
Distributed Content Delivery using
Load-Aware Network Coordinates

Nicholas Ball
Imperial College London

United Kingdom
nsb04@doc.ic.ac.uk

Peter Pietzuch
Imperial College London

United Kingdom
prp@doc.ic.ac.uk

ABSTRACT
To scale to millions of Internet users with good performance,
content delivery networks (CDNs) must balance requests
between content servers while assigning clients to nearby
servers. In this paper, we describe a new CDN design that
associates synthetic load-aware coordinates with clients and
content servers and uses them to direct content requests to
cached content. This approach helps achieve good perfor-
mance when request workloads and resource availability in
the CDN are dynamic. A deployment and evaluation of our
system on PlanetLab demonstrates how it achieves low re-
quest times with high cache hit ratios when compared to
other CDN approaches.

1. INTRODUCTION
The average size of web objects has grown over the years.

Today Internet users regularly download rented films (e.g.,
from iTunes and NetFlix), TV programmes (e.g., using BBC
iPlayer), large security updates, virtual machine images and
entire operating system distributions. File sizes for this
content can range from a few megabytes (security patches)
to several gigabytes (rented high-definition films). Content
providers use content delivery networks (CDNs), such as
Akamai [16], Limelight, CoralCDN [3] and CoDeeN [17],
to provide files to millions of Internet users through a dis-
tributed network of content servers.

To achieve a scalable and reliable service, a CDN should
have two desirable properties. First, load awareness should
partition requests across a group of servers with replicated
content, balancing computational load and network con-
gestion. This increases the number of users that can be
served requesting the same content. The degree of replica-
tion may be chosen dynamically to handle surges of incom-
ing requests (flash crowds) when content suddenly becomes
popular (known as the Slashdot effect) [2]. Second, local-
ity awareness should exploit proximity relationships in the
network, such as geographic distance, round-trip latency or
topological distance, when assigning client requests to con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ROADS ’08
Copyright 2008 ACM 978-1-60558-266-5/08/0012 ...$5.00.

tent servers. Intuitively, by keeping network paths short, a
CDN can provide better quality-of-service (QoS) to clients.

It is challenging to design a CDN that makes a trade-off
between load- and locality-awareness. Simple CDNs that al-
ways redirect clients to geographically-closest content servers
lack load-balancing and suffer from overload when local con-
tent popularity increases. More advanced CDNs that are
based on distributed hash tables (DHTs) [15] primarily focus
on load-balancing. They use network locality only as a tie-
breaker between multiple servers, leading to sub-optimal de-
cisions about network locality. State-of-the-art CDNs such
as Akamai [16] are proprietary, with little public knowledge
on the types of complex optimisations that they perform.

In this paper, we describe a new type of CDN that uses
load-aware network coordinates (LANCs) to capture natu-
rally the tension between load and locality awareness. LANCs
are synthetic coordinates (calculated using a metric embed-
ding [10] of application-level delay measurements) that in-
corporate network location and load of content servers. Our
CDN uses LANCs to map clients dynamically to the most
appropriate server in a decentralised fashion. Popular con-
tent is replicated among nearby content servers with low
load. By combining locality and load using the unified mech-
anism of LANCs, we simplify the design of the CDN and
discard the need for ad-hoc solutions.

The main contributions of this work are: (1) the intro-
duction of LANCs, showing how they react to CPU load
and network congestion; (2) the design and implementation
of a CDN that uses LANCs to route client requests to con-
tent servers and replicate content; (3) a preliminary evalua-
tion of our LANC-based CDN on PlanetLab, demonstrating
its benefits in comparison to other approaches. Our results
shows that, with a locality-heavy workload, our approach
achieves almost an order of magnitude lower request times
compared to direct retrieval of content.

