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ABSTRACT
Modern servers have become heterogeneous, often combining multi-
core CPUs with many-core GPGPUs. Such heterogeneous architec-
tures have the potential to improve the performance of data-intensive
stream processing applications, but they are not supported by cur-
rent relational stream processing engines. For an engine to exploit a
heterogeneous architecture, it must execute streaming SQL queries
with sufficient data-parallelism to fully utilise all available heteroge-
neous processors, and decide how to use each in the most effective
way. It must do this while respecting the semantics of streaming
SQL queries, in particular with regard to window handling.

We describe SABER, a hybrid high-performance relational stream
processing engine for CPUs and GPGPUs. SABER executes window-
based streaming SQL queries in a data-parallel fashion using all
available CPU and GPGPU cores. Instead of statically assigning
query operators to heterogeneous processors, SABER employs a
new adaptive heterogeneous lookahead scheduling strategy, which
increases the share of queries executing on the processor that yields
the highest performance. To hide data movement costs, SABER
pipelines the transfer of stream data between CPU and GPGPU
memory. Our experimental comparison against state-of-the-art en-
gines shows that SABER increases processing throughput while
maintaining low latency for a wide range of streaming SQL queries
with both small and large window sizes.

1. INTRODUCTION
The recent generation of stream processing engines, such as

S4 [45], Storm [52], Samza [1], Infosphere Streams [13], Spark
Streaming [56] and SEEP [17], executes data-intensive streaming
queries for real-time analytics and event-pattern detection over high
volumes of stream data. These engines achieve high processing
throughput through data parallelism: streams are partitioned so that
multiple instances of the same query operator can process batches of
the stream data in parallel. To have access to sufficient parallelism
during execution, these engines are deployed on shared-nothing
clusters, scaling out processing across servers.

An increasingly viable alternative for improving the performance
of stream processing is to exploit the parallel processing capability
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offered by heterogeneous servers: besides multi-core CPUs with
dozens of processing cores, such servers also contain accelerators
such as GPGPUs with thousands of cores. As heterogeneous servers
have become commonplace in modern data centres and cloud offer-
ings [24], researchers have proposed a range of parallel streaming al-
gorithms for heterogeneous architectures, including for joins [36,51],
sorting [28] and sequence alignment [42]. Yet, we lack the design
of a general-purpose relational stream processing engine that can
transparently take advantage of accelerators such as GPGPUs while
executing arbitrary streaming SQL queries with windowing [7].

The design of such a streaming engine for heterogeneous archi-
tectures raises three challenges, addressed in this paper:
(1) When to use GPGPUs for streaming SQL queries? The speed-up
that GPGPUs achieve depends on the type of computation: execut-
ing a streaming operator over a batch of data in parallel can greatly
benefit from the higher degree of parallelism of a GPGPU, but this
is only the case when the data accesses fit well with a GPGPU’s
memory model. As we show experimentally in §6, some streaming
operators accelerate well on GPGPUs, while others exhibit lower
performance than on a CPU. A streaming engine with GPGPU
support must therefore make the right scheduling decisions as to
which streaming SQL queries to execute on the GPGPU in order to
achieve high throughput for arbitrary queries.
(2) How to use GPGPUs with streaming window semantics? While
a GPGPU can naturally process a discrete amount of data in par-
allel, streaming SQL queries require efficient support for sliding
windows [7]. Existing data-parallel engines such as Spark Stream-
ing [56], however, tie the size of physical batches of stream data,
used for parallel processing, to that of logical windows specified in
the queries. This means that the window size and slide of a query
impact processing throughput; current data-parallel engines, for ex-
ample, struggle to support small window sizes and slides efficiently.
A streaming engine with GPGPU support must instead support arbi-
trary windows in queries while exploiting the most effective level of
parallelism without manual configuration by the user.
(3) How to reduce the cost of data movement with GPGPUs? In
many cases, the speed-up achieved by GPGPUs is bounded by the
data movement cost over the PCI express (PCIe) bus. Therefore,
a challenge is to ensure that the data is moved to the GPGPU in a
continuous fashion so that the GPGPU is never idle.

