out the computation across multiple processors
or accelerators, DL systems often exploit data parallelism.
In parallel synchronous SGD (S-SGD), K parallel workers
share model replicas and compute gradients for distinct par-
titions of training data locally. Local gradients are averaged
to correct the shared model:

Wpt1 = Wy, — % Z Z Vi (wy,)

<K xeBy,,;

(@)

As shown in Figure 1a, hyper-parameters can be grouped
into two classes: (1) performance-oriented hyper-parameters,

53

°
° .
R FEEED A A‘ Large batch size
compression ratio ® .
[° o R
I Beicnis:e Momentum %
All-reduce topology thresholds €
. 8
Number of workers ° [@ Small batch size
Float Warming up length Q
[} precision £ ..'..
Gradient filter [] L >
threshold Dropout probability 2
. @ o
Performance-oriented Accuracy-oriented >
parameters parameters Model accuracy
(a) Hyper-parameters that affect (b) Trade-off between
performance and accuracy batch sizes

Figure 1: Hyper-parameters and their challenges

such as the number of parallel workers and the communica-
tion topology, which critically affect the system’s processing
throughput; and (2) accuracy-oriented hyper-parameters,
such as the learning rate and momentum, which impact the
optimality of local minimas and thus the overall accuracy of
the trained model.

In practice, it is necessary to apply a wide range of tuning
strategies to hyper-parameters. To reduce the time to reach
a desired test accuracy (time-to-accuracy), users must care-
fully manage the performance-oriented hyper-parameters.
To overcome communication bottlenecks, for example, a
user can (i) tune a gradient filter threshold to skip small
enough gradients [31], (ii) set a compression ratio for gradi-
ents to save bandwidth [32], (iii) choose different all-reduce
topologies for gradients [24], and (iv) adjust the float preci-
sion to reduce gradient sizes [24].

For accuracy-oriented hyper-parameters, users change
(1) the schedule of batch sizes to improve convergence [49],
(ii) the schedule of learning rates to improve model accu-
racy [8], (iii) the length of a warming-up phase to avoid
collapsing convergence [20], (iv) the dropout probability to
overcome over-fitting [7], and (v) the momentum to improve
the robustness of optimisers [27, 56].

2.2 Managing hyper-parameters is hard

When managing the large universe of hyper-parameters,
users often find it challenging for two reasons:

(1) Resolving trade-offs within hyper-parameters. There
are hyper-parameters that affect both system performance
and model accuracy. Figure 1a shows two of the most promi-
nent ones: batch size and the floating-point precision of
weights (and their gradients). These hyper-parameters intro-
duce a trade-off when users want to achieve both high system
throughput and high test accuracy.

Figure 1b shows this trade-off for batch size. In paral-
lel training, increasing the batch size K-fold, increases sys-
tem throughput linearly with the number of processors K
because the work per processor remains constant. Beyond a
certain threshold though, increasing the batch size adversely
affects model accuracy: the number of epochs required to

converge to a given accuracy increases super-linearly be-
cause there are fewer model updates, and not enough vari-
ance to explore the solution space [26, 34]. A similar trade-
off exists when selecting different floating-point precisions.
A user must manually find the best compromise in a given
training scenario.

(2) Adaptive tuning of hyper-parameters. Effective hyper-
parameter tuning typically requires adaptive schedules that
change over time: (i) a DL model has a complex non-convex
space [26]. As training progresses, the model must adjust
hyper-parameters to fit itself into the loss space, e.g. using a
descending learning rate to capture sharp minima [23], thus
improving accuracy; and (ii) from a performance point-of-
view, a DL system must adapt to maximise the utilisation
of expensive GPU resources (e.g. the latest generation of a
GPU server costs $34 per hour in commodity clouds [4]).
As cloud providers offer less expensive preemptive GPU re-
sources (e.g. at a 70% discount compared to reserved in-
stances [5]), GPU resources may be reclaimed during train-
ing with short notice (usually tens of seconds), and the train-
ing schedule must react to this.

