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Abstract

Cloud computing is gaining acceptance among main-
stream technology users. Storage cloud providers often em-
ploy Storage Area Networks (SANs) to provide elasticity,
rapid adaptability to changing demands, and policy based
automation. As storage capacity grows, the storage environ-
ment becomes heterogeneous, increasingly complex, harder
to manage, and more expensive to operate.

This paper presents PGML (Policy Generation for large-
scale storage infrastructure configuration using Machine
Learning), an automated, supervised machine learning
framework for generation of best practices for SAN con-
figuration that can potentially reduce configuration errors
by up to 70% in a data center. A best practice or policy
is nothing but a technique, guideline or methodology that,
through experience and research, has proven to lead reliably
to a better storage configuration. Given a standards-based
representation of SAN management information, PGML
builds on the machine learning constructs of inductive logic
programming (ILP) to create a transparent mapping of
hierarchical, object-oriented management information into
multi-dimensional predicate descriptions. Our initial evalu-
ation of PGML shows that given an input of SAN problem
reports, it is able to generate best practices by analyzing
these reports. Our simulation results based on extrapolated
real-world problem scenarios demonstrate that ILP is an
appropriate choice as a machine learning technique for this
problem.

I. INTRODUCTION

Forward thinking enterprises have widely accepted cloud
computing. These enterprises gain agility in their ability
to optimize their various IT drivers (storage, networking,
compute, etc). Further, TCO (Total Cost of Ownership)
is reduced, as the enterprises can operate on a “pay as
you go” and “pay for what you use” basis. This has
fueled the emergence of cloud providers such as Amazon
S3 [1], EC2 [2], iTricity [3] and many others. Storage
is an important component of the cloud and thus cloud
providers often employ Storage Area Network (SANs) to
offer scalability and flexibility. Management of all of the
data center resources of a service provider is a complex
task. In this paper, we focus on storage and specifically the

SAN management aspect of it, although our solution can be
generalized for other aspects of data center management.

Tools for managing data centers are built of basic building
blocks, such as discovery, monitoring, configuration, and re-
porting. Advanced functions, such as replication, migration,
planning, data placement, and so on, are built on top of
those. Providing non-disrupted service to business-critical
applications with strict Service Level Agreements (SLAs) is
a challenging task. It requires careful planning, deployment,
and avoiding single points of failure in configurations. Ad-
herence to best practices is essential for successful operation
of such complex setups.

In these scenarios, experts rely on experience as well
as repositories of best practice guidelines to proactively
and reactively prevent any configuration errors in a data
center. Best practices, or rules of thumb, are observed while
planning for a deployment to proactively avoid any miscon-
figuration. In this way, valid configurations are planned and
deployed. But at times, valid deployment in an individual
layer (server, storage and network) incrementally or in
fragmented fashion may lead to misconfigurations from an
end-to-end datapath perspective, and require urgent, reactive
validation. The terms “best practice”, “policy” and “rules of
thumb” are used interchangeably throughout this paper, and
are all treated as having the same meaning as each other.

For example, consider a database-driven OLTP application
running on multiple servers with operating system A that
access storage from a Storage Controller B through a fiber
channel fabric. Initial provisioning and deployment were
done by server, network, storage and database adminis-
trators. The same task might also have be done through
automated workflows. During the application planing and
deployment, best practices were followed by a network
administrator to create zoning [4] configurations such as (i)
Devices of type X and devices of type Y are not allowed in the
same zone, and (ii) No two different host types should exist
in the same zone. Later, due to the application requirements,
a server administrator changed the operating system of
one of the servers to A′. All the best practices for server
and application compatibility were ensured by the server
administrator. But the host bus adapters (HBAs) associated
with the server still remained in its previous zone, violating
both of the fabric policies stated above, and resulting in data
loss.



IBM has a Storage Area Network (SAN) Central team
whose job is to examine all known storage area network
configuration issues and come up with best practices—see
the appendix of [5]. These best practices have helped the
SAN Central team to reduce the time required to resolve
configuration errors from 2 weeks to 2 days as 80% of the
configuration problems are caused by the violation of a few
best practices. However, manual generation of the best prac-
tices is costly, requiring 20 man-years of data gathering and
analysis so far. Sharing of best practices and collaboration
across cloud providers to proactively prevent configuration
errors—or at least to quickly react to problems—is also
another important, related aspect of this process [6].