We describe the design and implementation of SABER, a hy-
brid relational stream processing engine in Java that executes
streaming SQL queries on both a multi-core CPU and a many-core
GPGPU to achieve high processing throughput. The main idea
behind SABER is that, instead of offloading a fixed set of query
operators to an accelerator, it adopts a hybrid execution model in
which all query operators can utilise all heterogeneous processors in-
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terchangeably. By “processor” we refer here to either an individual
CPU core or an entire GPGPU. More specifically, SABER makes
the following technical contributions:
Hybrid stream processing model. SABER takes a streaming SQL
query and translates it to an operator graph. The operator graph
is bundled with a batch of stream data to form a query task that
can be scheduled on a heterogeneous processor. SABER’s hybrid
stream processing model then features two levels of data parallelism:
(i) tasks run in parallel across the CPU’s multiple cores and the
GPGPU and (ii) a task running on the GPGPU is further parallelised
across its many cores.

One approach for selecting the processor on which to run a given
query operator is to build an offline performance model that predicts
the performance of operators on each processor type. Accurate
performance models, however, are hard to obtain, especially when
the processing performance can change dynamically, e.g. due to
skewed distributions of input data.

In contrast, SABER uses a new heterogeneous lookahead schedul-
ing (HLS) algorithm: the scheduler tries to assign each task to the
heterogeneous processor that, based on past behaviour, achieves
the highest throughput for that task. If that processor is currently
unavailable, the scheduler instead assigns a task to another processor
with lower throughput that still yields an earlier completion time.
HLS thus avoids the need for a complex offline model and accounts
for changes in the runtime performance of tasks.
Window-aware task processing. When SABER executes query
tasks on different heterogeneous processors, it supports sliding
window semantics and maintains high throughput for small win-
dow sizes and slides. A dispatcher splits the stream into fixed-
sized batches that include multiple fragments of windows processed
jointly by a task. The computation of window boundaries is post-
poned until the task executes, thus shifting the cost from the se-
quential dispatching stage to the highly parallel task execution stage.
For sliding windows, tasks perform incremental computation on the
windows in a batch to avoid redundant computation.

SABER preserves the order of the result stream after the parallel,
out-of-order processing of tasks by first storing the results in local
buffers and then releasing them incrementally in the correct order
as tasks finish execution.
Pipelined stream data movement. To avoid delays due to data
movement, SABER introduces a five-stage pipelining mechanism
that interleaves data movement and task execution on the GPGPU:
the first three stages are used to maintain high utilisation of the
PCIe bandwidth by pipelining the Direct Memory Access (DMA)
transfers of batches to and from the GPGPU with the execution of
associated tasks; the other two stages hide the memory latency asso-
ciated with copying batches in and out of managed heap memory.

The remainder of the paper is organised as follows: §2 motivates
the need for high-throughput stream processing and describes the
features of heterogeneous architectures; §3 introduces our hybrid
stream processing model; §4 describes the SABER architecture,
focussing on its dispatching and scheduling mechanisms; and §5
explains how SABER executes query operators. The paper finishes
with evaluation results (§6), related work (§7) and conclusions (§8).

2. BACKGROUND

2.1 High-throughput stream processing
Stream processing has witnessed an uptake in many applica-

tion domains, including credit fraud detection [26], urban traffic
management [9], click stream analytics [5], and data centre man-
agement [44]. In these domains, continuous streams of input data

(e.g. transaction events or sensor readings) need to be processed
in an online manner. The key challenge is to maximise processing
throughput while staying within acceptable latency bounds.

For example, already in 2011, Facebook reported that a query
for click stream analytics had to be evaluated over input streams
of 9 GB/s, with a latency of a few seconds [49]. Credit card fraud
detection systems must process up to 40,000 transactions per second
and detect fraudulent activity within 25 ms to implement effective
countermeasures such as blocking transactions [26]. In finance,
the NovaSparks engine processes a stream of cash equity options at
150 million messages per second with sub-microsecond latency [46].

The queries for the above use cases can be expressed in a stream-
ing relational model [7]. A stream is a potentially infinite sequence
of relational tuples, and queries over a stream are window-based. A
window identifies a finite subsequence of a stream, based on tuple
count or time, which can be viewed as a relation. Windows may
overlap—tuples of one window may also be part of subsequent
windows in which case the window slides over the stream. Distinct
subsequences of tuples that are logically related to the same set
of windows are referred to as panes [41], i.e. a window is a con-
catenation of panes. Streaming relational query operators, such as
projection, selection, aggregation and join, are executed per window.

To execute streaming relational queries with high throughput,
existing stream processing engines exploit parallelism: they either
execute different queries in parallel (task parallelism), or execute
operators of a single query in parallel on different partitions of the
input stream (data parallelism). The need to run expensive analytics
queries over high-rate input streams has focused recent research
efforts on data parallelism.