The rest of the paper is structured as follows. In Section 2,
we discuss the requirements for CDNs in more detail and,
in Section 3, we describe LANCs. We present our CDN de-
sign in Section 4, focussing on request mapping and request
redirection. In Section 5, we evaluate LANCs on a local net-
work and also present results from a large-scale PlanetLab
deployment. Section 6 describes related work and Section 7
concludes with an outlook on future work.

2. CONTENT DELIVERY NETWORKS
Global CDNs are typically implemented as a distributed

network of servers hosting replicated content. Servers may
be located at geographically-diverse data centres, providing



content to users in a given region. Web clients issue requests
to fetch content from the CDN, which are satisfied by con-
tent servers according to a particular mapping strategy. A
goal of the CDN is to minimise total request time, i.e., the
time until a client has successfully retrieved desired content.

Load awareness. For a CDN to be load-aware, there
must be a mechanism that balances load between content
servers. This may be the done by, for example, distributing
requests uniformly across all content servers or redirecting
requests to the least-loaded server. If content requests go to
overloaded servers, clients experience poor performance.

In our model, we distinguish between load balancing for
computational load and network congestion. (1) Computa-
tional load at a content server is caused by the processing
associated with content requests. This involves request pars-
ing, retrieval of cached content if there is a cache hit and con-
tent delivery to the client. (2) Network congestion is caused
by the limited capacity of network paths to carry traffic.
This creates bottleneck links that determine the throughput
at which content can be delivered to clients. Considering
the Internet path from client to server, the bottleneck may
be: (a) at the client’s access link, in which case only the
performance of this client is affected and the CDN cannot
provide any remedy; (b) at the client’s upstream ISP or In-
ternet backbone, affecting a larger number of clients. Here,
the choice of a different content server may lead to improved
performance; (c) at the content servers’ access link, affect-
ing all client requests to this server. In this case, the CDN
should redirect requests away from the congested server.

Locality awareness. A CDN is locality-aware if net-
work paths are kept short. For example, a CDN can take
request origins into account and return content from nearby
servers with low load. Proximity may be defined in terms
of geographic distance, latency, number of routing hops or
overlap between address prefixes. By minimising network
path lengths, clients are more likely to experience better
QoS [11]. Intuitively, this is because: (1) short paths of-
fer low latencies. This helps TCP obtain high throughput
quickly therefore reducing transmission times for small con-
tent; (2) short paths are less likely to encounter congestion
hot-spots, resulting in improved throughput; (3) short paths
tend to be more reliable as they involve fewer network links
and routers; (4) short paths decrease overall network satu-
ration, leaving more spare network capacity for other traffic.

3. LOAD-AWARE NETWORK
COORDINATES

Overlay networks can use network coordinates (NCs) [10]
to become locality-aware [13]. In a NC system, each node
maintains a synthetic n-dimensional coordinate (of low di-
mensionality, typically 2 ≤ n ≤ 5) based on round-trip la-
tency measurements between nodes. The NCs of nodes are
calculated by embedding the graph of latency measurements
into a metric space. Euclidean distances between NCs then
predicts the actual communication latencies. NCs are up-
dated dynamically to reflect changes in Internet latencies.

A benefit of NCs is that they estimate missing measure-
ments. They allow Internet nodes to reason about their rela-
tive proximities without having to collect all measurements.
However, triangle inequality violations found in Internet la-
tencies make it impossible to embed measurements without
error [9], resulting in less accurate latency prediction. There

is also a constant measurement overhead when maintaining
NCs in the background.

Vivaldi. Our CDN uses the Pyxida library [14] to main-
tain NCs according to the Vivaldi [1] algorithm. Vivaldi is a
decentralised algorithm that computes NCs using a spring-
relaxation technique. Nodes are modelled as point masses
and latencies as springs between nodes. The NCs of nodes
change as nodes attract and repel each other.