Existing DL systems allow users to adopt pre-defined
schedules for hyper-parameters [1, 44, 48] hard-coded in
a driver program. This has two shortcomings: (i) a sched-
ule that has been shown effective for one DL model often
performs poorly for others [35]. Hyper-parameter schedules
rely on assumptions about the properties and training condi-
tions of particular models [3, 2]. These assumptions rarely
hold across models (e.g. the training of a ResNet family is
fundamentally different from those for generative adversar-
ial networks [19]); and (ii) a hyper-parameter schedule con-
cluded from a small-scale experiment may not be effective at
large scale. Training at different scales often exhibit differ-
ent convergence behaviours as the batch size [20] and data
pre-processing can both vary [36].

3. Hyper-parameter-friendly DL systems

We now describe designs for DL systems that help address
the above challenges related to hyper-parameters.

3.1 Avoiding performance-oriented hyper-parameters

Our idea for removing performance-oriented hyper-parameters

is based on the observation that new DL system designs
should leverage new GPU hardware features for concurrency
combined with alternative approaches for data parallelism.
We illustrate this by explaining how a DL system can relax
the tension that the choice of batch size introduces between
system performance and model accuracy.

The trade-off with batch size. As existing DL system with
parallel S-SGD scale to more GPUs, users must choose
larger batch size. Since a batch is sharded across all GPUs,
this keeps the amount of work per GPU constant. Large
batch sizes, however, come at the cost of lower statistical
efficiency [26, 34], which leads to slower convergence of the

54

Iterations of learner 1

Trajectory of
replica wy

Initial

Model 1.1

Trajectory of
central average
model z

i-2.1
A Trajectory of
replica w,

Iterations of learner 2

Figure 2: Optimisation trajectories with indepen-
dent model replicas under model averaging (Two
model replicas are trained independently with fixed batch
sizes and corrected by an average model per iteration.)

model to a high accuracy. Users try to compensate for this
by tuning hyper-parameters such as increasing the learning
rate [20], or adjusting the batch size [49]. These techniques
are model-specific though and eventually fail to be effective
for very large batch sizes [13, 24, 20]. Given these issues,
users prefer to use small batches when possible [30, 34].

Decoupling performance and batch size. We want to de-
sign a DL system that decouples data processing throughput
from the batch size of the learning algorithm. This means
that we must exploit the full parallelism of all GPUs inde-
pendently of the chosen batch size. Besides data parallelism,
modern GPUs can also execute multiple gradient computa-
tions independently to increase processing throughput via
the use of separate execution queues. GPUs also have ad-
vanced primitives (e.g. NVLink [38] and NCCL [37]) for
inter-GPU synchronisation.

Instead of increasing the batch size, a DL system can
therefore train multiple model replicas with a small batch
size on one GPU and efficiently consolidate their training
state. A replica can process a data batch independently, com-
pute a gradient, immediately update itself, and continue with
the gradient computation for the next batch. Training many
replicas on GPUs allows a DL system to increase data pro-
cessing throughput while producing independent model up-
dates throughout training, which avoids having to increase
the batch size linearly with more GPUs .

A challenge that this introduces is that a large number of
indenpendent model replicas is harder to synchronise effi-
ciently. Instead of using S-SGD, which uses a global model
to replace local models on GPUs per iteration, we exploit
model averaging techniques [42, 41, 47], which correct di-
verged model replicas with a central average model. Fig-
ure 2 shows how model replicas interact with the average
model. Starting with the same initial model, two learners
train model replicas w; and wo using SGD with distinct
batches. When the learners have computed the gradients and
updated their local replicas, their updates are applied to a

1200

(4]

FS

w

N

Throughput (1 0% images/s)
Epochs to 80% test accuracy

1l

0 I I 0

1000
800
600
400

TTA(80%) (sec)

200

o

Crossbow Crossbow Crossbow TensorFlow

m= m= m= m= m=

(a) Hardware efficiency

Crossbow Crossbow Crossbow TensorFlow

(b) Statistical efficiency

Crossbow Crossbow Crossbow TensorFlow

m= m= m= m=

(c) Time-to-accuracy

Figure 3: Training performance of Crossbow and TensorFlow (Crossbow uses different numbers of replicas m.)

central average model. The average model is used to com-
pute corrections for each replica. This ensures that they fol-
low the trajectory of the central average model, while still
maintaining their independence.