Current data-parallel stream processing engines such as Storm [52],
Spark [56] and SEEP [17] process streams in a data-parallel fash-
ion according to a scale-out model, distributing operator instances
across nodes in a shared-nothing cluster. While this approach can
achieve high processing throughput, it suffers from drawbacks: (i) it
assumes the availability of compute clusters; (ii) it requires a high-
bandwidth network that can transfer streams between nodes; (iii) it
can only approximate time-based window semantics due to the lack
of a global clock in a distributed environment; and (iv) the overlap
between windows requires redundant data to be sent to multiple
nodes or the complexity of a pane-based approach [11].

2.2 Heterogeneous architectures
In contrast to distributed cluster deployments, we explore a dif-

ferent source of parallelism for stream processing that is becoming
increasingly available in data centres and cloud services: servers
with heterogeneous architectures [10, 54]. These servers, featuring
multi-core CPUs and accelerators such as GPGPUs, offer unprece-
dented degrees of parallelism within a single machine.

GPGPUs implement a throughput-oriented architecture. Unlike
traditional CPUs, which focus on minimising the runtime of sequen-
tial programs using out-of-order execution, speculative execution
and deep memory cache hierarchies, GPGPUs target embarrassingly
parallel workloads, maximising total system throughput rather than
individual core performance. This leads to fundamental architectural
differences—while CPUs have dozens of sophisticated, powerful
cores, GPGPUs feature thousands of simple cores, following the
single-instruction, multiple-data (SIMD) model: in each cycle, a
GPGPU core executes the same operation (referred to as a kernel)
on different data. This simplifies the control logic and allows more
functional units per chip: e.g. the NVIDIA Quadro K5200 has
2,304 cores and supports tens of thousands of threads [47].

GPGPU cores are grouped into streaming multi-processors (SM),
with each SM supporting thousands of threads. Threads have their



own dedicated sets of registers and access to high-bandwidth, shared
on-chip memory. While modern CPUs hide latency by using a deep
cache hierarchy, aggressive hardware multi-threading in GPGPUs
allows latency to be hidden by interleaving threads at the instruction-
level with near zero overhead. Therefore, GPGPU cores have only
small cache sizes compared to CPUs: e.g. the NVDIA Quadro
K5200 has a 64 KB L1 cache per SM and a 1,536 KB L2 cache
shared by all SMs.

A dedicated accelerator typically is attached to a CPU via a PCIe
bus, which has limited bandwidth.1 For example, a PCIe 3.0 ×16
bus has an effective bandwidth of approximately 8 GB/s. This intro-
duces a fundamental throughput limit when moving data between
CPU and GPGPU memory. Especially when data movements occur
at a high frequency, as in streaming scenarios, care must be taken
to ensure that these transfers happen in a pipelined fashion to avoid
stalling the GPGPU.

The potential of GPGPUs for accelerating queries has been shown
for traditional relational database engines. For example, Ocelot [32]
is an in-memory columnar database engine that statically offloads
queries to a GPGPU using a single “hardware-oblivious” representa-
tion. GDB [29] and HyPE [16] accelerate SQL queries by offloading
data-parallel operations to GPGPUs. All these systems, however,
target one-off queries instead of continuous streaming queries with
window semantics.

2.3 Using GPGPUs for stream processing
The dataflow model of GPGPUs purportedly is a good match

for stream processing. In particular, performing computation on a
group of tuples that is laid out in memory linearly should greatly
benefit from the SIMD parallelism of GPGPUs. At the same time,
the scarcity of designs for relational stream processing engines on
GPGPUs is evidence of a range of challenges:
Different acceleration potential. Not all stream processing queries
experience a speed-up when executed on a GPGPU compared to a
CPU. Any speed-up depends on a range of factors, including the
amount of computation per stream tuple, the size of the tuples, any
memory accesses to temporary state and the produced result size.
For example, a simple projection operator that removes attributes
from tuples typically is bottlenecked by memory accesses, whereas
an aggregation operator with a complex aggregation function is
likely to be compute-bound. This makes it challenging to predict if
the performance of a given query can be improved by a GPGPU.

Existing proposals for accelerating traditional database queries
(e.g. [37, 55]) assume that a comprehensive analytical model can
establish the relation between a query workload and its performance
on a heterogeneous processor. Based on such a performance model,
they offload queries on a GPGPU either statically [32] or specula-
tively [29]. Fundamentally, performance models are vulnerable to
inaccuracy, which means that they may not make the most effective
use of the available accelerators, given an unknown query workload.

The challenge is to devise an approach that makes effective deci-
sions as to which queries can benefit from GPGPU offloading.