E =
X

i

X
j

(Lij − ‖xi − xj‖)2 (1)

Let xi be the NC assigned to node i and xj to j. Lij is the
actual latency between nodes i and j. Vivaldi characterises
the errors in the NCs using the squared-error function in
Eq. 1, where ‖xi − xj‖ is the Euclidean distance between the
NCs of nodes i and j. Since Eq. 1 corresponds to energy in
a physical mass-spring system, Vivaldi minimises prediction
errors by finding a low-energy state of the spring network.

NCs are computed by each node in a decentralised fashion:
When node i receives a new latency measurement Lij to
node j, it compares the true latency Lij to the predicted
latency ‖xi − xj‖. It then adjusts its NC xi to minimise
the prediction error according to Eq. 1. Measurements are
filtered to remove outliers [7]. The above process converges
quickly in practice and leads to stable and accurate NCs [6].

Load-awareness. It is easy to see how a CDN could ben-
efit from NCs to achieve locality-awareness. Assuming that
clients and servers have known NCs, clients could direct re-
quests to the server with the closest NC. Also, servers could
use their neighbours to replicate popular content, keeping
content replication local while reducing total request times.

The lower accuracy of NCs for latency prediction com-
pared to direct measurements [18] is less important for a
CDN. A small latency reduction by choosing a slightly closer
server will only have a marginal impact on the total request
time for large content. The goal for locality-awareness in a
CDN is to select a content server with good performance, as
opposed to finding the single closest one.

However, regular NCs do not provide load-balancing be-
tween content servers. Servers in densely-populated areas
are likely to become overloaded, whereas servers in sparse
regions will have spare capacity. To address this problem,
we propose load-aware NCs (LANCs) that are calculated
using application-level delay measurements, therefore incor-
porating computational load and network congestion.

Regular NCs are computed from network-level measure-
ments (e.g., ICMP echo requests) to capture pure network
latencies between two hosts. In particular, measurements
aim to be independent of computational load (e.g., by as-
signing kernel-space timestamps to packets) and of conges-
tion on network paths (e.g., by using small measurement
packets least affected by congestion) [5].

In contrast, LANCs are computed with application-percei-
ved round-trip times (RTTs) between hosts that are mea-
sured through dedicated TCP connections with user-space
timestamping. The computational load of a host affects
user-space timestamps, leading to higher RTTs for over-
loaded hosts. Congestion on network paths results in the
retransmission of TCP packets, again increasing application-
perceived RTTs. As a result, overloaded and congested
servers are assigned more distant LANCs and can be avoided
by clients. (This assumes that clients are, in general, less
loaded than servers.)



Client
Content
Server

Client 
Browser

HTTP
Proxy

Coordinate 
Manager

X

Y

Coordinate 
Manager

X

Y

HTTP
Proxy

Cache 
Manager

Origin Web 
Server

Content
Server

Content
Server

Figure 1: Overview of the architecture of our
LANC-based CDN.

By folding load into LANCs, the CDN does not need to
manually tune the trade-off between choosing a local content
server versus a server with low load. Instead, it can map
client requests directly to the “best” content server in terms
of expected content delivery performance. The best server
has the closest LANC relative to the client and combines low
computational load with little congestion on the network
path. We believe that this results in a simpler and more
natural CDN design.

4. CDN DESIGN
Next we describe the architecture of our LANC-based

CDN, how it processes requests, and how requests are redi-
rected between servers. As shown in Figure 1, we distin-
guish between the content server, the client and the origin
web server. Clients generate requests and forward them to
content servers. Servers receive requests and handle them
by delivering the requested content, potentially fetching an
authoritative copy of the content from the origin web server.

Content servers have three components: (1) The cache
manager provides an interface to store and retrieve content
from the local disk. It also defines the cache replacement
strategy (e.g., LRU or LFU) when disk space is low and
content must be discarded.

(2) The server HTTP proxy is the point of entry for HTTP
requests by providing a proxy interface. For each request,
the proxy decides to (a) retrieve content locally if the cache
manager indicates that the requested content exists in the lo-
cal cache; (b) request content from a nearby server with the
help of the server coordinate manager (Section 4.2); or (c) re-
turn content from the origin web server to the requester,
while caching it locally for future access.