Crossbow implementation. To explore the feasibility of ef-
ficient small batch training with independent model replicas
and model averaging, we have a prototype implementation
of a multi-GPU DL system called CROSSBOW [28]. When
the user sets the bach size hyper-parameter to a small value,
CROSSBOW automatically computes the best number of par-
allel replicas to fully utilise all GPU resources. It then sched-
ules the replicas to be trained using the given batch size.
To maximise the number of independent replicas, CROSS-
BOW optimises replicas for data locality and object reuse. It
also prevents synchronisation bottlenecks: the central aver-
age model is replicated across GPUs, enabling the system to
efficiently coordinate a large number of replicas.

Experimental results. We evaluate if CROSSBOW can in-
deed offer the merits of small batch sizes while increas-
ing hardware utilisation. We use CROSSBOW to train the
ResNet-32 model [22] with a batch size of 64 (found to be
the best after exploration) on a NVIDIA Titan X GPU, and
compare to TensorFlow [1].

We show the results in Figure 3. With 4 model replicas
(Figure 3a), CROSSBOW increases the throughput by a fac-
tor of 1.4x compared to one replica. By adding replicas in-
stead of increasing the batch size, we also observe an im-
provement in statistical efficiency, as shown in Figure 3b:
the number of epochs required to converge reduces from 30
to 14. The reason is that the independent replicas can syn-
chronise efficiently using model averaging. Figure 3c shows
that the combined improvements in hardware and statistical
efficiency reduce the overall training time (i.e. time to an
80% accuracy) by 3.2x.

3.2 Supporting dynamic hyper-parameter policies

Our idea for supporting dynamic policies for hyper-parameter
tuning is to embed monitoring and control functionality as
part of a distributed DL system. We demonstrate the benefit
of dynamic hyper-parameter policies through a use case in
which a DL system observes the gradient noise and uses it
to adapt the batch size during the training process.

Dynamic hyper-parameter policies. To achieve high train-
ing accuracy, a DL system must adapt hyper-parameters
over time to fit the search for minima in a complex loss
space [49, 35, 16]. This could be done by monitoring met-
rics that reflect the current training progress [33, 35, 53], and
then tuning different hyper-parameters [8, 55].

As an example, we consider the case in which a user
wants to adapt the batch size based on the gradient noise
scale (GNS) [35]. GNS is a statistical measure for the signal-
to-noise ratio of gradients, and expresses the variation in
the data as seen by the model. Intuitively, when the noise
is small, using large batches of training data is counter-
productive; conversely, when GNS is large, the model learns
better with more data per batch.

Dynamic hyper-parameter policies require the scalable
monitoring of training metrics such as GNS. Existing DL
systems resort to external monitoring functionality as pro-
vided by TensorBoard [51] or Prometheus [43]. Since such
monitoring tools collect logs offline, the metrics become
only available after training, forcing users to derive static
hyper-parameter policies from them.

import training as tr
import monitoring as mon

3 import communication as comm

55

import control as ctrl

def adapt_batch_size(ctrl, noise):
gbatch_size = tr.exp._decay(noise, 0.01)
ctrl.global batch_size.sync(g-batch_size)

def build_driver_program(sample, loss):
grads = tr.resnet (sample, loss).auto_diff ()
avg_grads = comm.all_reduce (grads)
optimiser = tr.optimiser (avg_grads)
noise = mon.noise(grads, avg._grads)
avg_noise = comm.all reduce (noise)
c = ctrl.control (optimiser, avg-noise)
c.hook (adapt_batch_size, avg_noise)

Listing 1: A dynamic hyper-parameter policy

Expressive policies. Adaptive hyper-parameter tuning re-
quires a high-level abstraction to define dynamic policies.
Such policies may be expressed as part of a driver program,
and require ideally minimal efforts for implementing the
monitoring and control programs. In addition, the abstrac-
tion must support computation over monitored metrics and

Monitoring | Communication I Control
I mn n
4 4
—n[grads H noise]—n[avg_noise
\ control
| ava_grads }———{ optimiser
Dataflow Worker

Metric traffic &
Gradienttraffic &'

Monitor I Comm. IControI

A

Monitor | Comm. |Control

Dataflow Dataflow

=

Figure 4: Dynamic hyper-parameter management
with three workers (Each replicated training dataflow is
augmented with monitoring and control operators. The mon-
itored metrics are piggybacked as part of the communication
for distributed gradient synchronisation.)

Worker Worker

synchronisation of the changes to hyper-parameters in a dis-
tributed environment.

