rkt-io: A Direct I/O Stack for Shielded Execution

Jorg Thalheim®?, Harshavardhan Unnibhavil?, Christian Priebe?,
Pramod Bhatotia'?, Peter Pietzuch?®

'Technical University of Munich, Germany

Abstract

The shielding of applications using trusted execution
environments (TEEs) can provide strong security guarantees
in untrusted cloud environments. When executing I/O
operations, today’s shielded execution frameworks, however,
exhibit performance and security limitations: they assign
resources to the I/O path inefficiently, perform redundant
data copies, use untrusted host I/O stacks with security
risks and performance overheads. This prevents TEEs from
running modern I/O-intensive applications that require
high-performance networking and storage.

We describe rkt-io (pronounced “rocket I/O”), a direct user-
space network and storage I/O stack specifically designed for
TEEs that combines high-performance, POSIX compatibility
and security. rkt-io achieves high 1/O performance by
employing direct userspace I/O libraries (DPDK and SPDK)
inside the TEE for kernel-bypass I/O. For efficiency, rkt-io
polls for I/O events directly, by interacting with the hardware
instead of relying on interrupts, and it avoids data copies
by mapping DMA regions in the untrusted host memory.
To maintain full Linux ABI compatibility, the userspace I/O
libraries are integrated with userspace versions of the Linux
VES and network stacks inside the TEE. Since it omits the host
OS from the I/O path, does not suffer from host interface/Iago
attacks. Our evaluation with Intel SGX TEEs shows that rkt-io
is 9% faster for networking and 7x faster for storage compared
to host- (SconE) and LibOS-based (SGX-LKL) I/O approaches.

CCS Concepts: « Security and privacy — Trusted com-
puting; « Software and its engineering — Operating
systems.

1 Introduction

Cloud computing offers economies of scale for computational
resources combined with the ease of management, elasticity,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys °21, April 26-28, 2021, Online, United Kingdom

© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACMISBN 978-1-4503-8334-9/21/04...$15.00
https://doi.org/10.1145/3447786.3456255

2The University of Edinburgh, UK

490

SImperial College London, UK

and fault tolerance. At the same time, it increases the risk
of security violations when applications run in untrusted
third-party cloud environments. Attackers (or even malicious
cloud administrators) can compromise the security of
applications [72]. In fact, many studies show that software
bugs, configuration errors, and security vulnerabilities pose
serious threats to cloud systems, and software security is
cited as a barrier to the adoption of cloud solutions [71].

Hardware-assisted trusted execution environments (TEEs),
such as Intel SGX [35], ARM Trustzone [4], RISC-V Key-
stone [49, 69], and AMD-SEV [3], offer an appealing way
to make cloud services more resilient against security
attacks. TEEs provide a secure memory region that protects
application code and data from other privileged layers in the
system stack, including the OS kernel/hypervisor. Based on
this promise, TEEs are now commercially offered by major
cloud computer providers, including Azure [54], Google [27],
and Alibaba [17].

TEEs, however, introduce new challenges to meet the per-
formance requirements of modern I/O-intensive applications
that rely on high-performance networking hardware (e.g.,
>20 Gbps NICs) and storage (e.g., SSDs). Since TEEs are pri-
marily designed to protect in-memory state, they only offer
relatively expensive I/O support to interact with the untrusted
host environment [20]. Early designs relied on expensive syn-
chronous world switches between the trusted and untrusted
domains for I/O calls, where a thread executing an I/O oper-
ation must exit the TEE before issuing a host I/O system call.
This approach incurs prohibitive overheads due to the security
sanitization of the CPU state including registers, TLBs, etc.

To overcome this limitation, more recent designs used by
shielded execution frameworks (e.g., ScoNE [5], Eleos [62],
and SGX-LKL [66]) employ a switchless I/O model in which
dedicated host I/O threads process I/O calls from TEE threads
using shared memory queues. To avoid blocking TEE threads
when waiting for I/O results, these frameworks employ
user-level threading libraries inside the TEE to execute I/O
calls asynchronously [76].

While such switchless asynchronous designs improve
I/O performance over the strawman synchronous world
switching design, current frameworks still exhibit significant
performance and security limitations: (1) they manage
resources inefficiently by requiring dedicated I/O threads
outside the TEE, which incurs extra CPU cycles when busy
polling syscalls queues. These additional I/O threads also
require fine-grained performance tuning to determine their

https://doi.org/10.1145/3447786.3456255
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

EuroSys "21, April 26-28, 2021, Online, United Kingdom

Thalheim et al.

100 -

800 —
80 -

600 —
60 -

400 —

Time [ps]

40 -

Throughput [MiB/s]

20 200

native sync async direct

(a) System call latency with sendto()

native sgx-lkl

(b) Storage stack performance with fio

mmm read
HEm write

14

12

10

Throughput [Gbps]

scone rkt-io native sgx-lkl scone rkt-io

(c) Network stack performance with iPerf

Figure 1. Micro-benchmarks to showcase the performance of syscalls, storage and network stacks across different systems

optimal number based on the application threads and I/O
workload; (2) they perform additional data copies between
the trusted and untrusted domains, and the indirection via
shared memory queues significantly increases I/O latency;
(3) the untrusted host interface on the I/O path has security
and performance issues: the host interface is fundamentally
insecure [15, 81], and requires context switches, which are
expensive for high-performance network and storage devices;
and (4) they lack a universal and transparent mechanism to
encrypt data on the I/O path. Instead, they rely on application-
level encryption, which is potentially not comprehensive,
and incompatible with full VM encryption models.

To overcome these limitations, we argue for a fundamen-
tally different design point where we re-design the I/O stack
based on direct userspace I/O in the context of TEEs. To exem-
plify our design choice, we compare the direct I/O approach
within TEEs with three alternative I/O approaches, measur-
ing the performance of the sendto() syscall with 32-byte
UDP packets over a 40GbE link for (i) native (not secured),
(ii) synchronous and (iii) asynchronous syscalls within TEEs
(secured). As Figure 1a shows, native system calls (16.4 us) and
the direct I/O based approach (17.9 ps) take approximately the
same time, while we see higher per-packet processing time for
the synchronous (91.7 ps) and asynchronous (96.7 pus) system
calls. By bypassing the host I/O support, TEE I/O stacks can
avoid performance overheads (and security limitations).

Our design for a TEE I/O stack therefore has the following
goals: (a) performance: we aim to provide near-native
performance by accessing the I/O devices (NICs or SSDs)
directly within the TEEs; (b) security: we aim to ensure strong
security guarantees, mitigating against OS-based Iago [15]
and host interface attacks [81]; and (c) compatibility: we
aim to offer a complete POSIX/Linux ABI for applications
without having to rewrite their I/O interface.

To achieve these design goals, we describe rkt-io (pro-
nounced “rocket I/0”), an I/O stack for shielded execution
using Intel SGX TEEs. The key idea behind the rkt-io design
is to combine (a) I/O kernel-bypass libraries (DPDK [24] and
SPDK [37]) for direct hardware I/O access with (b) the POSIX

491

abstractions provided by a Linux-based LibOS (LKL [59]) in-
side the TEEs. This combination results in a high-performance
I/O path, while preserving compatibility with off-the-shelf,
well-tested Linux filesystems and network protocol imple-
mentations inside the TEE. Since the I/O stack runs in the pro-
tected domain of the TEE, rkt-io provides improved security,
as it does not rely on information from the untrusted host OS.

The design of rkt-io embodies four principles to address
the aforementioned limitations of current frameworks:

e rkt-ioadoptsa host-independent I/O interface to improve
performance and security. This interface leverages a
direct I/O mechanism in the context of TEEs, where it
bypasses the host OS when accessing external hardware
devices. At the same time, it leverages a Linux-based
LibOS (LKL [59]) to provide full Linux compatibility.

e rkt-io favors a polling-based approach for I/O event
handling since TEEs do not provide an efficient way
to receive interrupts on I/O events.

e rkt-io proposes a sensible I/O stack partitioning strategy
to efficiently utilize resources and eliminate spurious
data copies. It partitions the I/O stack by directly
mapping the (encrypted) hardware DMA regions into
untrusted memory outside the TEE, and runs the I/O
stack within the TEE.

e rkt-io provides universal and transparent encryption in
the I/O stack to ensure the confidentiality and integrity
of data entering and leaving the TEE. It supports
Layer 3 network packet encryption (based on Linux’s
in-kernel Wireguard VPN [23]) for networking, and
full disk encryption (based on Linux’s dm-crypt device
mapper [22]) for storage.

Our evaluation with a range of micro-benchmarks
and real-world applications shows that rkt-io provides
better performance compared to SCONE (a host-OS based
approach) and SGX-LKL (a LibOS-based approach). For
example, the read/write bandwidth of rkt-io’s storage stack
(measured by fio [40]) is up to 7x higher (see Figure 1b),
and the throughput of rkt-io’s network stack (measured by
iPerf [39]) is up to 9% higher (see Figure 1c).

rkt-io is publicly available (see Artifact appendix A).

rkt-io: A Direct I/O Stack for Shielded Execution

2 1/O supportin TEEs

TEEs provide the ability to create hardware-assisted protected
domains in a process address space, as shown in Figure 2.
TEEs protect the confidentiality and integrity of the applica-
tion’s code and data inside the TEE. It is also possible to verify
the integrity of the code running inside the TEE via remote
attestation. This enables users to run security-sensitive
workloads in an otherwise untrusted execution environment.

2.1 Threat model

Our threat model extends the standard threat model for
TEEs [5, 7]. As in the prior work, we assume a powerful
adversary who has control of the entire system software
stack, including the host OS and the hypervisor. In line with
previous work, we do not address the physical tampering
of the CPU package, denial of service attacks, memory safety,
and side channel attacks [12, 28, 29, 86, 90].

For I/O operations, applications running inside the TEE
rely on the untrusted host OS for access to I/O devices, such
as NICs and SSDs. On the I/O path, an adversary may tamper
with the data being exchanged through the untrusted host
interface, and compromise the confidentiality and integrity
of the application running inside the TEE [10, 14, 15, 50, 88].
More specifically, the host interface may leak sensitive data,
also known as interface attacks [81], which can expose the
application state to the untrusted host.

In addition, the host interface implementation can be
malicious itself, and therefore compromise the security of
the application running inside the TEEs e.g., by manipulating
the return values of syscalls, also known as lago attacks [15].
Further, we assume that our I/O stack is resilient to memory
safety vulnerabilities [47, 61].

Lastly, an attacker may use software/hardware probing to
intercept data on the host’sI/O path by DRAM interface snoop-
ing, installing malicious hardware with DMA access, or per-
forming cold boot attacks. Only universal end-to-end encryp-
tion of data on the I/O path can mitigate these types of attacks.