In this paper, we present an automated policy generation
framework that uses Inductive Logic Programming (ILP) to
learn and generate storage-specific best practices. Input to
PGML is a relational system management repository and a
set of problem reports raised against the same managed envi-
ronment. Output of this system is a set of best practices with
confidence values associated with them. These best practices
are then validated by field experts. Internally, PGML creates
an innovative mapping of relational information to ILP
constructs guided by storage-specific domain knowledge.

Challenges: The challenges in generating best practices
for a domain are numerous. There needs to be a systematic
way to gather all the data from a complex and heterogeneous
environment required for problem diagnosis. Success of any
automated policy generation mechanism is determined by
the quality and quantity of the data provided to it. Our data
sets have a large number of entities, attributes and associa-
tions. This points to the need for dimensionality reduction so
that the data sets can be analyzed efficiently. Many ML tools
today can only deal with clean, well-formatted data. The
cost of transforming raw data collected from management
infrastructure into a form consumable by a ML tool should
not be underestimated. In addition, such preprocessing is
being done in an ad hoc manner for every new problem in
every new data set. The time and effort spent to prepare
the data largely outweighs the time spent to analyze it. In a
way, while the state-of-the-art use of ML reduces the manual
effort to analyze data, it is introducing significant man hours
in “massaging” the data. Finally, the system would also want
the purest subset of entities, attributes and associations that
contribute to a configuration error. This would require the
use of a highly accurate data classification tool that can
overcome incomplete dimensions as well as noise contained
within the data sets.

It is worthwhile noting that the problem of generating
best practices is different from analyzing the root cause of
a problem even though both techniques are valuable from
an operational standpoint. In problem determination we are
looking for the root cause specific to a single failure report,
whereas in best practice generation, we find common root
causes across multiple failure reports. A root cause analysis

algorithm is a reactive mechanism designed to pinpoint the
exact behavior of an entity or a set of entities that is causing
a configuration problem. For example, if a set of computers
have problems accessing a storage subsystem, a root cause
analysis might reveal that computers with a certain operating
system tend to overwrite the signatures of disks belonging to
other computers. In contrast, best practice determination is a
predictive mechanism that shows the minimal combination
of entities and attributes that need to be followed so as
to avoid a recurrence of a configuration problem. In the
example above, the best practice would be to avoid putting
computers with multiple operating systems in the same SAN
zone.

Contributions: The contributions of this paper are:
(1) A novel framework that performs a transparent mapping
of hierarchical, object-oriented system management infor-
mation in CIM format into ILP-based, multi-dimensional
predicate descriptions. PGML uses this layer to automati-
cally generate best practices. The framework is unique in
minimizing data preprocessing cost through the use of a
machine learning technique that can naturally represent the
multi-dimensional relationships inherent in storage systems
management data
(2) The PGML Framework is based on an innovative work-
flow that streams information through layers without any
data loss or creation of ambiguity while following guidance
of the background knowledge. This layered workflow can
easily be extended to apply to other domains of similar
nature.
(3) An initial evaluation of this framework despite the
limited availability of real world data. Also, the selection
of ILP as the machine learning technique for this domain
over others is justified.

II. RELATED WORK

Failure diagnosis in distributed systems has been studied
extensively [7]. Traditional approaches usually rely on ex-
plicit modeling of the underlying system. One widely used
technique is the knowledge-based expert system. Such an
approach may work well in a controlled, static environment.
However, as the complexity of the system keeps growing, it
becomes impossible to encompass all the necessary details.
For instance, the device interoperability matrix is so dynamic
that it is infeasible for an organization to build a compre-
hensive matrix at all. Applications on top of the network
add another layer of complexity (e.g. disk and tape traffic
cannot flow through the same HBA).