Based on these requirements, we propose the abstrac-
tion shown in Listing 1: (i) a driver program contains mon-
itoring operators that directly attach to the training opera-
tors (line 13 attaches the gradient and average-gradient op-
erators to a monitoring operator that computes the GNS);
(ii) it includes collective communication operators that help
compute global metrics (line 14 computes the average noise
scale using an all-reduce operator); and (iii) it has control
operators that can continuously evaluate monitoring metrics
and synchronise modification to hyper-parameters (line 15-
16 register an adaptation function called every iteration of
training, and line 7-8 transform the noise scale to a new
global batch size which is automatically synchronised on
distributed driver programs).

Embedding policies in dataflows. We want to design a DL
system that can efficiently realise the above abstraction. This
can be achieved by transforming the above driver program
into a dataflow that is replicated by the workers.

Figure 4 uses the GNS use case to show the design.
Each worker has a DL library that performs training us-
ing dataflows. It creates a training dataflow augmented with
monitoring, communication and control operators, as de-
fined in Listing 1. These operators are asynchronously exe-
cuted and reuse the result produced by the training operators
(i.e. grads and avg_grads), thus avoiding the interruption of
training and the copying of data. In addition, the communi-
cation operators can use a networking layer that piggybacks
the communication of monitoring data with synchronised
gradients. This not only improves networking performance,
but also reuses scale-out mechanisms [24] in both training
and monitoring. Finally, the replicated control operators can

56

100

= 90 36.6 54.1 107.7

€ 80 | |

a | VY

8 70 Vi

2 60

o

< 50

s

2 40

§ 30 —— Adaptive

S 20 —— B = 4096

—— B =256

10

0 15 30 45 60 75 90 105120135150
Time (seconds)

Figure 5: Time-to-accuracy of adaptive and static
batch size policies in KUNGFU (B denotes batch size.)

be treated as an execution barrier. This provides clear se-
mantics to users regarding when and where the changes to
hyper-parameters take place in a distributed setting.

KungFu implementation. We have implemented the above
design for dynamic hyper-parameter tuning as part of a dis-
tributed training library called KUNGFU for TensorFlow [1].
The computation of GNS and the associated batch size con-
troller are implemented as TensorFlow operators. To mod-
ify batch sizes dynamically, KUNGFU fixes the batch size
per dataflow, guaranteeing high GPU utilisation, and imple-
ments a decentralised runtime that allows TensorFlow nodes
to join and leave with low overhead. The KUNGFU runtime
also features an efficient collective communication layer so
that the additional distributed measurement of metrics does
not lead to bottlenecks.

Experimental results. We implement the sample policy in
Listing 1 using KUNGFU. We evaluate the effectiveness of
this policy when training the ResNet-32 model [22] with the
CIFAR-10 dataset [29], as implemented in the TensorFlow
benchmarks project [52]. The experiment runs on a 20-CPU-
core server with 4 NVIDIA Titan X GPUs. We compare
this dynamic policy with two static policies that use small
and large batch sizes (256 and 4096, respectively). We fix
the learning rate to 0.1 and compare their time to reach the
shared maximum test accuracy (in our setting, 72%).

Figure 5 shows the time-to-accuracy results. The small-
batch policy benefits from a high statistical efficiency and
thus converges 50% faster than the large-batch policy, even
though its GPU utilisation is lower. The adaptive policy
starts with a small batch size of 128 and gradually reaches
4096 after 4 epochs, helping it obtain the merits of both
small and large-batch training. Hence, it achieves the best
time-to-accuracy, which is 32% faster than the static small-
batch policy. This also demonstrates the low performance
overheads of the KUNGFU approach.

We also evaluate the robustness of convergence for these
three policies, and let them train for 9 extra epochs after
reaching the target accuracy. The adaptive policy converges

to a more stable accuracy compared to the others. This im-
plies that the use of online monitoring metrics helps select
hyper-parameters that can best fit in the loss space, thus im-
proving the quality of minima.

4. Conclusions

Today’s DL systems face substantial challenges related to
the configuration of hyper-parameters. In this paper, we have
described how the designs of future DL systems can help
users tame hyper-parameters. We have showed that it is pos-
sible to rethink designs (i) to remove the impact of criti-
cal hyper-parameter, such as the batch size, on both perfor-
mance and accuracy; and (ii) to support the efficient moni-
toring of training metrics, thus enabling a range of dynamic
policies for hyper-parameters to be implemented efficiently.