(3) The server coordinate manager maintains the LANC.
It takes application-level delay measurements to random
other servers and clients and updates the LANC accord-
ingly. It also maintains a routing table of neighbours that is
used for mapping clients to servers (Section 4.1).

Clients generate HTTP requests with a regular web browser.
To redirect requests to content servers, clients run two com-
ponents as a separate process (or as part of a browser plug-
in): (1) The client HTTP proxy provides a local proxy.
The local browser is configured to send all HTTP requests
through this proxy. The proxy interacts with the client co-
ordinate manager to redirect requests to content servers.

(2) The client coordinate manager is similar to the one on
the server-side. It makes delay measurements to maintain

Client 1

Client 2

Client 3

Nearest 

Content 

Server

Overloaded 

Content 

Server

Overloaded 

Content 

Server

Load-Aware Coordinate Space

L
o

a
d

-A
w

a
re

 C
o

o
rd

in
a

te
 S

p
a

c
e

Figure 2: Mapping of requests to content servers
using LANCs

a LANC. It also manages a fixed-sized neighbour set with
nearby content servers used for mapping requests to servers.

4.1 Request Mapping
Clients map requests to the content server with the closest

LANC compared to their own. This guarantees that they
use a server with good locality and low load. As shown in
Figure 2, each server maintains a neighbour set of nearby
servers. Requests are redirected to the closest server from
that set. Overloaded content servers will move away from
other clients by settling for“distant”coordinates in the space.

Each client coordinate manager must dynamically keep
track of a small set of nearby servers. For this, we use a
geometric routing approach in the coordinate space created
by the LANCs of all servers. The algorithm, described in
previous work [6], constructs a Θ-graph spanner and uses a
greedy approach to route messages to a target coordinate
through O(log n) hops. Informally, each server has a rout-
ing table that stores O(log n) servers at various angles and
distances in the LANC space. To route a message to a given
target LANC, a node greedily forwards the message to a
node from its routing table that is closest to the target. A
more detailed description can be found in [6].

When a new client joins the CDN, it contacts an arbitrary
server and routes a message with its own LANC as the des-
tination. This message is guaranteed to arrive at the closest
existing server to the given coordinate. The client then adds
this server to its neighbour set. It may also include other,
more distant servers to increase failure resilience. Periodi-
cally, clients rejoin the CDN to update the mapping as the
LANCs of servers change. Servers follow the regular join
protocol described in [6] to construct their routing tables.

Note that multi-hop geometric routing is only done when
a client joins the CDN (and also periodically to refresh the
mapping) but not for each content request. A content re-
quest only requires a look-up of the best content server from
the local neighbour set.

4.2 Request Redirection
So far, our LANC-based CDN is only populated with new

content when a server fetches content from the origin web
server after a cache miss (local-only redirection). How-
ever, we could take advantage of the proximity between
servers and have them cooperate to retrieve content from
each other. This would help exploit spatial in addition to



just temporal cache locality. For a performance gain, we
must ensure that it is faster to retrieve content from an-
other server than to fetch it from the original web server.
This is likely to be true for local servers. We propose two
simple coordinate-based techniques for cooperation between
content servers:

Server-centric redirection. When a primary content
server receives a request that it cannot satisfy with its local
cache, it forwards the request to a set of secondary servers
in parallel. The secondary servers are neighbours in its geo-
metric routing table within a distance d in the LANC space.
The secondary servers then (a) return the requested con-
tent to the primary server if available. The primary server
then forwards the content to the client while caching it; or
(b) respond with cache misses. If all secondary servers had
cache misses, the primary server fetches the content from
the origin web server. A low value of d ensures that retriev-
ing content from secondary servers gives better performance
than fetching it directly from the origin web server. A time-
out value t puts an upper bound on the waiting time for
responses from secondary servers.