2.2 Analysis of existing I/O mechanisms

A protected application within the TEE communicates with
the outside environment by performing I/O operations
for accessing the filesystem or network stack. To support
the I/O operations with the untrusted environment, TEEs
require a world switch, where a thread executing the 1/O
operation switches between the trusted and untrusted
domains, and then issues the syscall to the host OS. I/O
operations, when invoked through the synchronous syscall
mechanism, add a constant world switch overhead, incurred
due to the necessary micro-architectural security-associated
sanitizations, such as additional cache/TLB flushes, page
permission checks, etc. [20]. For example, a world switch
costs ~10,170 cycles, which is roughly 5X more expensive
than a syscall (%1800 cycles) on our hardware setup (§6).

492

EuroSys 21, April 26-28, 2021, Online, United Kingdom

TEE TEE
‘ Application A ‘ ‘ Application B ‘
------- System call interface-------
Asynchronous /O interface .
Library OS
T X ‘ ’ ‘
= _ | | --Untrusted interface-1---------
8 3 scalls | Shared resp1 §) :
E ‘é’ scall4 | memory | resp2 | £ §_ ‘ Untrusted runtime ‘
? queues resp3 33 o
@ @? = OS]
calls response
t : J
| RS | |- [0s |
NIC SSD | nNC | | ssp |

Figure 2. Two possible shielded execution architectures
for I/O support in TEEs: (left) application A uses a pure host
OS based approach, and (right) application B uses a LibOS
inside the TEE to process the I/O operations. (Regions in
green are trusted, whereas red regions are untrusted.)

To avoid the costly world switches between the trusted and
untrusted domains, current shielded execution frameworks [5,
7,36, 62, 66, 85] have adopted switchless designs, which can
be broadly categorized as (see Figure 2): (i) host-based; and
(ii) LibOS-based. We compare these approaches across three
dimensions: performance, security, and compatibility.

(1) Host-based frameworks (e.g., SCONE [5], Eleos [62], Intel
SGX SDK [36]) rely on the host OS for the I/O operations.
Among these frameworks, we focus on SconE as the
state-of-the-art system for our baseline. SCONE improves the
I/0 performance by leveraging the concept of asynchronous
system calls [76]. In the asynchronous model, a set of
dedicated I/O threads run (busy polling) outside the TEE to
process the syscall requests issued by a thread from inside
the TEE via shared memory queues.

(2) LibOS-based frameworks (e.g., Haven [7], Graphene-
SGX [85], SGX-LKL [66]) rely on customized LibOSs inside
the TEE for handling I/O operations. Note that these LibOSs
still use the underlying host OS in the backend (via the un-
trusted host-based syscall interface) to access the hardware
devices. As far as the I/O path is concerned, Haven relies on
synchronous mode for I/O operations, where the I/O threads
block for the request completion. Whereas, Graphene-SGX
provides synchronous syscalls by default, but it also supports
asynchronous mode [76]. SGX-LKL uses an asynchronous /O
mechanism also and implements the full Linux ABIin its inter-
face, while Graphene provides a subset. Therefore, we focus on
SGX-LKL as the state-of-the-art system for our LibOS baseline.

Performance. Both approaches use the resources on the
I/O path inefficiently: (1) they rely on dedicated I/O threads
for issuing the I/O calls. This incurs extra CPU cycles due
to the busy polling of the syscalls queues; (2) they require
fine-grained tuning to set the optimal number of I/O threads

EuroSys "21, April 26-28, 2021, Online, United Kingdom

due to the tight coupling with the application threads and I/O
workload; (3) they require additional data copies—data needs
to be copied from the TEE to the untrusted host memory
for the asynchronous I/O threads, before it is processed by
the underlying host OS, requiring another copy; and (4) both
approaches incur latency penalties due to the indirection
involved on the asynchronous I/O path.

Security. Both approaches depend on the untrusted host
OS, which make them vulnerable to Iago attacks [15] and
host-interface attacks [81], but they differ with respect to
the degree of dependence on the host OS: the host-based
approach exposes a wider interface with the untrusted host
OS by allowing protected applications to directly issue a large
set of syscalls. Although syscall return values are sanitized by
network and file systems shielding layers, they are susceptible
to more attacks due to the increased interactions with the
untrusted host OS.

In contrast, the LibOS-based approaches provide better
security since they expose only a limited set of syscalls to
the untrusted host OS. Furthermore, since the LibOS-based
approaches are flexible to adopt, a custom LibOS to fit
the application requirements can be developed. Hence a
protected application can further improve its security by
adopting a LibOS with a smaller TCB.

Compatibility. Host-based approaches can provide POSIX
or Linux ABI compatibility, allowing them to support
unmodified legacy applications. For instance, SCONE can
support off-the-shelf filesystems and network stacks based on
Linux. On the other hand, LibOS-based approaches offer the
possibility of specialization at the cost of limited or no support
for the existing filesystem and network stacks. In general,
this makes them less amenable for supporting unmodified
legacy applications, with a notable exception of SGX-LKL
that offers full POSIX/Linux ABI compatibility by using a
library version of the complete Linux kernel (LKL [59]).

2.3 Problem statement and approach

In this work, we aim to build a high-performance, secure, and
compatible I/O stack for shielded execution. For performance,
we want to improve latency and throughput of I/O operations
compared to a switchless asynchronous I/O approach. We also
want to minimize reliance on the untrusted host for improved
security. Lastly, we strive for full compatibility for existing
applications by supporting the Linux ABI/POSIX standard.

To achieve these goals, we next summarize our high-level
approach and associated four design principles.

#1: Host-independent 1/0 interface. Current host OS-
and LibOS-based shielded execution frameworks rely on the
underlying host OS for I/O operations. Instead, we argue for
a fundamentally different design point, in which we favor a
host-independent I/O interface that uses direct I/O with TEEs.
A direct I/O approach improves performance and security:
compared to a switchless asynchronous syscall mechanism,

493

Thalheim et al.

it reduces the latency and increases the throughput of I/O
operations by directly accessing the hardware (NICs and
SSDs) and minimizing the number of data copies. Since direct
I/0 minimizes the host OS interactions as much as possible
by accessing the I/O hardware directly from the TEE (i.e.,
there are no I/O-related syscalls after the initialization phase),
it also leads to improved security. We combine this approach
with a Linux LibOS (LKL) inside the TEE to provide full
Linux ABI compatibility. We primarily target applications
not written for SPDK/DPDK. Applications with SPDK/DPDK
support have been addressed in the context of enclaves in
previous work [6, 83]. The performance in previous work
matched those of native SPDK/DPDK applications when
encryption was disabled, however missed some features i.e.
no TCP/IP stack (only layer2) in Speicher [6] or no filesystem
support (only block layer) in Shieldbox [83]. While LibOSs
provide such APIs, a naive DPDK/SPDK port then does not
offer performance advantages and may be slower than using
traditional OS functionality. In this context, the rkt-io design
shows the required changes to multiprocessing, threading,
timer and I/O event handling, and network polling that are
needed to make the best use of hardware resources.

#2:1/0 event handling. In the context of SGX, we cannot
rely on the interrupt-driven I/O execution because there is no
efficient way to receive interrupts or timer events within TEEs.
Instead of interrupt-based I/O, rkt-io uses a polling-based
approach for handling I/O events in TEEs in which rkt-io
explicitly polls I/O response queues for completed requests
or new data. Such an approach for I/O event handling is
a natural fit with direct I/O libraries (SPDK/DPDK) that
combines polling with the run-to-completion model for
fast I/O devices, which in turn avoids the performance
bottlenecks of interrupt-based execution [8, 42, 63].

#3: I/O stack partitioning. While direct I/O libraries fit
better with I/O event handling, their adoption in the context
of TEEs presents an interesting challenge: DMA regions for
untrusted I/O devices cannot be mapped directly into the
TEE as DMA access is prohibited for security reasons. We
therefore need a way to efficiently write to and read from
a DMA region. rkt-io achieves this by sensibly partitioning
the direct I/O stack into two parts: the driver code for I/O
stacks runs inside the TEE, and DMA memory regions for
I/0 devices are outside, as part of the untrusted host memory.

#4: Transparent encryption. Since we cannot trust the
host, network or storage hardware, all data leaving the
TEE must be encrypted to ensure confidentiality, which
is typically handled at the application layer in today’s
frameworks. Unfortunately, such an approach is error-prone,
as applications may not universally encrypt all of its I/O paths,
e.g., exposing data through unencrypted legacy network pro-
tocols or file systems. Instead, rkt-io supports a transparent
and universal mechanism to provide full disk (block layer)
and network encryption (Layer-3) by relying on the LibOS.

rkt-io: A Direct I/O Stack for Shielded Execution

3 Architecture of rkt-io

Figure 3 shows the high-level architecture of rkt-io. It consists
of: (a) a network stack that is derived from the Linux kernel
exposing a socket API and is backed by the Data Plane De-
velopment Kit (DPDK) [24]. Using DPDK, rkt-io gets direct
access to the NIC from within the TEE; (b) a storage stack that
provides a complete filesystem abstraction (e.g., the Linux
ext4 filesystem). It uses the Linux VFS layer to interact with
the block device layer, which is implemented by the Storage
Performance Development Kit (SPDK) [37] over the NVMe
protocol to communicate with the SSD; and (c) a runtime envi-
ronment that integrates the storage and network stacks based
on the Linux kernel library (LKL), a userspace LibOS port
of the Linux kernel [59]. LKL provides Linux system calls as
userspace function calls inside the TEE. A modified version of
the musl standard C library (libc) [55] exposes a POSIX inter-
face to the application on top of the LKL system call interface.
An application can be built with common toolchains/pack-
age managers and put into a Linux ext4 filesystem image.
At runtime, a loader sets up the TEE, the I/O stacks, the LKL
LibOS, and then mounts the filesystem image as the root file
system. After that, the application and its linked libraries
are loaded into memory from the root file system, and the
application can now use rkt-io’s modified musl libc library.
A typical I/O request issued by the application begins
with a system call, via the libc APL The system call request
is processed by the LibOS within the TEE. Depending on
whether the request is made to a network or storage device,
the LibOS issues calls to the userspace driver via the network
and storage stacks respectively. The userspace drivers add
requests to the appropriate request queues (transmission
queue (Tx) for NIC; submission queue (Sq) for NVMe),
which are mapped into the untrusted DMA memory region.
Likewise on the receive path, the drivers continuously poll the
completion queues (receive queue (Rx) for NIC; completion
queue (Cq) for NVMe), which are also mapped into the
untrusted region. The userspace drivers notify the library OS
on response completion and can return the data if requested.
Next we explain the two building blocks of rkt-io: (a) the
direct kernel-bypass I/O mechanism; and (b) the POSIX
abstraction/Linux ABI from the Linux-based LibOS.

Direct I/O libraries. Our I/O stack incorporates direct
kernel-bypass I/O libraries in the TEE to avoid system
calls and directly access the I/O devices. With fast I/O
devices, such as fast NICs and NVMe SSDs, context switches
and extra data copies make the OS kernel a performance
bottleneck [8, 42, 63]. This has given rise to solutions that
manage requests made to the underlying hardware in
userspace via kernel-bypass. Our work builds on two popular
userspace direct I/O libraries, DPDK [24] and SPDK [37],
which support network and storage devices respectively.