References

[1] ABADI, M., BARHAM, P., CHEN, J., CHEN, Z., DAVIS,
A., DEAN, J., DEVIN, M., GHEMAWAT, S., IRVING, G.,
ISARD, M., KUDLUR, M., LEVENBERG, J., MONGA, R.,
MOORE, S., MURRAY, D. G., STEINER, B., TUCKER, P.,
VASUDEVAN, V., WARDEN, P., WICKE, M., YU, Y., AND
ZHENG, X. Tensorflow: A system for large-scale machine
learning. In /2th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’16) (2016), pp. 265-283.

[2] ALLEN-ZHU, Z., AND L1, Y. Can SGD learn recurrent neu-

ral networks with provable generalization? CoRR abs/1902.01028

(2019).

[3] ALLEN-ZHU, Z., L1, Y., AND LIANG, Y. Learning and
generalization in overparameterized neural networks, going
beyond two layers. CoRR abs/1811.04918 (2018).

[4] AMAZON. Amazon EC2 P3 Instance Product Details. https:

//aws.amazon.com/ec2/instance-types/p3/,
2019. Online; accessed: 2019-05-17.

[S] AMAZON. Amazon Spot Instance Prices. https://aws.
amazon.com/ec2/spot/pricing/, 2019. Online; ac-
cessed: 2019-05-17.

[6] ARIK, S. O., CHRZANOWSKI, M., COATES, A., DIAMOS,

G., GIBIANSKY, A., KANG, Y., L1, X., MILLER, J., RAIMAN,

J., SENGUPTA, S., AND SHOEYBI, M. Deep voice: Real-
time neural text-to-speech. CoRR abs/1702.07825 (2017).

[7]1 Ba, L. J., AND FREY, B. Adaptive dropout for training
deep neural networks. In Proceedings of the 26th Interna-
tional Conference on Neural Information Processing Systems
- Volume 2 (USA, 2013), NIPS’13, Curran Associates Inc.,
pp- 3084-3092.

BAYDIN, A. G., CORNISH, R., MARTINEZ-RUBIO, D.,
SCHMIDT, M., AND WOOD, F. D. Online learning rate adap-
tation with hypergradient descent. CoRR abs/1703.04782
(2017).

[9] BotTOU, L. On-line learning and stochastic approximations.
In On-line Learning in Neural Networks, D. Saad, Ed. 1998.

[10] BoTTOU, L., CURTIS, F., AND NOCEDAL, J. Optimization
methods for large-scale machine learning. SIAM Review 60,

[8

—_—

57

2 (2018), 223-311.

CHEN, T., L1, M., L1, Y., LIN, M., WANG, N., WANG, M.,
X14A0, T., Xu, B., ZHANG, C., AND ZHANG, Z. MXNet:
A flexible and efficient machine learning library for heteroge-
neous distributed systems. CoRR abs/1512.01274 (2015).

[12] DEAN, J., CORRADO, G., MONGA, R., CHEN, K., DEVIN,
M., MAO, M., AURELIO RANZATO, M., SENIOR, A.,
TUCKER, P., YANG, K., LE, Q. V., AND NG, A. Y. Large
Scale Distributed Deep Networks. In Advances in Neural
Information Processing Systems 25, F. Pereira, C. Burges,
L. Bottou, and K. Weinberger, Eds. Curran Associates, Inc.,
2012, pp. 1223-1231.

[13] DEAN, J., PATTERSON, D., AND YOUNG, C. A new golden
age in computer architecture: Empowering the machine-
learning revolution. IEEE Micro 38, 2 (Mar 2018), 21-29.

[14] DENG, J., DONG, W., SOCHER, R., LI, L.-J., L1, K., AND
FEI-FEI, L. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition (2009), leee, pp. 248-255.

[11]

[15] DEVLIN, J., CHANG, M., LEE, K., AND TOUTANOVA, K.
BERT: pre-training of deep bidirectional transformers for lan-
guage understanding. CoRR abs/1810.04805 (2018).

DucHl, J., HAZAN, E., AND SINGER, Y. Adaptive subgra-
dient methods for online learning and stochastic optimization.
Journal of Machine Learning Research 12, Jul (2011), 2121-
2159.