Client-centric redirection. In this scheme, a client
sends requests in parallel to nearby servers in the LANC
space. Again, the closest server will act as the primary server
and fetch the content from the origin web server on a cache
miss. At the same time, secondary servers within distance d
attempt to retrieve the content from their local caches and
return it to the client. The client may receive content multi-
ple times from different servers and therefore needs to abort
pending requests after the first successful retrieval.

Client-centric redirection is likely to give better perfor-
mance when fetching content from secondary servers. How-
ever, it forces the primary server to retrieve content from
the origin server, even when a secondary server has had a
cache hit. This unnecessarily increases load on origin web
servers. To avoid this (at the cost of one additional RTT),
the client could send the request to the primary server only
after receiving negative responses from the secondary ones.

Fundamentally, server-centric redirection spreads popular
content more effectively in the CDN because primary servers
retrieve it from secondary servers without involving origin
web servers. Therefore our evaluation in Section 5.2 focuses
on server-centric redirection.

5. EVALUATION
Our evaluation goals were (a) to investigate the behaviour

of LANCs under CPU load and network congestion in a
controlled environment; and (b) to observe the performance
of a large-scale deployment of our LANC-based CDN with
a non-trivial workload on PlanetLab.

5.1 LAN Experiment
The first experiment examines how LANCs are influenced

by computational load on hosts. We set up our CDN on
a LAN with 6 nodes (1 content server and 5 clients). The
content server ran on a resource-constraint laptop connected
via a wireless link and acted as the bootstrap node. To
achieve high sensitivity to load changes, all nodes performed
aggressive RTT measurements every 10 seconds with 100 KB
payloads. The nodes were left until their LANCs stabilised.
We then generated synthetic load on the server with a CPU-
bound process for 10 minutes.

Figure 3 shows the application-level RTT samples from

 0

 10

 20

 30

 40

 50

 60

 0  200  400  600  800  1000  1200  1400

R
T

T
 m

ea
su

re
m

en
t (

m
s)

C
oo

rd
in

at
e 

di
st

an
ce

 (
m

s)

Time (secs)

High CPU load

Figure 3: Increase in RTT and coordinate distances
under high content server load

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  200  400  600  800  1000  1200  1400
R

T
T

 m
ea

su
re

m
en

t (
m

s)

C
oo

rd
in

at
e 

di
st

an
ce

 (
m

s)

Time (secs)

Network congestion

Figure 4: Increase in RTT samples and coordinate
distances under network congestion

the five clients to the server (shown as dots; left axis) and
the corresponding coordinate distances (shown as lines; right
axis) between the clients and the server. The CPU load on
the content server causes an increase in RTT, which is then
(with a small lag) also reflect by the LANC distances. The
change in LANC distances is due to a change of the server
coordinate. Clients observe that the RTTs among them have
not changed, whereas the server measures higher RTTs to
all clients and adapts its coordinate accordingly.

In the second experiment, we ran 1 (well-provisioned) con-
tent server and 5 clients in a LAN. After a stabilisation pe-
riod, we added 3 elastic TCP flows between the node running
the content server and 3 other (non-client) nodes. As shown
in Figure 4, the resulting network congestion increases the
RTT samples (dots; left axis) between the clients and server
and makes them vary between 80 and 120 ms. This is picked
by the LANC coordinate of the server, leading to increased
distances (lines; right axis). After the additional flows ter-
minate, the coordinate returns to its original value.