A direct I/O approach in the context of TEEs is both
advantageous and disadvantageous. On one hand, its

494

EuroSys 21, April 26-28, 2021, Online, United Kingdom

TEE
. Applicaion
”””””””””””” Linux ABI (ibc)
__ e
send()I/recv() read()il'write()
Socket API LKL VFS
TCP/IP and UDP Filesystem(ext4)
Wireguard dm-crypt
Netdev driver Block device driver
___ [
receive() queue() !
d 1
seI, 0 Ithread request() kthread
I SPDK |

Figure 3. Architecture overview of rkt-io (network stack
on left; storage stack on right)

polling-based approach is well-suited for TEEs because
interrupts are not permitted within TEEs. Furthermore,
polling for completion reduces the total latency, and has been
shown to lead to a better design for high-performance I/O
devices (NICs and SSDs) [8, 42, 63]; on the other hand, a direct
I/O (zero-copy) philosophy is fundamentally incompatible
with TEEs, because a DMA memory region cannot be mapped
directly inside the TEE due to security restrictions.

To overcome this limitation, rkt-io adopts a split architec-
ture in which driver code for DPDK and SPDK runs inside the
TEE, but it maps the DMA memory regions for the NIC/NVMe
queues outside the TEE in untrusted host memory. More
specifically, the DPDK driver polls the NIC for received
packets, which are then explicitly copied into the TEE from
the DMA regions. Likewise, the NVMe driver uses its highly
parallel asynchronous, lockless and poll-for-completion de-
sign to access the underlying SSD. The drivers map hardware
queues and PCle registers into the DMA region, and adds
requests and poll responses to distinct queues. Thereby, our
design follows a “one-copy” approach that copies the data
between the untrusted DMA region and the TEE.

Although DPDK and SPDK help improve the performance
and security of applications inside TEEs, it is challenging
for developers to use them due to their low-level I/O
interfaces. DPDK provides high-speed packet processing
capabilities at Layer 2 in the network stack; SPDK offers only
ablock layer interface (and a rudimentary file system called
BlobFS [11]). These low-level interfaces are not sufficient for

EuroSys "21, April 26-28, 2021, Online, United Kingdom

most applications, which rather need a full network stack
(e.g., TCP/IP) and full filesystem (e.g., ext4) support.

LibOS with Linux ABI. rkt-io uses the Linux Kernel Library
(LKL) [59] to provide a mature POSIX implementation with
a virtual file system (VFS) layer and a TCP/IP stack. LKL is
a complete architecture port of Linux to the userspace, which
provides components such as the kernel page cache, work
queues, filesystem and network stacks, and crypto libraries.

In our design, the application and the LKL LibOS run in
a single virtual address space within the TEE. rkt-io thus
avoids user/kernel context switches, as system calls are
invoked through functions calls, and it also eliminates data
copies between the user/kernel space. By combining LKL
with DPDK/SPDK, applications do not need to be modified
to use low-level I/O APIs and instead can use POSIX APIs,
while taking advantage of the performance and security
guarantees offered by rkt-io.

In addition, rkt-io leverages LKL to provide universal
and transparent encryption to ensure the confidentiality of
data entering and leaving the TEE. rkt-io supports Layer-3
network packet encryption based on Linux’s in-kernel
Wireguard VPN [23], and full disk encryption based on
Linux’s dm-crypt device mapper [22].

Trusted computing base (TCB). There is an implicit trade-
off between the TCB size and the exposed attack surface
through the host interface (e.g., for Iago attacks and TEE data
leakage). We incorporate DPDK/SPDK within the TEE for
improved performance at the cost of a larger TCB. Our design
provides better security properties compared to host OS-based
designs, which are prone to Iago attacks or host-TEE interface
leakage. This is achieved by handling all system calls directly
inside the enclave. rkt-io only exposes low-level I/O opera-
tions to the untrusted hardware while sanitizing responses.
Furthermore, I/O operations can be encrypted and authenti-
cated to make it harder to provide malicious inputs. There is
also scope to further minimize/harden the TCB by rewriting
parts of DPDK/SPDK, but we consider this beyond this work.

4 Detailed design of rkt-io

We next present the detailed architecture of rkt-io around
the four design principles from §2.3.

4.1 Host-independent I/O interface

rkt-io’s design aims to provide support for I/O operations
while reducing dependencies on the host OS. After boot
up of the TEE environment, rkt-io loads the user-provided
application and its dependencies into the encrypted memory.
It provides its own ABI-compatible variant of the musl
libc implementation, which makes system calls against the
integrated LKL LibOS — a non-MMU Linux architecture port.

Multi-threading and scheduling is implemented in rkt-io’s
libc: it implements cooperative userland threads that are
scheduled on a fixed number of host OS threads. The userland

495

Thalheim et al.

Host | OS thread | | OS thread |

A\ 4 A
Libc [Lthread #1] |Lthread #2 |
LKL CPU#1

Task#1| Task#2

Original design

New design

Figure 4. rkt-io SMP architecture

threads yield control and allow other threads to be scheduled
on the same host OS thread when they are blocked, e.g., when
locks are taken; when a thread sleeps; or when a blocking
system call against the LibOS kernel is issued. While pure
busy loops thus cannot be preempted, we did not encounter
this to be a problem in real-world applications. To build
the host-independent I/O interface, we next discuss three
main design issues that rkt-io addresses to adapt LKL for
high-performance networking and storage.

Symmetric multiprocessing (SMP).

To allow high-performance I/O operations, the I/O stack
must be parallel to take advantage of SMP. By default, LKL
does not support multi-threading, as shown in Figure 4
(original design on the left). When multiple threads attempt
to enter the kernel context, they need to obtain a single
lock. This lock protects the data structures associated with
a virtual CPU. This creates a bottleneck in the LKL kernel
as the backend I/O drivers and most applications are parallel.

To make the kernel scalable, we modify LKL to add SMP
support. With that, LKL can provide multiple virtual CPUs as
shown in Figure 4 (new design on the right). The threading
primitives required by the kernel for SMP are adapted from
the native architecture (i.e., x86 in our prototype). This
change also introduces additional kernel threads that are
needed to handle inter-process interrupts and timer events
that are broadcast to multiple virtual CPUs.

To evaluate the effectiveness of our SMP design, we use
fio [40] with random read/write requests on a 1 GB file while
increasing concurrency. Figure 5a shows that the throughput
for the storage stack increases linearly with more threads
(from 1 to 8 threads) for both read and write requests.

Threads stack management. With an SMP architecture,
the number of threads in LKL also increases. To implement
threads, LKL uses its OS-specific host interface. In its default
implementation for a POSIX-compatible OS, LKL creates a
POSIX thread with the architecture’s default stack size (8 MB
on x86-64). In an environment in which the OS has MMU
support, the stack is only backed by physical memory as it
grows in size.

rkt-io, however, has no MMU support and must therefore
pre-allocate stack memory. This results in a significant

rkt-io: A Direct I/O Stack for Shielded Execution

EuroSys 21, April 26-28, 2021, Online, United Kingdom

500

400

300 4

200 1

Throughput [MiB/s]

100

500 | ™= read 12 4
HEE write
10
T 400 =
o o
= o 8
= 300 o o
2 >
£ £ o4
3 g
g 200 o s,
= [=
100
2 =
0- 0
1 2 4 6 8

zerocopy
(a) Effectiveness of the SMP design with
fio and increasing number of threads

offloads+ no offloads no zerocopy

(b) iPerf throughput with optimizations

aes-ni no aes-ni

(c) Effectiveness of hardware-accelerated
crypto routines

Figure 5. Micro-benchmarks to showcase the effectiveness of various design choices in rkt-io

memory overhead when implementing SMP, as more threads
consume proportionately higher physical memory. This is an
issue given that TEE technologies such as SGX have limited
physical memory (94 MB in x86 SGX enclaves) that are
usable without costly paging operations.

To solve this issue, we reduce the kernel thread stack size
to 8 KB, which is the same stack size that the Linux kernel
uses for x86_64. For DPDK/SPDXK, this stack size, however,
is too small due to its heavy use of inlined functions. Nested
inlining causes more local variables to be stored on the stack,
as variable lifetimes increase, which we therefore reduced
by removing inline compiler directives.

This approach for thread stack management is extremely
effective: each CPU allocates kernel workers and each
subsystem spawns dedicated threads (filesystem, diskmapper,
TCP/IP, etc.). We observe 155 kernel threads for a single-
threaded application with 8 virtual LKL cores. By switching
from 8 MB to 8 KB stacks, we save 1.2 GB of memory.

Event scheduling timer. An I/O stack relies on timer
events for several periodic tasks, e.g., to flush out dirty pages,
to schedule TCP re-transmissions, etc. In our experiments,
the original timer support in LKL is too slow for our design
because it would only schedule 1-3 events per second. The
slow timer is not an issue for the native LKL storage and
network drivers, because they only delegate I/O requests to
threads that execute host system calls, making it less reliant
on periodically scheduled tasks. In rkt-io, however, timer
events are used to periodically poll I/O devices, which makes
them a bottleneck for scheduling tasks. Therefore, we need
to design a new timer implementation to meet the scheduling
requirements on the direct I/O path.

Originally, LKL implements a one-shot timer interface
in which the kernel registers functions to be called after a
certain time by creating a thread per event. The thread sleeps
for a given time interval before invoking the kernel callback.
rkt-io implements a periodic timer instead. With a frequency
of 50 Hz, it calls a generic interrupt function, and the kernel
checks which tasks must be executed within this tick. To do
so, a single thread is created once, which performs a sleep

496

system call in a loop before notifying the kernel. With this
new design, the polling mode I/O stack becomes able to
handle I/O events at a high rate.

4.2 1/0 event handling

We design our I/O stack based on polling, and therefore we
must re-design the LibOS’s network and filesystem interfaces
to support this. We achieve this by mapping registers and
DMA memory regions into rkt-io’s virtual address space.
Rather than relying on conventional interrupts to get I/O
completion events, which would force context switches and
exit the TEE, rkt-io uses polling. While polling can consume
more CPU cycles than interrupt handling, especially in
I/O-intensive applications, interrupts become a bottleneck.
There is a recent trend in OS design to switch to hybrid
polling/interrupt approaches to meet the performance
requirements of network and storage hardware [25, 92]. We
next explain our polling-based design, which we find most
suitable for both block (SSDs) and network (NICs) devices.

Block device polling. Figure 3 (right) shows the data path
when applications access the filesystem. System calls issued
by the application are first dispatched by the virtual filesystem
and then delegated to the actual filesystem (in our experi-
ments, ext4). When the filesystem reads/writes data from the
underlying block device, the data is cached in the page cache.

The SPDK driver puts incoming requests in the NVMe
queue. When queuing requests, the driver also polls for
completed requests in the corresponding completion queue.
If there are outstanding requests, it schedules a polling task.
The polling task periodically polls the completion queue
until all outstanding requests are acknowledged and notifies
the kernel about each completed item.