[17] ELSKEN, T., METZEN, J. H., AND HUTTER, F. Neural ar-
chitecture search: A survey. arXiv preprint arXiv:1808.05377
(2018).

[18] FEURER, M., KLEIN, A., EGGENSPERGER, K., SPRINGEN-
BERG, J. T., BLUM, M., AND HUTTER, F. Efficient and ro-
bust automated machine learning. In Proceedings of the 28th
International Conference on Neural Information Processing
Systems - Volume 2 (Cambridge, MA, USA, 2015), NIPS’15,
MIT Press, pp. 2755-2763.

[19] GOODFELLOW, 1., POUGET-ABADIE, J., MIRZA, M., XU,
B., WARDE-FARLEY, D., OZAIR, S., COURVILLE, A., AND
BENGIO0, Y. Generative adversarial nets. In Advances in neu-
ral information processing systems (2014), pp. 2672-2680.

[16]

[20] GOYAL, P., DOLLAR, P., GIRSHICK, R. B., NOORDHUIS,
P., WESOLOWSKI, L., KYROLA, A., TULLOCH, A., JIA,
Y., AND HE, K. Accurate, Large Minibatch SGD: Training
ImageNet in 1 Hour. CoRR abs/1706.02677 (2017).

[21] GUPTA, S., AGRAWAL, A., GOPALAKRISHNAN, K., AND
NARAYANAN, P. Deep learning with limited numerical pre-
cision. In International Conference on Machine Learning
(2015), pp. 1737-1746.

[22] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep resid-
ual learning for image recognition. CoRR abs/1512.03385
(2015).

[23] HOFFER, E., HUBARA, 1., AND SOUDRY, D. Train longer,
generalize better: closing the generalization gap in large batch
training of neural networks. In Advances in Neural Informa-
tion Processing Systems 30, 1. Guyon, U. V. Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,

Eds. Curran Associates, Inc., 2017, pp. 1731-1741.

[24] J1A, X., SONG, S., HE, W., WANG, Y., RONG, H., ZHOU,
F., XIE, L., Guo, Z., YANG, Y., YU, L., CHEN, T., Hu,
G., SHI, S., AND CHU, X. Highly scalable deep learning
training system with mixed-precision: Training imagenet in
four minutes. CoRR abs/1807.11205 (2018).

[25] JIN, H., SONG, Q., AND Hu, X. Efficient neural architec-
ture search with network morphism. CoRR abs/1806.10282
(2018).

KESKAR, N. S., MUDIGERE, D., NOCEDAL, J., SMELYAN-
SK1Y, M., AND TANG, P. T. P. On Large-Batch Training
for Deep Learning: Generalization Gap and Sharp Minima.
CoRR abs/1609.04836 (2016).

KINGMA, D. P., AND BA, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980 (2014).

(26]

(27]

[28] KoLIoUSIS, A., WATCHARAPICHAT, P., WEIDLICH, M.,
MAI, L., COSTA, P., AND PIETZUCH, P. R. CROSSBOW:
scaling deep learning with small batch sizes on multi-gpu

servers. CoRR abs/1901.02244 (2019).

KRIZHEVSKY, A. Convolutional deep belief networks on
cifar-10, 2010.

[30] LECUN, Y. A., BorTOoU, L., ORR, G. B., AND MULLER,
K.-R. Efficient BackProp. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012, pp. 9-48.

[31] L1, M., ANDERSEN, D. G., PARK, J. W., SMOLA, A. J.,
AHMED, A., JOSIFOVSKI, V., LONG, J., SHEKITA, E. J.,
AND SU, B.-Y. Scaling distributed machine learning with
the parameter server. In /1th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI’14) (2014),
pp. 583-598.

[32] LIN, Y., HAN, S., MAO, H., WANG, Y., AND DALLY, W. J.
Deep gradient compression: Reducing the communication
bandwidth for distributed training. CoRR abs/1712.01887
(2017).

[33] MARTENS, J., AND GROSSE, R. B. Optimizing neural net-
works with kronecker-factored approximate curvature. CoRR
abs/1503.05671 (2015).

[34] MASTERS, D., AND LuUscHI, C. Revisiting small batch
training for deep neural networks. CoRR abs/1804.07612
(2018).