5.2 PlanetLab Deployment
We deployed our LANC-based CDN on PlanetLab (PL)

to investigate how it exploits temporal and spatial locality
between client requests. We ran content servers on 108 PL
nodes distributed world-wide and 16 clients on hosts at our
university. We then conducted six experiments with differ-
ent configurations and measured the performance of satisfy-
ing content requests:

(a) LANC+SC (server-centric). This configuration uses
the LANC-based request mapping with server-centric
redirection of requests. On a cache miss, a content server
forwards a request to all its known neighbours and waits



a) LANC+SC b) LANC+LO c) Nearest d) Random e) Direct f) CoralCDN
Total number of requests 12, 922 8524 1204 1089 3331 4074
Successful requests 97.8% 97.8% 96.3% 96.5% 80.6% 75.8%
Total transfer volume (GB) 40.47 26.69 3.72 3.37 8.60 9.90
Cache hit ratio 97.3% 89.2% 90.2% 4.6% N/A Unknown

Avg. request time (secs) 3.20 4.83 35.84 50.33 20.40 18.41
Median request time (secs) 2.24 1.76 34.84 15.97 3.45 4.01
90th perc. request time (secs) 4.57 4.97 41.81 117.58 28.26 19.55

Avg. transfer rate (KB/s) 1, 533 1, 935 106 305 1, 778 876
Median transfer rate (KB/s) 1, 500 1, 912 96 210 973 741
90th perc. transfer rate (KB/s) 2, 448 2, 726 142 756 4, 448 1, 739

Table 1: Summary of CDN performance on PlanetLab with six configurations

0.0

0.2

0.4

0.6

0.8

1.0

 10  100  1000  10000

C
D

F

Avg. transfer data rate per request (KB/s)

LANC+SC
LANC+LO

Nearest
Random

Direct
CoralCDN

Figure 5: CDF plot of the distribution of transfer
data rates for six configurations. (Faster is better)

for responses with a 2 second timeout.
(b) LANC+LO (local-only). This uses the LANC-based

request mapping but only satisfies requests from the lo-
cal server cache.

(c) Nearest. This directs all requests to the single, nearest
content server (located at one of the Imperial PL nodes).

(d) Random. This directs requests to random servers.
(e) Direct. For comparison, this retrieves content directly

from the origin web servers without caching.
(f) CoralCDN. This configuration directs all requests to

the local CoralCDN node running on PL.

Each experiment was set up in the same way. The first
content server acted as the bootstrap node for all other
nodes. After starting the servers, we added the client nodes
and let coordinates stabilise for one hour. RTT measure-
ments between nodes were taken with 4 KB payloads ex-
changed through TCP connections every minute. All con-
tent servers started with cold caches.

We generated a synthetic request workload on the 16 clients.
Each client continuously requested a Gentoo Linux distribu-
tion file with a size of 3.28 MB from a list of 100 web servers
distributed world-wide [4]. (Since the URLs were different,
all CDNs assumed these to be different files, with no caching
between URLs.) This request load provided spatial locality
(all requests came from clients at our university) and tem-
poral locality (clients eventually requested the same URL
repeatedly). The high load on PL nodes exercised our load-
balancing mechanism. We deliberately chose a relatively
small file size to stay below per-slice transmission limits on
PL. Each configuration ran for one hour.

The results are summarised in Table 1. Figure 5 shows
the distribution of average transfer data rates per request
across all clients on a logarithmic scale.

LANC+SC manages to satisfy the most requests (12, 922)
in one hour. The low value for the 90th percentile of request

 0

 20

 40

 60

 80

 100

 0  500  1000  1500  2000

C
ac

he
 h

it 
ra

tio
 (

%
)

Number of completed requests

LANC+SC
LANC+LO

Nearest
Random

Figure 6: Cache hit ratio as a function of completed
requests (for first 2000 requests only)

times (4.57 seconds) is due to its good choice of content
servers (with nearby LANCs), which results in high trans-
fer rates, and its aggressive fetching of cached content from
other servers, which means a high cache hit ratio of 97.3%.
During the experiment, we observed that most clients re-
quested content from a small set of servers running on PL
nodes with low load at Imperial, in France and in Germany.