In an SMP environment, single hardware queue pairs can
easily become a bottleneck due to lock contention, which
is caused by multiple threads trying to issue requests concur-
rently. To overcome this problem, the NVMe standard allows
the creation of multiple request/response queue pairs. This
allows I/O requests to be issued in parallel, while improving

EuroSys "21, April 26-28, 2021, Online, United Kingdom

data locality in NUMA systems. We assign one queue pair
per virtual LKL CPU and bind one polling thread to each.

As described in §4.1, LKL has the concept of virtual CPUs,
which are protected by locks, so that only one thread can ac-
cess them at a time. Due to this, rkt-io does not need additional
locks around its own queues, as they are already protected
by the CPU locks. One challenge when introducing multiple
queues is to not increase the CPU overhead due to polling: too
much polling on a particular queue steals CPU cycles from the
application or from other queues; while not enough polling
increases latency and decreases throughput. rkt-io puts the
polling threads to sleep if no outstanding requests are due.

An advantage of rkt-io’s design with one queue-pair per
CPU is that it can also safely poll without locks in the request
function, because the actual poll thread cannot run at the
same time on the same CPU. This reduces context switches,
as the request function is often called from the application
thread during a system call.

Network device polling. Similar to the storage stack, the
network stack also relies on polling. Figure 3 (left) shows
the data path for networking. An application can use the full
POSIX socket API with all extensions, as supported by Linux.
New data sent by the application is stored in a kernel-side
socket buffer, and the socket buffer is placed in a software
queue. On a software interrupt, buffers from this queue are
passed to the DPDK-based network driver, which puts the
data into the NIC’s transmission queue. Packets are received
by a dedicated polling thread.

While implementing the network stack, we experimented
with different setups on how to manage polling. Our first
design used multiple queues for sending and receiving. This
approach, however, makes network throughput worse: each
receiving queue must be polled by a dedicated polling thread,
which takes too many CPU cycles away from the application
and increases latency. Likewise, for sending queues, rkt-io
needs to poll the completion status, as the Linux kernel uses
this information to adjust its TCP window size.

Ultimately, we decide on having a single thread dedicated
to polling a single queue, which is faster, because the cost
of context switches exceeds the cost of polling. To reduce
the overhead of scheduling the polling thread, we move it
out of the kernel scheduler into the underlying userland
scheduler. Before it starts polling, it acquires an LKL CPU
lock to get ownership, so it can safely access Linux kernel
data structures. After it has processed every received packet,
it releases the ownership of the CPU lock.

Bufferbloat mitigation through eager queue cleanup.
To counter bufferbloat [13], network congestion avoidance
for the TCP stack in Linux measures how many packets are
still queued by the NIC. In the original DPDK driver design,
however, old packets are not freed as soon as packets are sent,
but when new packet buffers override the old entries in the
send ring buffer. This is too late for Linux, where the critical

497

Thalheim et al.

send() recv()

Frame >> MTU

Frame >> MTU

| Frame |

Frame |
GRO

|Frame| |Frame|

GSO

Figure 6. Generic segmentation offload and generic-
receive offload

threshold is around 0.5 MB while a send queue in a NIC is
significantly larger (i.e. 8 MB for our NIC). As a result, connec-
tions are throttled to a rate below 1 Gbps on a 40 Gbps NIC.

To counter that, we redesign the queue cleanup algorithm
to free old send buffers when new packets are queued for
sending or when the Linux network stack’s threshold for
a TCP connection is exceeded. In our experiments, this
boosts iPerf throughput from 300 Mbps to 25 Gbps without
encryption and 15 Gbps with encryption. This is close to
the native performance for iPerf, which reach 26Gbps per
second without encryption. iPerf does not achieve the full
line rate in both cases since it runs singled threaded.

NIC offloading support. To achieve high throughput when
processing packets, the offloading mechanism available in
modern NICs must be used by a high-performance network
stack. When network streams are sent, they need to be divided
into smaller Ethernet frames with a maximum transfer
unit (MTU) of commonly 1500 bytes. The smaller Layer-3
packets (i.e TCP/IP) need new updated headers to reflect
the changed size, sequence number and checksum. On the
receiver side, it is also typically too expensive to traverse the
whole network stack for each packet. Optimizations in either
software or hardware are required to re-assemble the payload
from smaller TCP packets into larger buffers. In addition, the
payload and network headers are often not stored continu-
ously in memory. This needs to be communicated to the NIC
to avoid having to copy parts to a new continuous buffer.

To address the problem of assembling and disassembling
network streams, we use generic segmentation offload-
ing (GSO) and generic receive offloading (GRO). GSO, as
shown in Figure 6 (left), requires implementation changes in
DPDK to allow for the segmentation of large network streams
into smaller Ethernet frames in the hardware. For GRO, as
shown in Figure 6 (right), we rely on a software solution,
as described in §5.2, to avoid entering the network stack
for each small packet by aggregating them in larger buffers.
Furthermore, rkt-io configures the NIC to offload checksum
computation for network headers. We also make use of
DPDK’s segmentation support to make the NIC read headers
and payload chunks from different memory locations, thus
avoiding copying them to a new buffer.

To evaluate the effectiveness of these offloading techniques,
we run iPerf with and without them, as shown in Figure 5b,

rkt-io: A Direct I/O Stack for Shielded Execution

with a single TCP stream. As for all network benchmarks, TLS
is enabled in iPerf. With offloading, we obtain a 3x higher
throughput, making DPDK’s performance comparable to
NIC-enabled offloading in the Linux kernel.

4.3 1/0 stack partitioning for TEEs

Since storage and network devices cannot directly access
TEE memory, their DMA memory regions need to be mapped
outside of the TEE. Conversely, the POSIX API forces the
kernel to make a copy of the data passed in a system call
because applications expect the memory to be re-usable. A
naive implementation would therefore do two copies: one
from the application buffer to the kernel and one from the
kernel to the NIC DMA region.

rkt-io reduces the number of copies to one, by copying
data for sending directly from the application buffer to the
hardware’s DMA region. In systems that have access to an
MMU, usually from a privileged ring, this can be achieved
by re-mapping pages in virtual memory. rkt-io, however,
runs in unprivileged userspace and instead extends the Linux
kernel memory allocator to support memory allocations in
both encrypted TEE memory as well as unencrypted DMA
memory (see §5.1).

One-copy for networking. This support in the Linux
kernel memory allocator allows rkt-io to allocate the data part
of a socket buffer (short skb) in the NIC DMA memory. In turn,
rkt-io makes use of DPDK’s external buffer support [21] (see
§5.2) to transfer packets to the NIC without an extra copy.

To evaluate the performance improvements of a one-copy
data path, we use the same iPerf benchmark as in §4.2
with the result shown in Figure 5b. When comparing all
optimizations enabled with disabling the copy optimization in
the receive/send path, we see a 21% improvement (11.6 Gbps
vs. 15 Gbps).

One-copy for storage. Similarly, the NVMe device needs
data to be written to a special DMA memory region in
which NVMe queues are allocated. To avoid extra copies of
the encrypted pages from the disk encryption layer, rkt-io
allocates those pages in the DMA memory outside of the TEE.
When transferring pages from or to the NVMe device, rkt-io
uses the gather-scatter API of SPDK. This API allows to pass
I/O vectors instead of continuous buffers, which is needed to
pass multiple scattered kernel pages directly to the hardware.
This optimization results in a throughput improvement of
7% for the block device.

4.4 Transparent encryption

Since all data that leaves the TEE must be protected to avoid
information leakage to the host, rkt-io implements both
transparent encryption of network traffic using a Layer 3
virtual private network (VPN) as well as full disk encryption.

For network protection, we find that many network-facing
applications already support transport encryption using TLS.

498

EuroSys 21, April 26-28, 2021, Online, United Kingdom

This is the preferred way, as it provides high-throughput and
low protocol overhead thanks to highly optimized TLS stacks,
such as OpenSSL [87]. If an application does not support
TLS, rkt-io also supports the Wireguard VPN [23] to encrypt
network packets on Layer 3. It is integrated into the LibOS
as a tunnel, and it encapsulates encrypted IP packets into the
UDP protocol using the ChaCha20 [48] stream cipher before
forwarding them to the NIC.

For storage protection, we use the Linux device mapper
crypto target that gives full disk encryption. It is set up to use
AES 256-bit in XTS cipher mode before passing encrypted
pages to the underlying block device.

Both network and block-based encryption are optional
and can be disabled. For example full disk encryption can be
only enabled for certain devices and network routes can be
configured to bypass the wireguard VPN.

Hardware acceleration. The LKL architecture by default
only provides slow generic routines for AES encryption or
cryptographic hashing, which makes full disk encryption
slow. Optimized routines must be loaded from kernel
modules, depending on which CPU extensions are available
(i.e. AES-NI on Intel x86). rkt-io ports the crypto modules
from the respective native CPU architecture (i.e. x86) to
speed-up block disk encryption. Therefore, we implement
kernel module loading support (see §5.3).

Figure 5¢ shows the throughput before and after enabling
hardware-accelerated cryptographic routines for sequential
writes to a 10 GB file. Enabling acceleration increases
throughput by 2.8x.

5 Implementation of rkt-io

The implementation of rkt-io is based on SGX-LKL [66]. SGX-
LKL provides the musl libc abstraction, userland threading
and the integration with LKL. rkt-io extends SGX-LKL to
support the direct I/O network and storage stacks. It also
re-designs several components for improved I/O performance,
as introduced in §4 and explained in further detail below.

5.1 Runtime environment

Driver setup. DPDK/SPDK configure the system to map
hardware queues into rkt-io’s virtual address space. This is
a privileged action that requires root permissions. rkt-io dele-
gates this task to a dedicated setuid binary, so that the actual
SGX enclave can run with regular user privileges. For this
to work, we use DPDK’s multi-process feature in which the
privileged process acts as a primary and communicates over
shared memory with the enclave, which runs as a secondary
process. In addition, DPDK/SPDK needs root access to resolve
its own virtual addresses to physical addresses for commu-
nication with the hardware. We delegate this task to another
setuid binary, which provides this service over a pipe.

Hugetables. DPDK/SPDK allocate the memory used for
communication with the hardware as huge pages (either 4 MB

EuroSys "21, April 26-28, 2021, Online, United Kingdom

or 1 GB instead of 4 KB on x86). rkt-io uses this huge memory
region as a page cache, which is why it allocates as many
huge pages as possible. We find that, with the default 1 GB
page size recommendation of DPDK, this was not possible.
The host OS page allocator causes memory fragmentation,
and it cannot find sufficiently many unused continuous 1 GB
physical pages (only 4-5 GB of pages on a system with 32 GB
RAM in our experiments). Instead, we modify DPDK to
allocate 4 MB pages and align them continuously in memory
by moving DPDK’s metadata structure to a different offset.
This way the page allocator that runs in our LibOS can treat
this memory as a one continuous chunk.