From the perspective of machine learning, failure diagno-
sis can be viewed as an anomaly detection problem [8], [9],
[10], [11], particularly if the majority of the training samples
are negative cases (i.e. non-problematic situations). The key
idea is to describe what good data look like and define an
anomaly to be a configuration data point that does not fit
the profile of good data. The concept of feature selection
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Figure 1. SMI-S Profile example

and model selection are also explored in several recent pa-
pers [12], [13]. Diagnosis of configuration problem has been
studied in several areas such as the Windows Registry [14],
[15], [9], [16], router configuration [17] and general Internet
applications [18]. Other recent research activities focus on
performance problems [19], [20], software failure [21], [22],
general fault localization techniques [12], [23] and also
automated policy generation for mobile networks [24].

III. BACKGROUND

Exponential growth in storage in recent times have made
storage management a monumental task for administrators.
Popular storage/system administration offerings available in
the marketplace, such as IBM TivoliStorage Productivity
Center (TPC) [25], EMC Control Center [26], and HP
System Insight Manager [27], address the task of seamlessly
managing a complex and heterogeneous environment.

Enterprise storage setups require careful planning, deploy-
ment and maintenance during their lifetime. Guidance poli-
cies for proactive validation during planning, and validation
policies for reactive validation later on are an important
aspect of policy-based management. For example, Storage
Planner [28] and Configuration Analyzer [29] components
of IBM TPC are examples of the above paradigm. Usage
of policies generated out of the observations made by field
experts is a well known approach. Our framework augments
the observation of human field experts by learning the
patterns that are not easily visible given the scale of data
to be observed.

The SMI-S (Storage Management Initiative Specifica-
tion) [30] is an open, extensible, industry standard aimed
at enabling the seamless management of multi-vendor het-
erogeneous equipments in a storage environment. SMI-S
leverages the hierarchical and object-oriented architecture
of CIM [31] and WBEM [32] to enable exchange of se-
mantically rich management information of devices over the
network. Most modern storage devices are SMI-S compliant
and expose behavioral aspects of device management using
standard profiles. Simple examples of the SMI-S concepts
stating the entities, attributes and association are shown in
Figure 1.

Management solutions discover the devices such as
servers, network switches, storage controllers, tape libraries
through the Service Location Protocol (SLP). Properties of
the devices are then queried through a standard CIM client
and are stored in a central relational repository; usually

a database. This database contains correlated information
across devices that gives a view of the end-to-end data path.

Our initial work in this area used decision trees for policy
generation [33], and investigated sharing and collaboration
of policy repositories across multiple data centers [6]—both
have laid the foundation for creation of PGML.

IV. OVERVIEW OF PGML

Let us consider a cloud provider environment that serves
multiple customers, or an internal enterprise data center that
serves multiple departments of a company. Each customer
has its applications hosted on a set of virtual machines
or servers, consuming storage from multiple storage con-
trollers. The data flow will use multiple network switches
along its data path. Based on customer workload require-
ments, deployments are planned and resources are allocated.
Should anomalous behaviour be observed, the customer
creates a problem ticket such as (i) Application A is not
accessible or (ii) Server A cannot write data on file system
B. PGML uses a commercial storage management server,
IBM TivoliStorage Productivity Center [25], that collects
monitoring data from multiple layers of the IT stack in-
cluding databases, servers, and the SAN. Collected data
are persisted as time-series records in a relational database.
Figure 2 shows the building blocks of PGML along with
the rest of the infrastructure stack on which it operates.

Servers have attributes such as Name, IP Address, OS
Type, OS Version, Vendor, Model, and so on. Each Server
has one or more Host Bus Adapters (HBAs). HBAs have
attributes such as WWN, Port Speed, Number of Ports, etc.
A Fiber Channel Fabric has one or more switches with
attributes WWN, Number of Ports, and Port to Port. Storage
Controllers have attributes like Pools, Volumes, Extents,
Disks, and so on. Through Port WWN, SCSI ID of storage
volumes and so on, end-to-end data path tuples are created.
In basic terms, the structure of correlated end-to-end data
path tuples are as follows: (Server, HBA, Initiator Port,
Fabric, Target Port, Storage Controller, Volume)

In general, there are three kinds of attributes: (i) direct
attributes, (ii) associations, and (iii) derived attributes based
on domain knowledge. An example of the latter might
be accessibility based on masking, mapping and zoning
information.

In an operational environment, if a problem ticket gets
created and it tags any element in the data path, the whole
tuple is marked as a problematic one and is otherwise
marked as a non-problematic one. Even though each device
reports data individually and those data get stored in multiple
database tables, the required data can be selected in one
place, by utilising database views.