Support for sliding windows. Any data-parallel stream process-
ing must split streams into batches for concurrent processing, but
each streaming SQL query also includes a window specification that
affects its result. The batch size should thus be independent from
the window specification—the batch size is a physical implementa-
tion parameter that determines the efficiency of parallel processing,
whereas the window size and slide are part of the query semantics.

1Despite recent advances in integrated CPU/GPGPU designs [22,
30, 31], discrete GPGPUs have a substantial advantage in terms of
performance and power efficiency.
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Figure 1: Performance of a streaming GROUP-BY query with a
5-second window and different window slides under Spark Streaming

Existing data-parallel engines, however, tie the definition of
batches to that of windows because this simplifies window-based
processing. For example, Spark Streaming [56] requires the window
slide and the batch size to be a multiple of the window size, enabling
parallel window computation to occur on different nodes in lockstep.

Such a coupling of batches and windows has a performance im-
pact. In Fig. 1, we show the throughput of a streaming GROUP-BY

query with a 5-second sliding window executing on Spark Stream-
ing with a changing window slide. As the slide becomes smaller (i.e.
there is more overlap between windows), the throughput decreases—
when the batches are smaller, the parallel window processing be-
comes less efficient. This makes it infeasible to process queries
with fewer than several million 64-byte tuples in each window slide
while sustaining high throughput.

The challenge is how an engine can decouple batches and win-
dows from each other and still ensure a consistently high throughput.

Cost of stream data movement. Since a stream processing engine
processes continuous data, the bandwidth of the PCIe bus can limit
the throughput of queries offloaded to the GPGPU. In particular,
any data movement to and from the GPGPU causes a delay—a
DMA-managed memory transfer from the CPU to the GPGPU takes
around 10 microseconds [43], which is orders of magnitude slower
than a CPU memory access.

The challenge is how an engine can amortise the delay of data
movement to and from the GPGPU while processing data streams.

2.4 Stream data and query model
We assume a relational stream data model with window-based

queries, similar to the continuous query language (CQL) [7].
Data streams. Let T be a universe of tuples, each being a sequence
of values of primitive data types. A stream S = 〈t1, t2, ...〉 is an infi-
nite sequence of such tuples, and T ∗ denotes the set of all streams. A
tuple t has a timestamp, τ(t)∈T , and the order of tuples in a stream
respects these timestamps, i.e. for two tuples ti and t j , i < j implies
that τ(ti) ≤ τ(t j). We assume a discrete, ordered time domain T
for timestamps, given as the non-negative integers {0,1, ...}. Times-
tamps refer to logical application time: they record when a given
event occurred and not when it arrived in the system. There is only
a finite number of tuples with equal timestamps.
Window-based queries. We consider queries that are based on
windows, which are finite sequences of tuples. The set of all win-
dows is T̂ ∗ ⊂ T ∗, and the set of all, potentially infinite, sequences
of windows is (T̂ ∗)∗. A window-based query q is defined for
n input streams by three components: (i) an n-tuple of window
functions 〈ωq

1 , ... ,ω
q
n 〉, such that each function ω

q
i : T ∗ → (T̂ ∗)∗,

when evaluated over an input stream, yields a possibly infinite se-
quence of windows; (ii) a possibly compound n-ary operator func-
tion f q : (T̂ ∗)n → T̂ ∗ that is applied to n windows, one per input
stream, and produces a window result (a sequence of tuples); and
(iii) a stream function φ q : (T̂ ∗)∗→ T ∗ that transforms a sequence
of window results into a stream.



Common window functions define count- or time-based windows
with a window size s and a window slide l: the window size deter-
mines the amount of enclosed data; the window slide controls the
difference to subsequent windows. Let S = 〈t1, t2, ...〉 be a stream,
and ω(s,l) be a window function with size s and slide l that creates
a sequence of windows ω(s,l)(S) = 〈w1,w2, ...〉. Given a window
wi = 〈tk, ... , tm〉, i ∈ N, if ω is count-based, then m = k+ s−1 and
the next window is wi+1 = 〈tk+l , ... , tm+l〉; if ω is time-based, then
the next window is wi+1 = 〈tk′ , ... , tm′〉 such that τ(tm)− τ(tk)≤ s,
τ(tm+1)−τ(tk)> s, τ(tk′)−τ(tk)≤ l, and τ(tk′+1)−τ(tk)> l. This
model thus supports sliding (l < s) and tumbling windows (l = s).
We do not consider predicate-based windows in this work.
Query operators. The above model allows for the flexible defini-
tion of an operator function that transforms a window into a window
result, both being sequences of tuples. In this work, we support
relational streaming operators [7], i.e. projection (π), selection (σ ),
aggregation (α) and θ -join (1). These operators interpret a window
as a relation (i.e. the sequence is interpreted as a multi-set) over
which they are evaluated. For the aggregation operator, we also
consider the use of GROUP-BY clauses.