Page allocator. We extend the Linux page allocator to
use DPDK/SPDK memory. The Linux kernel expects page
data structures and cannot work with external buffers. We
therefore re-used page flags used in the NUMA architecture to
differentiate between memory allocated in the TEE and mem-
ory allocated in the DMA memory region. On top of that, we
can also identify pages based on their addresses for extra secu-
rity checks, e.g., whether the memory comes from protected
TEE memory or the unencrypted DMA memory region.

We extend LKL to register DPDK/SPDK memory in its
own “NUMA” zone on bootup. By default, the kernel never
allocates memory in these zones except when a special flag
(GFP_SPDK_DMA) is passed to the page allocator function. We
also add DMA memory support for kmalloc, which is the
kernel’s malloc equivalent. It builds on top of the page alloca-
tor by adding additional caches for different size classes. We
added new cache data structures for the DMA memory region
and make kmalloc select them if the GFP_SPDK_DMA flag is set.

5.2 Network stack

rkt-io implements a new network device driver to integrate
DPDK into the Linux network stack. We make several mod-
ifications to DPDK itself to improve the performance. To im-
prove the TCP send performance and make DPDK competitive
with the native Linux kernel driver, we implement Generic
Segmentation Offload (GSO) for the Intel 40-Gigabit Ethernet
NIC family (called i40e in DPDK/Linux). On the receiving side,
we implement Generic Receiving Offload (GRO) using the
kernel napi_gro_receive() function. This shortcuts parts
of the network stack as packets get summarized into larger
streams, without traversing the full stack for each packet.
By default, DPDK comes with its own allocator for packet
buffers. To avoid copying when transferring packets from
Linux’s socket buffer to the NIC, we make use of DPDK’s ex-
ternal buffer support using the rte_pktmbuf _attach_extbuf()
function. For receiving packets, DPDK does not offer support
for external buffers, so we modify DPDK to allocate Linux
socket buffers rather than its own packet buffers. This
modification was only implemented for the Intel NIC driver
(i40e) since the allocation happened within the DPDK driver.
This limits our current prototype to this specific class of

499

Thalheim et al.

devices, but this can be extended in the same way to all device
drivers supported by DPDK [79].

Devices in DPDK cannot be shared with other enclaves.
However many data-center NICs often come with a feature
called SR-IOV to make one device appear as multiple physical
interfaces, which can then be assigned to different enclaves.

5.3 Storage stack

rkt-io implements a multi-queue block device driver using
the blk-mqg [19] interface to integrate SPDK as a block
device into LKL. The driver uses the NVMe interface of
SPDK, hence we can support any block storage device that
implements the NVMe protocol. In our prototype we mainly
tested PCle-connected devices. rkt-io assigns one queue-pair
per CPU that is used when doing requests in our driver’s
queue_rq implementation to avoid locks between different
CPUs. In the same function, we also poll for outstanding
requests. If there are outstanding requests, a dedicated
polling kernel thread for this queue is woken up.

An important performance optimization to speed up
disk encryption is to load native x86 kernel modules
with hardware-accelerated optimized crypto routines. As
these modules contain assembly code, that is not position-
independent, we need support for kernel module loading
in LKL to allow relocations at runtime. rkt-io builds the
kernel crypto modules from the normal x86 port with a small
patch (56 LOCs) to align the kernel module initializer struct
between the two architectures. At setup time, it loads the
kernel modules via a syscall, and the modules are linked into
the rkt-io binary. The binary as a whole is signed and the
signatures is checked when setting up the enclave whereas
modules are loaded from enclave memory. Enclave pages are
mapped as writeable, but the OS cannot modify them due
to the SGX integrity checks.

The modules itself rely on x86 CPU feature checks using
the cpuid instruction to determine available CPU extensions.
We modify LKL to load this information during the bootup
based on cpuid information from outside of the TEE (cpuid
is an illegal instruction inside SGX enclaves).

Currently each NVMe disk can only be accessed by one
enclave at the time. Since rkt-io already makes use of SPDK
multi-process features it is possible with little modification
to allow multiple processes, each using their own NVMe
namespace with their own request/completion queue.

6 Evaluation

Our experimental evaluation is based on four real-world
applications (see Figure 7): SQLite, Nginx, Redis and MySQL.
Testbed. We perform our experiments on two machines
with SGX support that have an Intel Core 19-9900K CPU with
8 cores (16 hyper-threads), 64 GiB of memory (caches: 32 KiB
L1; 256 KiB L2; 16 MiB L3). The I/O devices are an Intel XL710

rkt-io: A Direct I/O Stack for Shielded Execution

Ethernet controller for 40 GbE QSFP+ (rev/. 02), and a P4600
NVMe 2 TB drive. The host OS is Linux version 5.7.12.

Baselines. We compare our performance against the overall
performance of these applications across three systems:
(i) native Linux (unsecured version), (ii) SCONE (a host
OS-based approach), and (iii) SGX-LKL (a LibOS-based
approach). The applications are compiled against musl libc.

For the native benchmarks, we use ext4 as a filesystem
using device mapper for encryption with the aes-xts-256
cipher. We use the same configuration inside the TEE for
SGX-LKL and rkt-io. SGX-LKL accesses the block device as
a file through the host interface, while rkt-io accesses it via
SPDK. For ScONE, we enable fileshield [74] and store the data
on ext4 without encryption.

All network benchmarks have TLS enabled (Redis, MySQL
and Nginx). Both the native and ScoNE benchmarks access the
network through the host socket interface, while rkt-io uses
DPDK. To connect SGX-LKL to the native network adapter,
we use a TAP interface that is bridged with the native NIC.

For ScoNE, we use recommended tuning parameters for
the I/O-heavy workloads: two threads running inside the
TEE with a system call queue assigned to each thread. Each
system call queue has 7 I/O threads running outside the TEE.

6.1 SQLite database

Methodology. We evaluate SQLite [78] using its default
configuration with journal mode set to delete and full synchro-
nization. We use the Speedtest benchmark [78] shipped with
SQLite to perform 15k transactions. We then configure the
benchmark to perform 5k transactions, each with insert, up-
date and delete operations. We report the throughput as trans-
actions per second for each operation. We compare the results
across the four system configurations, as shown in Figure 7a.

Results. rkt-io performs 2.0-2.8x better than SGX-LKL and
2.4-3.4X better than SconNE. However, the performance of rkt-
io is lower than for the native run (outside TEE) by 1.7X%, 2.3%
and 1.8X for insert, update and delete operations, respectively.

Our profiling of the experiments shows that the writes in a
transaction are cheaper compared to creating/opening/flush-
ing/unlinking the journal/WAL files. For such an I/O pattern,
rkt-io and SGX-LKL have an advantage over SCONE: they can
directly access inodes from the LibOS inode cache, as they
implement the filesystem themselves, while SCONE must
perform host system calls.

On the other hand, even though the writes performed
by SQLite itself are small (4 KiB) compared to the other
operations completed around them, the writes still need
to be flushed to the disk to provide crash consistency. This
is where the polling-based approach of rkt-io falls behind
the native execution, as rkt-io spends more CPU cycles on
polling to wait for the I/O completion.

500

EuroSys 21, April 26-28, 2021, Online, United Kingdom

6.2 Nginx web server

Methodology. We evaluate Nginx [58] in a client/server
configuration using two machines. We use the wrk HTTP
benchmarking tool [89] to request a 3 MB file (average page
size according to [32]) via HTTPS. The benchmarking tool
is setup as a client process running on another machine, for
30 seconds using 16 threads and 100 concurrent connections.
We then report the throughput and latency of the server
on this workload as requests per second and milliseconds,
respectively. We compare the results across the four system
configurations, as shown in Figure 7b and Figure 7c.

Results. rkt-io incurs a lower average per request latency
than SGX-LKL (2.7%) and ScoNE (2.3x) as well as a higher
throughput than SGX-LKL (3.4X) and ScoNE (2.3X). There is
still a performance gap compared to the native non-secure run,
which has 2.5x higher throughput and 2.4x lower latency.

Our profiling of the web server shows that, while serving
the requests, Nginx spends 92% of the time in the kernel to
process network packets, while the rest of the time is spent
mostly in userspace encryption. This benchmark therefore
shows the differences in the network stacks: in SGX-LKL,
network packets must traverse the network stacks in the
host and LKL. The host then has two extra network devices
that the network packets must pass (the TAP interface and
the bridge), and their respective firewalls.

ScoNE can transfer network packets to the native host
interface directly, but it still spends more time copying
data from the TEE to its system call queue and from the
system call queue to the host than rkt-io, which interacts
with the NIC directly. The gap between native and SCONE
measured in our paper diverge from the original publication
of ScoNE [5]. In their evaluation they saturated a 10GbE NIC,
in our evaluation however we employed 40GbE cards which
moves the bottleneck more to the network stack.

Compared with the iPerf benchmark we see a bigger
gap between rkt-io and native. This is because in the
Nginx benchmarks streams are smaller, and therefore, NIC
offloadings are not as efficient as the send buffers are shorter.

6.3 Redis key-value store

Methodology. We evaluate Redis [68] with the YCSB
benchmark [18], which runs on another client machine. The
key-value store is loaded with 100k key-value pairs. We
use workload A of YCSB for a total of 10k operations using
16 threads. We then report the throughput and latency for
the read/update operations on the key/value store in terms
of operations per second and milliseconds, respectively. We
compare the results across the four system configurations
as shown in Figure 7d and Figure 7e.

Results. rkt-io’s throughput is better compared to SCONE
(2.9x) and SGX-LKL (2.1x); however, it is slower than native
execution (2.0x). The average latency per operation follows

EuroSys "21, April 26-28, 2021, Online, United Kingdom

Thalheim et al.

(b) Nginx latency with wrk [89]

400 —

300 H

Requests/sec

200 —

100

IIL

sgx-lkl scone rkt-io

rkt-io native

(c) Nginx throughput with wrk [89]

insert
L, 80007 mmm update 1200 7
S mmm delete 1000
Q
© 6000 — z
g E 800 -
£ g
2 4000 - 8 600 o
5 G
® S
3
S 400
= 2000 o
200 -
0 - o -
native sgx-lkl scone rkt-io native sgx-lkl scone
(a) SQLite throughput with Speedtest [77]
3000 -| ™== read
25k mmm update
=z 2500 -
4 20k o
@ vl
S 3 2000
S 15k o
2 & 1500
(=2} ©
3 10k o -
= 1000
e
5k 4 500
o - o -

native sgx-lkl scone rkt-io

(d) Redis throughput with YCSB (A) [18]

native sgx-lkl scone

(e) Redis latency with YCSB (A) [18]

300 -

250 -

200 -

150

100 —

Throughput [events/sec]

50 —

o -

rkt-io native sgx-lkl scone rkt-io

(f) MySQL throughput with sysbench [80]

Figure 7. Performance of four real-world applications (SQlite, Nginx, Redis, and MySQL) on three secure systems (SCONE,

SGX-LKL and rkt-io) and native Linux (no security)

a similar trend, with the Redis server running on rkt-io with
2.8-2.9x lower latency than native execution. However,
rkt-io is faster than SconNE (3.6x) and SGX-LKL (2.5X).