Having described the storage area network domain, we
move to explain the rationale behind the selection of ILP as
the machine learning technique. An approach using decision
tree learning [33] was found not to be scalable for derived
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Figure 2. PGML System Overview

attribute creation. Further, preprocessing of the data for input
in the decision tree learning software led to a semantic
transformation that might contribute to potential data loss,
and thus incorrect policy generation. For example, to learn
a policy such as Operating Systems A and B should not be
in the same Zone, we need to create derived attributes such
as (i) a Boolean heterogeneous that is associated with each
zone, (ii) attributes representing the presence or absence of
a permutation of all of the combinations of two operating
systems that might be in a zone. Creating such derived
attributes for all containment associations such as zone is not
very scalable. We have investigated use of multiple machine
learning techniques and tools, namely Aleph [34], HR [35]
and Progol [36]. Both Aleph [34] and Progol [36] are top-
down relational ILP systems based on inverse entailment
whereas HR [35] is a Java-based automated reasoning tool
for theorem generation. Limitations, in terms of arithmetic
support for comparison and cardinality in Progol or auto-
matic generation of background knowledge in HR led us
to use the Progolem ILP tool [37], [38], [39] for policy
generation. ILP evaluates positive and negative examples
based on background knowledge to generate hypotheses.
Progolem generates the hypothesis in the form of first order
logic expressions with quantifiers.

Next we describe the details of the input and output data
and the components of our framework.

CIM/SMI-S to DB Mapper: Different data centers’ cloud
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Figure 3. CIM/SMI-S to DB Mapping

administrators deploy a variety of system and storage man-
agement solutions to keep control of their environment. Each
solution stores information regarding the managed environ-
ment in a relational database using a proprietary schema.
Most of the time, the proprietary schema is influenced by
the CIM/SMI-S schema but not all database schemas are
the same. Since the underlying devices expose information
according to an industry standard, we have defined a map-
ping layer that maps the management information in the
database to the CIM/SMI-S information. This mapping is
seamless, due to the native nature of the underlying models.



% Modes
:- modeb(*,fabric_has_switch(+fabric_id,-switch_id)).
:- modeb(1,switch(+switch_id,#codelevel,#model,-serialnumber,#type,#vendor)).
:- modeb(*,fabric_has_computer(+fabric_id,-computer_id)).
:- modeb(*,switch_has_fcport(+switch_id,-fcport_id)).
:- modeb(1,subsystem(+subsystem_id,#codelevel,#model,-serialnumber,#type,#vendor)).
:- modeb(*,hba_has_fcport(+hba_id,-fcport_id)).
:- modeb(1,hba(+hba_id,#drivername,-driverversion,#firmwareversion,#model,#vendor)).
:- modeb(1,computer(+computer_id,-hostname,#ostype,#osversion)).
:- modeb(1,fabric(+fabric_id,#exptype,-wwn)).
:- modeb(*,fcport_has_fcport(+fcport_id,-fcport_id)).
:- modeb(*,fabric_has_subsystem(+fabric_id,-subsystem_id)).
:- modeb(*,computer_has_hba(+computer_id,-hba_id)).
:- modeb(*,subsystem_has_fcport(+subsystem_id,-fcport_id)).
:- modeb(1,fcport(+fcport_id,-name,#portspeed)).
:- modeh(1,faultyfabric(+fabric_id)).

% Examples

%Positive Examples
example(faultyfabric(fabric_393),1).
example(faultyfabric(fabric_0),1).
.....

%Negative Examples
example(faultyfabric(fabric_458),-1).
example(faultyfabric(fabric_196),-1).
......

% Entities

% switch(switch_id,codelevel,model,serialnumber,type,vendor).
switch(switch_0,0,model_0,serialnumber_9,type_0,vendor_0).
....

% computer(computer_id,hostname,ostype,osversion).
computer(computer_0,hostname_0,ostype_3,3).
.....

% Relations

% fabric_has_switch
fabric_has_switch(fabric_327,switch_477).
...