[35] MCcCANDLISH, S., KAPLAN, J., AMODEI D., AND TEAM,
O. D. An empirical model of large-batch training. arXiv
preprint arXiv:1812.06162 (2018).

[36] MENG, Q., CHEN, W., WANG, Y., MA, Z.-M., AND LIU,
T.-Y. Convergence analysis of distributed stochastic gradi-
ent descent with shuffling. arXiv preprint arXiv:1709.10432
(2017).

[29]

[37] NVIDIA COLLECTIVE COMMUNICATIONS LIBRARY (NCCL),

2018. https://developer.nvidia.com/nccl.
[38] NVLINK FABRIC, 2018. https://www.nvidia.

com/en-us/data-center/nvlink/.

[39] PavLO, A., ANGULO, G., ARULRAIJ, J., LIN, H., LIN, J.,
MA, L., MENON, P., MOWRY, T. C., PERRON, M., QUAH,

58

I., ET AL. Self-driving database management systems. In
CIDR (2017), vol. 4, p. 1.

[40] POLYAK, B. Some methods of speeding up the convergence
of iteration methods. Ussr Computational Mathematics and
Mathematical Physics 4 (12 1964), 1-17.

[41] POLYAK, B. New stochastic approximation type procedures.
Avtomatica i Telemekhanika 7,7 (01 1990), 98—-107.

[42] POLYAK, B., AND JUDITSKY, A. Acceleration of stochastic
approximation by averaging. SIAM Journal on Control and
Optimization 30, 4 (1992), 838—-855.

[43] PROMETHEUS. The Prometheus monitoring system and time
series database. https://github.com/prometheus/
prometheus, 2019. Online; accessed: 2019-05-18.

[44] PYTORCH, 2018. https://pytorch.org.

[45] RAJPURKAR, P., ZHANG, J., LOPYREV, K., AND LIANG,
P. Squad: 100,000+ questions for machine comprehension of
text. arXiv preprint arXiv:1606.05250 (2016).

[46] ROBBINS, H., AND MONRO, S. A stochastic approximation
method. Ann. Math. Statist. 22,3 (09 1951), 400-407.

[47] RUPPERT, D. Efficient estimators from a slowly convergent
Robbins-Monro process. Tech. Rep. 781, School of Oper-
ations Research and Industrial Enginnering, Cornell Univer-
sity, Ithaka, New York 14853-7501, February 1988.

SEIDE, F., AND AGARWAL, A. CNTK: Microsoft’s Open-
Source Deep-Learning Toolkit. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, San Francisco, CA, USA, Au-
gust 13-17, 2016 (2016), B. Krishnapuram, M. Shah, A. J.
Smola, C. C. Aggarwal, D. Shen, and R. Rastogi, Eds., ACM,
p- 2135.

SMITH, S. L., KINDERMANS, P., AND LE, Q. V. Don’t
decay the learning rate, increase the batch size. CoRR
abs/1711.00489 (2017).

SNOEK, J., LAROCHELLE, H., AND ADAMS, R. P. Practical
bayesian optimization of machine learning algorithms. In
Proceedings of the 25th International Conference on Neural
Information Processing Systems - Volume 2 (USA, 2012),
NIPS’12, Curran Associates Inc., pp. 2951-2959.

[51] TENSORFLOW. TensorFlow’s Visualization Toolkit. https:
//github.com/tensorflow/tensorboard, 2019.
Online; accessed: 2019-05-18.

[52] TENSORFLOW BENCHMARKS, 2019. https://github.
com/tensorflow/benchmarks.

(48]

(49]

[50]

[53] TSUZUKU, Y., IMACHI, H., AND AKIBA, T. Variance-based
gradient compression for efficient distributed deep learning.
CoRR abs/1802.06058 (2018).

[54] You, Y., L1, J., HSEU, J., SONG, X., DEMMEL, J., AND
HsIEH, C. Reducing BERT pre-training time from 3 days to
76 minutes. CoRR abs/1904.00962 (2019).

[55] ZHANG, J., AND MITLIAGKAS, I. Scaling SGD batch size
to 32K for ImageNet training. CoRR abs/1708.03888 (2017).

[56] ZHANG, J., AND MITLIAGKAS, I. YellowFin and the art of
momentum tuning. CoRR abs/1706.03471 (2017).