Our profiling shows that the workload of this benchmark
is also network-bound, similar to Nginx, however, we
measure that only 50% of the time is spent in the network
stack, and the remaining majority of the time is spent on
TLS encryption. This alone would suggest that SGX-based
solutions should be closer to native execution performance,
because they require less interaction with their I/O stacks;
however, this is not the case. We see an increase in the activity
of the enclave paging kernel thread (i.e. a 3X increase in CPU
usage for rkt-io when compared to the Nginx benchmark
with Redis). Paging of enclave pages to unprotected memory
is a well-known source of performance overhead in SGX [6]
due to encryption and context-switch overhead. Therefore,
the runtime difference is caused by increased paging when
Redis’ in-memory data structures are accessed.

6.4 MySQL database server

Methodology. We evaluate MySQL [56] with the SysBench
benchmarking tool [80]. The benchmarking tool is setup on
another machine as a client to generate the OLTP workloads.
We then compare the throughput of the server serving OLTP
requests, in events per second. We compare the results across
the four system configurations as shown in Figure 7f.

501

Top5 Syscall Count Time(ys) Total (%)

#1 futex 64 4.20e+07 69.4
#2 read 24728 9.40e+06 15.5
#3 select 9 8.99e+06 14.8
#4 fsync 436 6.03e+04 0.1
#5 write 8243 3.48e+04 0.06

Table 1. Top-5 syscalls in MySQL native execution

Results. rkt-io’s throughput is better than native, SGX-LKL
and SCONE by 12.2X, 5.7% and 13.5X respectively.

Our off-cpu analysis [60] shows that MySQL spends a
significant time performing table locks with futexes. To
illustrate our analysis, we show the time spent by the native
MySQL execution for the top-5 syscalls in Table 1. Since both
SGX-LKL and rkt-io do scheduling in the userspace, they are
faster in handling these locks as they can switch without a
CPU context switch to a different thread. Therefore, rkt-io
performs better than native execution. (Note that SCONE also
relies on the host OS for handling I/O operations, but the im-
plementation details of futexes in SCONE are not available).

Furthermore, Table 1 shows that the top-2 and top-3
most used system calls are network-related followed by
filesystem syncs. Since rkt-io network/disk throughput is
higher than SGX-LKLs as shown in iPerf (Figure 1c) and
fio benchmarks (Figure 1b), rkt-io processes more number
of transactions compared to SGX-LKL.

rkt-io: A Direct I/O Stack for Shielded Execution

7 Related work

I/0 support for shielded execution. With the adoption
of TEEs in cloud environments, shielded execution frame-
works, such as Haven [7], ScoNE [5], Graphene-SGX [85],
Panoply [75], and SGX-LKL [66], are used to deploy applica-
tions with strong security properties. These frameworks pro-
vide OS functionality and associated run-time libraries to sup-
port unmodified legacy applications in TEEs. They promote
portability, programmability and performance for shielded
execution, and have been used to implement a wide-range of
secure systems for storage [6, 45], data analytics [73, 94], data
management [67], distributed systems [82], FaaS [84], file stor-
age [2], network functions [64, 83], decentralized ledgers [51],
content delivery networks [30], machine learning [46], etc.
Current shielded execution frameworks primarily rely on
existing OS functionality (i.e., syscalls to host OS or a LibOS
inside the TEE) for I/O operations, which differs from rkt-io’s
design of providing a separate direct I/O stack within the TEE
for storage and networking. SconE [5], SGX-LKL [66], and
Eleos [62] use switchless asynchronous I/O calls to mitigate
I/O bottlenecks in the TEEs. This avoids expensive TEE world
switches, and the use of /O threads outside the TEEs improves
I/O performance through asynchronous syscalls [76]. Since
these approaches rely on the host OS to handle I/O operations
via dedicated I/O threads outside the TEE, it suffers from per-
formance and security limitations. In terms of performance,
it reduces the number of available threads for application
execution, requires extra copies of the data and syscall
arguments, and significantly increases I/O latency; since the
host OS is responsible for performing I/O operations, it is
also susceptible to Iago [15] and host interface attacks [81].
To overcome the limitations of switchless asynchronous
I/O mechanisms, ShieldBox [83] uses Intel DPDK [24] asa user
mode driver to support secure middleboxes based on the Click
modular router. Likewise in the storage domain, Speicher [6]
accesses persistent storage (SSDs) through Intel SPDK [37]
within the TEE to provide a secure persistent KV store. Since
these systems try to address I/O bottlenecks, the correspond-
ing I/O stacks are designed to operate at the lowest layer, and
thus are incompatible with legacy applications that require
POSIX network and file support. More specifically, Shieldbox
only targets Layer-2 networking without TCP/IP support;
in contrast, rkt-io provides secure network (IP) and trans-
port protocols. Similarly, Speicher operates at the block layer
without filesystem support, but rkt-io’s I/O stack supports
off-the-shelf filesystems (e.g., ext4, xfs, etc.) available in the
Linux kernel. Finally, rkt-io adopts a holistic design to provide
both network and storage support in an integrated I/O stack.

High-performance I/O stacks. To meet the performance
needs of I/O-intensive applications and leverage high-perfor-
mance hardware, a range of I/O stacks have been proposed
for networking (e.g., mTCP [41], netmap [70], StackMap [91],

502

EuroSys 21, April 26-28, 2021, Online, United Kingdom

Sandstorm [52], and TAS [43]) as well as storage (e.g., Deci-
bel [57],110 [33], DiskMap [53], ReFlex [44], and PASTE [31]).

Our work builds on the designs of high-performance I/O
stacks, especially I/O stacks bypassing the OS kernel. rkt-io
differentiates compared to these I/O stacks in two aspects:
(a) it supports secure I/O operations directly within TEEs,
whereas these I/O stacks would require non-trivial changes
for retro-fitting their architecture in the context of TEEs; and
secondly, (b) it supports full Linux compatibility, whereas
these I/O stacks exports new APIs for the network/storage
stacks, which might require significant re-writing of existing
applications to adopt the new APIs.

Efficient LibOS design. LibOSs can improve application per-
formance, while ensuring portability [9, 16, 26, 65]. Advances
in high-performance networking and storage in data centers
hasled to aresurgence of LibOSs support for latency-sensitive
applications: Arrakis [63], Demikernel [93] and IX [8] adapt
a kernel-bypass design that splits functionality across
control and data paths in order to support I/O-intensive
applications that use high-performance NICs and SSDs.
In the same spirit, rkt-io favors an host-independent I/O
interface based on LKL to avoid the OS on the critical I/O path
for improved performance (and also for security). In contrast
to these systems, we need to address additional fundamental
challenges to make the direct I/O compatible in the context
of TEEs. Since the DMA region cannot be directly mapped in
the TEEs, our design requires additional “one-copy"” instead
of "zero-copy" to read/write data in the TEE. On the down
side, these systems do not support POSIX compliant APIs.

8 Conclusion

In this paper, we presented the design and implementation of
rkt-io, a direct I/O stack for shielded execution targeting high-
performance networking and storage. Our I/O stack strives
to overcome the performance and security limitations of
switchless asynchronous I/O designs adopted in the host OS-
and LibOS-based shielded execution frameworks. This design
goalisachieved by our sensible co-design of the kernel-bypass
directI/Olibraries with the LibOS (LKL) running in the trusted
domain of TEEs. Thereby, our I/O stack facilitates switchless
directI/O with improved performance and security, while pre-
serving the rich POSIX environment to support off-the-shelf
filesystems and network stacks. We have implemented rkt-io
as an integrated I/O stack, and extensively evaluated it using a
wide-range of micro-benchmarks and unmodified real-world
applications. Our evaluation shows the effectiveness of the
individual system design components and overall approach;
for instance, our network and storage stacks are 7—9x faster
compared to SCONE (host-based) and SGX-LKL (LibOS-based)
based on iPerf and fio benchmarks, respectively.

Source code availability. Our project is publicly available
for the research community—see Artifact appendix A.

EuroSys "21, April 26-28, 2021, Online, United Kingdom

Acknowledgements. We thank our shepherd, Hakim
Weatherspoon, and the anonymous reviewers for their
helpful comments. We are also thankful to Maurice Bailleu,
Le Quoc Do, and Dimitra Giantsidi for their help during the
project. This work was supported in parts by a UK RISE Grant
from NCSC/GCHQ at the University of Edinburgh, UK.

References
[1] Nix package manager. https://nixos.org/download.html. Last accessed:
March, 2021.
[2] A. Ahmad, K. Kim, M. L. Sarfaraz, and B. Lee. OBLIVIATE: A data

oblivious filesystem for intel SGX. In 25th Annual Network and
Distributed System Security Symposium (NDSS), 2018.
AMD. AMD Secure Encrypted Virtualization (SEV).
//developer.amd.com/sev/. Last accessed: Mar, 2021.
ARM. Building a secure system using trustzone technology. http:

https:

//infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/
PRD29-GENC-009492C_trustzone_security_whitepaper.pdf. Last
accessed: Mar, 2021.

S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind,
D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche, D. Eyers,
R. Kapitza, P. Pietzuch, and C. Fetzer. SCONE: Secure Linux Containers
with Intel SGX. In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2016.

M. Bailleu, J. Thalheim, P. Bhatotia, C. Fetzer, M. Honda, and K. Vaswani.
SPEICHER: Securing lsm-based key-value stores using shielded
execution. In 17th USENIX Conference on File and Storage Technologies
(FAST), 2019.

A.Baumann, M. Peinado, and G. Hunt. Shielding Applications from an
Untrusted Cloud with Haven. In Proceedings of the 11th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI), 2014.
A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion. IX: A protected dataplane operating system for high
throughput and low latency. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2014.

B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski,
D. Becker, C. Chambers, and S. Eggers. Extensibility safety and
performance in the spin operating system. In Proceedings of the
Fifteenth ACM Symposium on Operating Systems Principles (SOSP), 1995.
A. Biondo, M. Conti, L. Davi, T. Frassetto, and A.-R. Sadeghi. The
guard’s dilemma: Efficient code-reuse attacks against intel SGX. In
27th USENIX Security Symposium (USENIX Security 18), 2018.

BlobFS: Blobstore Filesystem. Last accessed: Mar, 2021.

F. Brasser, U. Miiller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-R.
Sadeghi. Software grand exposure: SGX cache attacks are practical.
In 11th USENIX Workshop on Offensive Technologies (WOOT 17), 2017.
Bufferbloat project. Last accessed: Mar, 2021.

D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-abuse attacks
against searchable encryption. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, 2015.

S. Checkoway and H. Shacham. Iago attacks: Why the system call api
is a bad untrusted rpc interface. In Proceedings of the 18th International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2013.