% fcport_has_fcport connectivity
fcport_has_fcport(fcport_49694,fcport_49632).
…

% Modes
:- modeb(*,fabric_has_switch(+fabric_id,-switch_id)).
:- modeb(1,switch(+switch_id,#codelevel,#model,-serialnumber,#type,#vendor)).
:- modeb(*,fabric_has_computer(+fabric_id,-computer_id)).
:- modeb(*,switch_has_fcport(+switch_id,-fcport_id)).
:- modeb(1,subsystem(+subsystem_id,#codelevel,#model,-serialnumber,#type,#vendor)).
:- modeb(*,hba_has_fcport(+hba_id,-fcport_id)).
:- modeb(1,hba(+hba_id,#drivername,-driverversion,#firmwareversion,#model,#vendor)).
:- modeb(1,computer(+computer_id,-hostname,#ostype,#osversion)).
:- modeb(1,fabric(+fabric_id,#exptype,-wwn)).
:- modeb(*,fcport_has_fcport(+fcport_id,-fcport_id)).
:- modeb(*,fabric_has_subsystem(+fabric_id,-subsystem_id)).
:- modeb(*,computer_has_hba(+computer_id,-hba_id)).
:- modeb(*,subsystem_has_fcport(+subsystem_id,-fcport_id)).
:- modeb(1,fcport(+fcport_id,-name,#portspeed)).
:- modeh(1,faultyfabric(+fabric_id)).

% Examples

%Positive Examples
example(faultyfabric(fabric_393),1).
example(faultyfabric(fabric_0),1).
.....

%Negative Examples
example(faultyfabric(fabric_458),-1).
example(faultyfabric(fabric_196),-1).
......

% Entities

% switch(switch_id,codelevel,model,serialnumber,type,vendor).
switch(switch_0,0,model_0,serialnumber_9,type_0,vendor_0).
....

% computer(computer_id,hostname,ostype,osversion).
computer(computer_0,hostname_0,ostype_3,3).
.....

% Relations

% fabric_has_switch
fabric_has_switch(fabric_327,switch_477).
...

% fcport_has_fcport connectivity
fcport_has_fcport(fcport_49694,fcport_49632).
…

Figure 4. Input format to the PGML Engine

This layer helps our tool remain agnostic to the multi-
vendor management solutions. Some information regarding
the managed environment is also collected through SNMP
and is currently not captured by our mapper. An example of
this mapping is shown in Figure 3.
ILP Mapper: This module retrieves the data from relational
database based on the CIM/SMI-S mapper described above.
Then, it transforms the CIM data into a format expected by
the ILP engine. This module keeps the data preprocessing
cost optimal through dimensionality reduction of given data
sets. Entities, attributes, relationships, positive examples and
negative examples are created through this module and are
passed on to the ILP engine for hypothesis (and thus policy)
generation. A sample of the input file format is shown in
Figure 4.
PGML Engine: The PGML engine uses the Progolem tool
for ILP. A formal definition of ILP states [39]:

Given background knowledge: B
Positive examples: E+

Negative examples: E−

Hypothesis H can be constructed while the fol-
lowing conditions hold:
Necessity: B 2 E+

Sufficiency: B ∧H � E+

Weak consistency: B ∧H 2 �
Strong consistency: B ∧H ∧ E− 2 �

The symbols used above are: ∧ (logical and), ∨
(logical or), � (logically proves), and � (falsity).

In general, each customer is hosted on a virtual fiber
channel fabric for the sake of security (i.e., to achieve
isolation) and to provide a redefinable boundary. When a
customer encounters problems, they call the support desk
and register a problem ticket. Each problem ticket contains
the description of the problem, such as accessibility, security
issues, performance problems, and so on, along with a
suspected set of problematic elements, such as servers,
and volumes. Based on the problem tickets, each virtual
fabric is marked as a positive or a negative example with
respect to time. Problem tickets also help us mark the faulty
components at a fine granularity in the fabric based on the
customer’s report. This step can potentially generate noisy
and faulty data. PGML has a module that deals with the
noise, but it is currently a work in progress and is beyond
the scope of this paper.