LANC+LO satisfies fewer requests compared to LANC+
SC. As seen in Figure 5, its performance suffers from a small
fraction of requests with low transfer rates. We observed
that these were mostly cache misses that forced the retrieval
of content from slow web servers. At the same time, the
90th percentile of its transfer rate is slightly higher than
for LANC+SC because servers do not have the overhead of
relaying content when fetching it from neighbours. Since
LANC+LO only considers a single content server for satis-
fying requests, it has a lower cache hit ratio (89.2%).

Nearest gives poor performance because the single con-
tent server becomes a bottleneck and can only satisfy re-
quests with a consistently low transfer rate. It has a high
cache hit ratio (90.2%) because all requests are directed to
the same server (but not the highest because clients do not
manage to submit all requests twice within one hour).

Random balances requests across many servers but fails
to exploit spatial or temporal locality, leading to a low cache
hit ratio (4.6%). Selected servers often take a long time to
retrieve content due to high load on PL nodes and/or low
available bandwidth.

Direct illustrates the benefit of caching with a CDN com-
pared to retrieving content directly from hosting web servers.

Finally, we used CoralCDN on PL to retrieve content.
Although this is not a fair comparison because, as a public
service, CoralCDN handles a higher work-load than just the
requests we directed at it, we believe that it illustrates the
potential of our approach. As expected, CoralCDN showed



a substantially higher average request time (18.41 seconds)
than our LANC-based CDN. As shown in Figure 5, its aver-
age transfer rates were lower than fetching content directly
(while presumably significantly reducing load on the origin
web servers). For now, we can only speculate whether this
is due to CoralCDN’s high workload or less optimal choice
of content servers. In future work, we plan to repeat this
experiment in a controlled setting.

Figure 6 illustrates the difference between LANC+SC and
LANC+LO in more detail. It shows the change in cache hit
ratio as a function of completed requests. The cache hit
ratio of LANC+SC grows faster because it considers nearby
servers for requested content. This means that LANC+SC
reduces the load on the origin web servers by retrieving more
content from the CDN. With our workload, eventually all
requests can be satisfied by the CDN and the cache hit ratio
asymptotically approaches unity.

6. RELATED WORK
CoralCDN [3] is a peer-to-peer CDN built to help web

servers handle huge demands of flash crowds. With coop-
erating cache nodes, CoralCDN minimises the load on the
original web server and avoids the creation of hot spots. It
builds a load-balanced, latency-optimised hierarchical index-
ing infrastructure based on a weakly-consistent DHT and
achieves locality-awareness by making nodes members of
multiple DHTs called clusters. Clusters are specified by a
maximum RTT and can reduce request latencies by priori-
tising nearby nodes. Our work shares many of the design
goals of CoralCDN in terms of locality- and load-awareness.
However our approach of using a unified scheme based on
LANCs is different, aiming for good request mappings in
environments with dynamic load and network congestion.

CoDeeN [17] is a network of open proxy servers running
on PL. The system leaves it up to the user to choose a suit-
able proxy server for browser requests. If the local proxy
cannot satisfy a request, it selects another proxy based on
locality, load and reliability. Our LANC-based CDN auto-
mates the initial mapping step at the cost of running a client
component on user machines.

Globule [12] is a collaborative CDN that exploit client
resources for caching using a browser plug-in. Because Glob-
ule runs on client hosts, it must make different assumptions
about churn and security. It uses landmark-based NCs for
locality-awareness. Replicated content is placed according
to the locations of clients in a coordinate space. Since it
leverages many client machines for caching, balancing com-
putational load is less important.

Meridian [18] builds an overlay network for locality-aware
node selection with on-demand probing to estimate node dis-
tances. To find the nearest node to a client, Meridian uses
a set of ICMP echo requests to move logarithmically closer
to the target. Similar to our geometric routing tables, each
nodes maintains a fixed number of links to other nodes with
exponentially increasing distances. Meridian aims to return
the closest existing node to a client. We argue that such
accuracy is not necessary when selecting content servers, as
other factors such as load will be equally important.