D. R. Cheriton and K. J. Duda. A caching model of operating system
kernel functionality. In Proceedings of the 6th Workshop on ACM SIGOPS
European Workshop, 1994.

A.Cloud. Alibaba Cloud’s Next-Generation Security Makes Gartner’s
Report. https://www.alibabacloud.com/blog/alibaba-clouds-next-
generation-security-makes-gartners-report_595367. Last accessed:
Mar, 2021.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with YCSB. In Proceedings of

—
—
—_

—

(16]

(17]

(18]

503

Thalheim et al.

the 1st ACM Symposium on Cloud computing (SoCC), 2010.

[19] J.Corbet. The multiqueue block layer. https://lwn.net/Articles/552904/,
2013. Last accessed: Mar, 2021.

[20] V. Costan and S. Devadas. Intel SGX Explained, 2016.

[21] R.Darawsheh. mbuf external buffer and usage examples. In Proceedings
of the DPDK Userspace, Dublin, 2018.

[22] dm-crypt/device encryption. Last accessed: Mar, 2021.

[23] J. A. Donenfeld. WireGuard: Next Generation Kernel Network Tunnel.
https://www.wireguard.com/papers/wireguard.pdf. Last accessed:
Mar, 2021.

[24] Data plane development kit (DPDK). Last accessed: Mar, 2021.

[25] E.Dumazet. Busy Polling: Past, Present, Future. In netdev 2.1 Montreal,

2017.

D.R. Engler, M. F. Kaashoek, and J. O’Toole. Exokernel: An operating

system architecture for application-level resource management. In

Proceedings of the Fifteenth ACM Symposium on Operating Systems

Principles (SOSP), 1995.

Introducing Google Cloud Confidential Computing with Confi-

dential VMs. https://cloud.google.com/blog/products/identity-

security/introducing-google-cloud-confidential-computing-with-

confidential-vms. Last accessed: Mar, 2021.

J. Gotzfried, M. Eckert, S. Schinzel, and T. Miiller. Cache attacks on

intel sgx. In Proceedings of the 10th European Workshop on Systems

Security, 2017.

M. Héhnel, W. Cui, and M. Peinado. High-resolution side channels

for untrusted operating systems. In Proceedings of the USENIX Annual

Technical Conference (ATC), 2017.

S. Herwig, C. Garman, and D. Levin. Achieving keyless cdns with

conclaves. In 29th USENIX Security Symposium (USENIX Security), 2020.

M. Honda, G. Lettieri, L. Eggert, and D. Santry. PASTE: A network pro-

gramming interface for non-volatile main memory. In 15th USENLX Sym-

posium on Networked Systems Design and Implementation (NSDI), 2018.

Tracking page weight over time. https://discuss.httparchive.org/t/

tracking-page-weight-over-time/1049. Last accessed: Mar, 2021.

[33] J.Hwang, Q. Cai, A. Tang, and R. Agarwal. TCP = RDMA: Cpu-efficient

remote storage access with 110. In 17th USENIX Symposium on

Networked Systems Design and Implementation (NSDI), 2020.

Product page of Intel SSD DC P4600 Series. https://ark.intel.com/

content/www/us/en/ark/products/series/96947/intel-ssd-dc-p4600-

series.html. Last accessed: Mar, 2021.

Intel Software Guard Extensions (Intel SGX). https://software.intel.

com/en-us/sgx. Last accessed: Mar, 2021.

Intel SGX SDK. Last accessed: Mar, 2021.

Intel Storage Performance Development Kit. http://www.spdk.io. Last

accessed: Mar, 2021.

Product page of XL710 network card family. https://www.intel.com/

content/www/us/en/products/docs/network-io/ethernet/network-

adapters/ethernet-x1710-brief.html. Last accessed: Mar, 2021.

iPerf - The ultimate speed test tool for TCP, UDP and SCTP.

https://iperf.fr/. Last accessed: Mar, 2021.

[40] Jens Axboe. Flexible I/O Tester. https://github.com/axboe/fio. Last

accessed: Dec, 2020.

E.Y.Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm, D. Han, and K. Park.

MTCP: A Highly Scalable User-Level TCP Stack for Multicore Systems.

In Proceedings of the 11th USENIX Conference on Networked Systems

Design and Implementationi (NSDI), 2014.

S. Kaneyv, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley,

G.-Y. Wei, and D. Brooks. Profiling a warehouse-scale computer. In

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[34]

[35]

[36]
[37]

[38]

[39]

[41]

[42]

Proceedings of the 42nd Annual International Symposium on Computer
Architecture(ISCA), 2015.

A. Kaufmann, T. Stamler, S. Peter, N. K. Sharma, A. Krishnamurthy,
and T. Anderson. Tas: Tcp acceleration as an os service. In Proceedings
of the Fourteenth EuroSys Conference (EuroSys), 2019.

[43]

https://nixos.org/download.html
https://developer.amd.com/sev/
https://developer.amd.com/sev/
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://www.alibabacloud.com/blog/alibaba-clouds-next-generation-security-makes-gartners-report_595367
https://www.alibabacloud.com/blog/alibaba-clouds-next-generation-security-makes-gartners-report_595367
https://lwn.net/Articles/552904/
https://www.wireguard.com/papers/wireguard.pdf
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://discuss.httparchive.org/t/tracking-page-weight-over-time/1049
https://discuss.httparchive.org/t/tracking-page-weight-over-time/1049
https://ark.intel.com/content/www/us/en/ark/products/series/96947/intel-ssd-dc-p4600-series.html
https://ark.intel.com/content/www/us/en/ark/products/series/96947/intel-ssd-dc-p4600-series.html
https://ark.intel.com/content/www/us/en/ark/products/series/96947/intel-ssd-dc-p4600-series.html
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
http://www.spdk.io
https://www.intel.com/content/www/us/en/products/docs/network-io/ethernet/network-adapters/ethernet-xl710-brief.html
https://www.intel.com/content/www/us/en/products/docs/network-io/ethernet/network-adapters/ethernet-xl710-brief.html
https://www.intel.com/content/www/us/en/products/docs/network-io/ethernet/network-adapters/ethernet-xl710-brief.html
https://iperf.fr/
https://github.com/axboe/fio

rkt-io: A Direct I/O Stack for Shielded Execution

[44] A.Klimovic, H. Litz, and C. Kozyrakis. Reflex: Remote flash = local
flash. In Proceedings of the Twenty-Second International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2017.

R. Krahn, B. Trach, A. Vahldiek-Oberwagner, T. Knauth, P. Bhatotia,

and C. Fetzer. Pesos: Policy enhanced secure object store. In Proceedings

of the Thirteenth EuroSys Conference (EuroSys), 2018.

R. Kunkel, D. L. Quoc, F. Gregor, S. Arnautov, P. Bhatotia, and C. Fetzer.

Tensorscone: A secure tensorflow framework using intel SGX. CoRR,

2019.

D. Kuvaiskii, O. Oleksenko, S. Arnautov, B. Trach, P. Bhatotia, P. Felber,

and C. Fetzer. SGXBOUNDS: Memory Safety for Shielded Execution. In

Proceedings of the 12th ACM European Conference on Computer Systems

(EuroSys), 2017.

A. Langley. rfc7539: ChaCha20 and Poly1305 for IETF Protocols.

https://tools.ietf.org/html/rfc7539. Last accessed: Mar, 2021.

D. Lee, D. Kohlbrenner, S. Shinde, K. Asanovi¢, and D. Song. Keystone:

an open framework for architecting trusted execution environments. In

Proceedings of the Fifteenth European Conference on Computer Systems

(EuroSys), 2020.

[50] J.Lee,]. Jang, Y. Jang, N. Kwak, Y. Choi, C. Choi, T. Kim, M. Peinado,
and B. B. Kang. Hacking in darkness: Return-oriented programming
against secure enclaves. In 26th USENIX Security Symposium (USENLX
Security 17), 2017.

[51] J.Lind, O.Naor, I Eyal, F. Kelbert, E. G. Sirer, and P. Pietzuch. Teechain:

A secure payment network with asynchronous blockchain access. In

Proceedings of the 27th ACM Symposium on Operating Systems Principles

(SOSP), 2019.

L. Marinos, R. N. Watson, and M. Handley. Network stack specialization

for performance. In Proceedings of the 2014 ACM Conference on

SIGCOMM, 2014.

I. Marinos, R. N. Watson, M. Handley, and R. R. Stewart. Disk|crypt|net:

Rethinking the stack for high-performance video streaming. In

Proceedings of the Conference of the ACM Special Interest Group on Data

Communication (SSIGCOMM), 2017.

Microsoft Azure. Azure confidential computing. https://azure.microsoft.

com/en-us/solutions/confidential-compute/. Last accessed: Mar, 2021.

musl: an implementation of the C standard library. https://musl.libc.org/.

Last accessed: Mar, 2021.

MySQL. https://www.mysql.com/. Last accessed: Mar, 2021.

M. Nanavati, J. Wires, and A. Warfield. Decibel: Isolation and sharing

in disaggregated rack-scale storage. In 14th USENIX Symposium on

Networked Systems Design and Implementation (NSDI), 2017.

Nginx Web Server. https://www.nginx.com/. Last accessed: Mar, 2021.

O.Purdila and L. A. Grijincu and N. Tapus. Lkl: The linux kernel library.

In 9th RoEduNet IEEE International Conference, 2010.

Off-CPU Flame Graphs. Last accessed: Mar, 2021.

0. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and C. Fetzer. Intel

MPX Explained: A Cross-layer Analysis of the Intel MPX System Stack.

Proceedings of the ACM on Measurement and Analysis of Computing

Systems, 2018.

M. Orenbach, M. Minkin, P. Lifshits, and M. Silberstein. Eleos: ExitLess

OS services for SGX enclaves. In Proceedings of the 12th ACM European

ACM Conference in Computer Systems (EuroSys), 2017.

S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy,

T. Anderson, and T. Roscoe. Arrakis: The operating system is the

control plane. In 11th USENIX Symposium on Operating Systems Design

and Implementation (OSDI), 2014.

R.Poddar, C. Lan, R. A. Popa, and S. Ratnasamy. Safebricks: Shielding

network functions in the cloud. 1In 15th USENIX Symposium on

Networked Systems Design and Implementation (NSDI), 2018.

D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt.

Rethinking the library os from the top down. In Proceedings of

the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2011.

(48]

(49]

(52]

(53]

(64]

(65]

504

EuroSys 21, April 26-28, 2021, Online, United Kingdom

[66] C. Priebe, D. Muthukumaran, J. Lind, H. Zhu, S. Cui, V. A. Sartakov,
and P. Pietzuch. Sgx-1kl: Securing the host os interface for trusted
execution, 2019.

[67] C.Priebe, K. Vaswani, and M. Costa. EnclaveDB: A Secure Database
using SGX (S&P). In IEEE Symposium on Security and Privacy, 2018.

[68] Redis. https://redis.io/. Last accessed: Mar, 2021.