PGML performs supervised learning on the attributes
defined by the CIM/SMI-S entity and its attributes in order
to uncover candidate policies. ILP is well suited for this
domain because it has native constructs regarding entities,
relationships between entities, and logical rules. This layer
defines the generic background and domain knowledge. The
CIM/SMI-S model is hierarchical and object oriented. It has
constructs such as CIMClass, CIMInstance, CIMProperty,
Aggregation and Association. Aggregation is a particular
case of Association representing containment. Association
can be one-to-one, one-to-many, many-to-one, and many-to-
many. Background knowledge created by this layer contains
information such as how homogeneous or heterogeneous
the aggregation set is, the set count, and the cardinality
count for the association instances. Each CIMInstance has
a unique key called CIMObjectpath that helps in creating
uniqueness check rules. The number of members in a zone
(i.e., the zone member count) and whether all servers in a
zone have the same or different operating systems is the
information that gets retrieved from the association between
a fiber channel zone and the fiber channel server ports in it.
With this generic, domain-specific background knowledge,
the PGML engine internally uses the Progolem ILP tool
and orchestrates the flow of data and control across the
components described above to generate the hypothesis.
These generated hypotheses are the policies or best practices
that are then evaluated by the field experts.

V. EVALUATION

The goals of our evaluation were to validate the feasibility
of a framework that uses ILP-based machine learning over
multi-dimensional, relational system management data. In
particular we want to: (i) validate PGML generated output
with the observations of the field experts, and (ii) evaluate
the performance of PGML in terms of sensitivity—to gain
insights into the parameters that can affect the efficiency of



our tool, and affect the quality of the best practices that are
generated.

Best practice generation: First we provide insights into
how PGML generates best practices by transforming the raw
data derived from an operational environment into a format
interpretable by the machine learning engine. Problem tick-
ets describing the configuration problems that were provided
as input to PGML were manually grouped into categories by
field experts. Upon generation of best practices, we observed
that the generated best practices could be grouped into the
same five categories.

We consider an environment E, that consists of ele-
ments e1, . . . , en, each of which has attributes a1, . . . , at.
Further, we have associations A, with instances A1, . . . , Ak

where each association A1 groups a subset of entities in
E. Based on the constructs of the basic model shown in
Figure 1, we assumed the following concrete model:
E =

{ComputerSystem, StorageVolume, FCPort,
ProtocolEndpoint, ...}

ComputerSystem =
{Name, Status, Dedicated, ...}

StorageVolume =
{DeviceID, BlockSize, Access, ...}

A =
{SystemDevice, ActiveConnection, ...}

SystemDevice =
{ComputerSystem, StorageVolume, ...}

ActiveConnection =
{ProtocolEndpoint, ProtocolEndpoint,
TrafficType, IsUnidirectional, ...}

With the background knowledge, which are the set of pos-
sible terms that are provided in the concrete model and could
potentially be used as factors of the hypothesis, injected into
PGML, the five meta-categories of best practices generated
were as follows.
Cartesian: Given a set of values v1, . . . , vm for at-
tributes a1, . . . , am, avoid configurations in which an ele-
ment ei belonging to E satisfies

m∧
j=1

ei.aj = vj .

For example, avoid all HBAs of Vendor A type B that do
not have firmware versions f1 or f2. A sample of a generated
hypothesis under this category was

san_configuration(A) :-
uses_subsystem_model(A, hba01),
uses_operating_system(A, solaris).

Connectivity: Given an association Ai, avoid configurations
in which the number of instances of the association Ai

between two entities ea and eb does not exceed a certain
threshold k. For example, avoid all configurations in which
a host does not have at least two network paths to a storage
subsystem.
Exclusion: Given sets of values v11, . . . , v1m and
v21, . . . , v2m for attributes a1, . . . , am, avoid configurations

of elements ei and ej belonging to E that satisfy( m∧
k=1

ei.ak = v1k

)
∧
( m∧

k=1

ej .ak 6= v2k

)
.

For example, tape libraries should not exist in a zone if it
contains disk storage controllers.
Many-to-one: Avoid configurations in which the value of
some set of attributes a1, . . . , am is not the same for all
entities ei in an instance of an association Ak. For example,
all HBAs associated with a host computer should be from
the same vendor with same model and firmware version.
One-to-one: Avoid configurations in which the value of
some set of attributes a1, . . . , am is not different and unique
for all entities ei in an instance of an association Ak. For
example, all ports in a storage network fabric must have a
unique port world-wide name (WWN).