7. CONCLUSIONS
We have described a novel CDN that uses a coordinate

space with application-level latency measurements between

clients and content servers for the mapping and redirection
of requests. We demonstrated how our LANC-based CDN
reacts to computational load and network congestion. A
large-scale deployment on PL with a locality-heavy workload
highlights the benefits of our approach.

As future work, we plan to study the stability and load-
awareness of LANCs under dynamic workloads (e.g., flash
crowds) and varying resource availability. We also plan a
more extensive comparison against other CDNs. Finally, we
want to investigate how proxy NCs [8] can relieve the burden
from maintaining LANCs from client nodes.

8. ACKNOWLEDGEMENTS
We would like to thank Richard Clegg, Jonathan Ledlie,

Cristian Lumezanu, Miguel Rio and the anonymous review-
ers for their feedback on this paper.

9. REFERENCES
[1] F. Dabek, R. Cox, F. Kaashoek, and R. Morris.

Vivaldi: A Decentralized Network Coordinate System.
In Proc. of SIGCOMM, Aug. 2004.

[2] J. Elson and J. Howell. Handling Flash Crowds from
Your Garage. In Proc. of USENIX, 2008.

[3] M. J. Freedman, E. Freudenthal, and D. Mazières.
Democratizing Content Publication with Coral. In
Proc. of NSDI, 2004.

[4] Gentoo. Gentoo Mirror List.
www.gentoo.org/main/en/mirrors2.xml, Aug. 2008.

[5] J. Ledlie, P. Gardner, and M. Seltzer. Network
Coordinates in the Wild. In Proc. of NSDI, 2007.

[6] J. Ledlie, M. Mitzenmacher, M. Seltzer, and
P. Pietzuch. Wired Geometric Routing. In Proc. of
IPTPS, Bellevue, WA, USA, Feb. 2007.

[7] J. Ledlie, P. Pietzuch, and M. Seltzer. Stable and
Accurate Network Coordinates. In ICDCS, July 2006.

[8] J. Ledlie, M. Seltzer, and P. Pietzuch. Proxy Network
Coordinates. TR 2008/4, Imperial College, Feb. 2008.

[9] E. K. Lua, T. Griffin, et al. On the Accuracy of
Embeddings for Internet Coord. Sys. In IMC, 2005.

[10] T. E. Ng and H. Zhang. Predicting Internet Network
Distance with Coordinates-Based Approaches. In
Proc. of INFOCOM’02, New York, NY, June 2002.

[11] D. Oppenheimer, J. Albrecht, D. Patterson, and
A. Vahdat. Distributed Resource Discovery on
PlanetLab with SWORD. In WORLDS, Dec. 2004.

[12] G. Pierre and M. van Steen. Globule: a Collaborative
CDN. IEEE Comms. Magazine, 44(8), Aug. 2006.

[13] P. Pietzuch, J. Ledlie, M. Mitzenmacher, and
M. Seltzer. Network-Aware Overlays with Network
Coordinates. In Proc. of IWDDS, July 2006.

[14] Pyxida Project. pyxida.sourceforge.net, 2006.

[15] I. Stoica, R. Morris, D. Karger, et al. Chord: A
Scalable Peer-to-peer Lookup Service for Internet
Applications. In Proc. SIGCOMM, Aug. 2001.

[16] A.-J. Su, D. Choffnes, A. Kuzmanovic, et al. Drafting
Behind Akamai. In SIGCOMM, 2006.

[17] L. Wang, K. Park, R. Pang, V. S. Pai, and
L. Peterson. Reliability and Security in the CoDeeN
Content Distribution Network. In USENIX, 2004.

[18] B. Wong et al. Meridian: A Lightweight Network Loc.
Service without Virtual Coords. In SIGCOMM, 2005.