[69] RISC-V. Keystone Open-source Secure Hardware Enclave.
https://keystone-enclave.org/. Last accessed: Mar, 2021.

[70] L. Rizzo. Revisiting network I/O APIs: The Netmap Framework.

Communications of the ACM, 2012.

N. Santos, K. P. Gummadi, and R. Rodrigues. Towards Trusted Cloud

Computing. In Proceedings of the 1st USENIX Workshop on Hot Topics

in Cloud Computing (HotCloud), 2009.

N. Santos, R. Rodrigues, and B. Ford. Enhancing the os against security

threats in system administration. In Proceedings of the 13th International

Middleware Conference (Middleware), 2012.

F. Schuster, M. Costa, C. Gkantsidis, M. Peinado, G. Mainar-ruiz, and

M. Russinovich. VC3 : Trustworthy Data Analytics in the Cloud using

SGX. In Proceedings of the 36th IEEE Symposium on Security and Privacy

(Oakland), 2015.

Scone file protection. https://sconedocs.github.io/SCONE_Fileshield/.

Last accessed: Mar, 2021.

[75] S. Shinde, D. Le Tien, S. Tople, and P. Saxena. PANOPLY: Low-TCB

Linux Applications with SGX Enclaves. In Proceedings of the Network

and Distributed System Security Symposium (NDSS), 2017.

L. Soares and M. Stumm. FlexSC: Flexible System Call Scheduling with

Exception-less System Calls. In Proceedings of the 9th USENIX Sympo-

sium on Operating Systems Design and Implementation (OSDI), 2010.

speedtest. https://www.sqlite.org/speed.html. Last accessed: Mar, 2021.

SQLite. https://www.sqlite.org/. Last accessed: Mar, 2021.

Supported Hardware. Last accessed: Feb, 2021.

sysbench. https://github.com/akopytov/sysbench. Last accessed: Mar,

2021.

R. Ta-Min, L. Litty, and D. Lie. Splitting interfaces: Making trust between

applications and operating systems configurable. In Proceedings of

the 7th Symposium on Operating Systems Design and Implementation

(0SDI), 2006.

B. Trach, R. Fageh, O. Oleksenko, W. Ozga, P. Bhatotia, and C. Fetzer.

T-lease: A trusted lease primitive for distributed systems. In Proceedings

of the 11th ACM Symposium on Cloud Computing (SoCC), 2020.

B. Trach, A. Krohmer, F. Gregor, S. Arnautov, P. Bhatotia, and C. Fetzer.

ShieldBox: Secure Middleboxes using Shielded Execution. In Proceed-

ings of the ACM SIGCOMM Symposium on SDN Research (SOSR), 2018.

B. Trach, O. Oleksenko, F. Gregor, P. Bhatotia, and C. Fetzer. Clemmys:

Towards secure remote execution in faas. In Proceedings of the 12th

ACM International Conference on Systems and Storage (SYSTOR), 2019.

C.-C. Tsai, D. E. Porter, and M. Vij. Graphene-SGX: A practical library

OS for unmodified applications on SGX. In Proceedings of the USENIX

Annual Technical Conference (USENLX ATC), 2017.

[86] J.Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx. Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient out-of-
order execution. In Proceedings of the 27th USENIX Security Symposium
(USENIX Security), 2018.

[87] Vlad Krasnov. How ‘expensive" is crypto anyway.
//blog.cloudflare.com/how-expensive-is-crypto-anyway,
Last accessed: Mar, 2021.

[88] Weichbrodt, Nico and Kurmus, Anil and Pietzuch, Peter and Kapitza,
Riidiger. AsyncShock: Exploiting Synchronisation Bugs in Intel SGX
Enclaves. In Computer Security — ESORICS, 2016.

[89] wrk. https://github.com/wg/wrk. Last accessed: Mar, 2021.

[90] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks: Determin-
istic side channels for untrusted operating systems. In Proceedings of
the 36th IEEE Symposium on Security and Privacy (Oakland), 2015.

[71]

[72]

[73]

[74]

[76]

[77]
[78]
[79]
[80]

[81]

[82]

[83]

[84]

[85]

https:
2017.

https://tools.ietf.org/html/rfc7539
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://musl.libc.org/
https://www.mysql.com/
https://www.nginx.com/
https://redis.io/
https://keystone-enclave.org/
https://sconedocs.github.io/SCONE_Fileshield/
https://www.sqlite.org/speed.html
https://www.sqlite.org/
https://github.com/akopytov/sysbench
https://blog.cloudflare.com/how-expensive-is-crypto-anyway
https://blog.cloudflare.com/how-expensive-is-crypto-anyway
https://github.com/wg/wrk

EuroSys "21, April 26-28, 2021, Online, United Kingdom Thalheim et al.

[91] K.Yasukata, M.Honda,D. Santry, and L. Eggert. Stackmap: Low-latency of the Workshop on Hot Topics in Operating Systems (HotOS), 2019.
networking with the OS stack and dedicated nics. In 2016 USENLX [94] W. Zheng, A. Dave,]. G. Beekman, R. A. Popa, J. E. Gonzalez, and
Annual Technical Conference (USENLX ATC), 2016. 1. Stoica. Opaque: An Oblivious and Encrypted Distributed Analytics

[92] T.Yates. Linux kernel: Introduction of hybrid polling in the blk-mq sub- Platform. In Proceedings of the 14th USENIX Symposium on Networked
system. https://lwn.net/Articles/735275, 2017. Last accessed: Mar, 2021. Systems Design and Implementation (NSDI), 2017.

[93] L Zhang,].Liu, A. Austin, M. L. Roberts, and A. Badam. I'm not dead yet!
the role of the operating system in a kernel-bypass era. In Proceedings

505

https://lwn.net/Articles/735275

rkt-io: A Direct I/O Stack for Shielded Execution

A Artifact appendix
A.1 Abstract

This artifact contains the LibOS and scripts to reproduce the
experiments and figures from the Eurosys 2021 paper—"rkt-io:
A Direct I/O Stack for Shielded Execution" by J. Thalheim, H.
Unnibhavi, C. Priebe, P. Bhatotia, P. Pietzuch. rkt-io provides
a direct userspace I/O stack for network and storage, specif-
ically designed for TEEs that combines high-performance,
POSIX/Linux ABI compatibility and security.

A.2 Artifact repository

All the project source code including the instructions on
how to evaluate and build the software is available in the
following git repository: https://github.com/Mic92/rkt-io

A.3 Hardware requirements

We require the following hardware setup to reproduce our
experimental results.

e Intel NIC supported by i40e driver: In rkt-io, we
perform some driver optimizations that require some
refactoring in DPDK to reduce the memory copy. In
particular, we implement an allocation function that
allocates kernel socket buffer instead of DPDK’s mbuf.
Hence, we modify the low-level i40e Intel NIC driver to
support this new allocation scheme. However, we did
not apply these changes to other drivers. Consequently,
one needs the same hardware to reproduce the paper
results. Our NIC is XL710 [38].

e NVMe block device: We need a free NVMe block
device. We use an Intel DC P4600 2TB NVMe drive [34].
Note that this device will be reformatted during the
evaluation.

e Intel CPU with SGX support: Most new consumer
CPUs have SGX support. However, some server
processors of the Xeon family do not support SGX.

o A second machine acting as a client for generating the
workloads. The client machine needs a similar capable
NIC (i.e., the same bandwidth). The client machine
does not require to have an NVMe drive.

A.4 Software requirements

We require the following software configuration to reproduce
our experimental results.
e Operating system: Linux
o Nix [1]: For reproducibility, we use the Nix package
manager to download all the build dependencies. We
have fixed the package versions to ensure reproducible
evaluation.
e Python 3.7 or newer for the script to reproduce the
evaluation.

A.5 Applications

In our evaluation, we run the following applications and
benchmarks.

506

EuroSys 21, April 26-28, 2021, Online, United Kingdom

e Sqlite [78] with its Speedtest benchmark [77].
e Nginx [58] using the wrk HTTP benchmark [89].
e Redis [68] with the YCSB benchmark [18].
e MySQL [56] with the SysBench benchmarking tool [80].
In addition, we use iPerf [39] and fio [40] for the
micro-benchmarks.

A.6 Methodology

In our artifact evaluation, we reproduce the following results
from the paper:

e Figure 1: Micro-benchmarks to showcase the perfor-
mance of syscalls, storage, and network stacks across
different systems:

1. System call latency with sendto()
2. Storage stack performance with fio
3. Network stack performance with iPerf

e Figure 5: Micro-benchmarks to showcase the
effectiveness of various design choices in rkt-io:

1. Effectiveness of the SMP design w/ fio with
increasing number of threads

2. iPerf throughput w/ different optimizations

3. Effectiveness of hardware-accelerated crypto
routines

e Figure 7: Performance comparison of four real-world
applications (SQlite, Nginx, Redis, and MySQL) for
four configurations: native Linux (no security), and
three secure systems: SCONE, SGX-LKL and rkt-io.

. SQLite throughput w/ Speedtest
. Nginx latency w/ wrk
. Nginx throughput w/ wrk
. Redis throughput w/ YCSB (A)
. Redis latency w/ YCSB (A)
. MySQL OLTP throughput w/ sys-bench
For Figure 1 and Figure 7 we compare our project against
SGX frameworks SGX-LKL [66] and ScoNE [5].

Evaluation workflow. The evaluation script reproduce. py
first builds rkt-io, SGX-LKL and ScoNE, and thereafter, it runs
all the experiments. This script only depends on Python and
Nix as referenced in the software requirements. All other
dependencies will be loaded through Nix. If the script fails at
any point it can be restarted—after the restart, it will continue
with the incomplete builds or experiments. Each command
it runs will be printed during the evaluation along with
environment variable set. In addition to some default settings,
the evaluation also requires machine-specific settings. The
script read these settings from a file containing the hostname
of the machine + “.env’. An example of the configuration file
is included in the repository.
The evaluation script is executed as follows:

AN U A WD =

$ python reproduce.py

After the build is finished, it will start the evaluation and
generate all plots. The plots are stored in . /results.

https://github.com/Mic92/rkt-io

	Abstract
	1 Introduction
	2 I/O support in TEEs
	2.1 Threat model
	2.2 Analysis of existing I/O mechanisms
	2.3 Problem statement and approach

	3 Architecture of rkt-io
	4 Detailed design of rkt-io
	4.1 Host-independent I/O interface
	4.2 I/O event handling
	4.3 I/O stack partitioning for TEEs
	4.4 Transparent encryption

	5 Implementation of rkt-io
	5.1 Runtime environment
	5.2 Network stack
	5.3 Storage stack

	6 Evaluation
	6.1 SQLite database
	6.2 Nginx web server
	6.3 Redis key-value store
	6.4 MySQL database server

	7 Related work
	8 Conclusion
	References
	A Artifact appendix
	A.1 Abstract
	A.2 Artifact repository
	A.3 Hardware requirements
	A.4 Software requirements
	A.5 Applications
	A.6 Methodology