The generated best practices for each category were then
confirmed from hands-on experience with multiple in-house
and commercial tools used by administrators today.

Performance evaluation: Next we present performance
evaluation results when using PGML. Since the best practice
generation is an off-line procedure, it is more important for
the system to handle large amounts of learning data, rather
than minimizing the response time in terms of best practice
generation.

Our experimental setup involves injection of SAN con-
figurations and associated problem tickets into the learning
system. Each SAN configuration is considered a data point
with two groups of attributes: (i) size (ii) whether it is a
positive or negative case. SAN configurations are classified
into three broad categories based on their size: (i) small
SANs with 25 to 50 connected ports; (ii) medium SANs with
100 to 500 connected ports; and (iii) large SANs with 1000
to 3000 connected ports. Presence or absence of problem
tickets associated with a given SAN determine whether it
is a positive or a negative data point. Each problem ticket
also belongs to one of the five categories that were described
earlier. In our overall dataset, 30% of the SANs had problem
tickets associated with them, which resulted in a ratio of 70%

30%
of positive to negative SAN data points for PGML.

To measure the sensitivity of PGML to SAN size, we
limited our attention to SANs that (possibly) had problems
of the Cartesian type. As can be seen in Figure 5, we had a
total of 100 small SAN configurations out of which about 30
SANs had problem tickets of the Cartesian type associated
with them. Remaining 70 small SANs in the dataset did
not have any problem tickets associated with them. Again,
as shown in Figure 5, the number of problem reports that
were required to generate the best practice dropped from 100
for problem reports from a small SAN size to 20 for those
from a large SAN size. The statistical classification results
are shown in Table I. This indicates that a large SAN has
a greater diversity of information, which leads to improved
accuracy in PGML.



Figure 5. Sensitivity of PGML to size of the SAN in terms of best practice
generation

Table I
STATISTICAL CLASSIFICATION RESULTS

SAN size # SANs Precision Recall Accuracy F-measure
Small 100 0.98 0.97 0.98 0.974
Medium 35 0.92 0.97 0.975 0.944
Large 20 0.88 0.96 0.975 0.918

For the same scenario, we also observed end-to-end run
times. Run time was divided into two categories: (i) data
preprocessing time, which is the time required to prepare
the data so that it can be injected into the ILP engine, and
(ii) ILP hypothesis generation time, which is the time taken
by the ILP engine to generate hypotheses. Figure 6 shows
the time spent in preprocessing of data to generate an input
for the ILP engine as compared to the hypothesis generation
time. This provides the insight that, given a choice for
selection of SAN configurations, we should focus on smaller
sets of large SAN configurations: (i) accuracy of analyses
over a few large SAN configurations is almost same as over
large numbers of small SAN configurations, and (ii) the ILP
hypothesis generation engine is more efficient and scalable
for fewer large SANs keeping in mind that preprocessing is
a prior transformation task that can be parallelized.

VI. CONCLUSIONS AND FUTURE WORK

Best practices are a useful tool in reducing data center
management costs while increasing efficiency and ROI (Re-
turn On Investment). This is because most configuration
problems turn out to be caused by the violation of par-
ticular best practices in the storage network domain. The
paper presents PGML, a tool that automates the process of
generating best practice rules. The tool uses a combination
of industry-standard data models, and ILP-based machine
learning to statistically infer the best practices for SAN
configuration problems.

Future work in this area involves studying applicability
to other domains and observing whether the pattern of best
practices for storage area networks also is applicable to those
domains. Another potential area of work being explored

Figure 6. End-to-end run time

is to integrate information from configuration change logs
into our approach and measure the effects on best practice
generation. Yet another potential effort would be to measure
the impact of domain knowledge on the quality of the
best practice rules generated in the domain of storage area
networks. One of the areas of research that we are actively
pursuing is to measure the sensitivity of PGML to potential
misreporting of SAN configuration problems by problem
tickets, e.g. real-world problem reports may contain errors
due to customers not appreciating the entire problem scope,
or due to help-desk imprecision. Our analysis of field data so
far shows that this is not an uncommon occurrence, although
a precise quantification of this phenomenon is difficult.

This work demonstrates that Machine Learning tech-
niques, carefully applied, can make a useful contribution
to the generation of best practice policies within large-scale
storage infrastructures.
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