Operator functions may also be specified as user-defined func-
tions (UDFs), which implement bespoke computation per window.
An example of a UDF is an n-ary partition join, which takes as input
an n-tuple of windows, one per input stream, and first partitions all
windows based on tuple values before joining the corresponding
partitions of the windows. Despite its similarity, a partition join
cannot be realised with a standard θ -join operator.
Stream creation. Window results are turned into a stream by a
stream function. We consider stream functions that are based on
relation-to-stream operators [7]. The RStream function concate-
nates the results of windows under the assumption that this order
respects the tuple timestamps: with 〈w1,w2, ...〉 as a sequence of
window results, and wi = 〈tki , ... , tmi〉 for i ∈ N, the result stream is
a sequence SR = 〈tk1 , ... , tm1 , tk2 , ... , tm2 , ...〉. The IStream function
considers only the tuples of a window result that were not part of
the previous result: with 〈... , t ji+1 , ...〉 as the projection of wi+1 to
all transitions t ji+1 /∈ {tki , ... , tmi} that are not part of wi, the result
stream is SR = 〈tk1 , ... , tm1 , ... , t j2 , ... , t j3 , ...〉.

Typically, specific operator functions are combined with particular
stream functions [7]: using the IStream function with projection and
selection operators gives intuitive semantics, whereas aggregation
and θ -join operators are used with the RStream function. In the
remainder, we assume these default combinations.

3. HYBRID STREAM PROCESSING MODEL
Our idea is to sidestep the problem of “when” and “what” op-

erators to offload to a heterogeneous processor by introducing a
hybrid stream processing model. In this hybrid model, the stream
processing engine always tries to utilise all available heterogeneous
processors for query execution opportunistically, thus achieving the
aggregate throughput. In return, the engine does not have to make
an early decision regarding which type of query to execute on a
given heterogeneous processor, be it a CPU core or a GPGPU.
Query tasks. The hybrid stream processing model requires that
each query can be scheduled on any heterogeneous processor, leav-
ing the scheduling decision until runtime. To achieve this, queries
are executed as a set of data-parallel query tasks that are runnable
on either a CPU core or the GPGPU. For a query q with n input
streams, a query task v = ( f q,B) consists of (i) the n-ary operator
function f q specified in the query and (ii) a sequence of n stream
batches B = 〈b1, ... ,bn〉, bi ∈ T̂ ∗, i.e. n finite sequences of tuples,
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Figure 2: Stream batches under two different window definitions

one per input stream. We use ι(v) = q as a shorthand notation to
refer to the query of task v (§4.2, Alg. 1).

The query task size ϕ is a system parameter that specifies how
much stream data a query task must process, thus determining
the computational cost of executing a task. Let v = ( f q,B) with
B = 〈b1, ... ,bn〉 be a query task, then the query task size is the sum
Σn

i=1|bi| of the stream batch sizes. The size of a stream batch bi =
〈t1, ... , tm〉 is the data volume of its m tuples. The query task size
equals the stream batch size in the case of single-input queries.

As we show experimentally in §6.4, a fixed query task size can
in practice be chosen independently of the query workload, simply
based on the properties of the stream processing engine implementa-
tion and its underlying hardware. There is a trade-off when selecting
the query task size ϕ: a large size leads to higher throughput be-
cause it amortises scheduling overhead, exhibits more parallelism
on the GPGPU and makes the transmission of query tasks to the
GPGPU more efficient; on the other hand, a small size achieves
lower processing latency because tasks complete more quickly.
Window handling. An important invariant under our hybrid model
is that a stream batch, and thus a query task, are independent of the
definition of windows over the input streams. Unlike pane-based
processing [11, 41], the size of a stream batch is therefore not deter-
mined by the window slide. This makes window handling in the hy-
brid model fundamentally different from that of existing approaches
for data-parallel stream processing, such as Spark Streaming [56] or
Storm [52]. By decoupling the parallelisation level (i.e. the query
task) from the specifics of the query (i.e. the window definition), the
hybrid model can support queries over fine-grained windows (i.e.
ones with small slides) with full data-parallelism.

Fig. 2 shows the relationship between the stream batches of a
query task and the respective window definitions from a query. In
this example, stream batches contain 5 tuples. With a window
definition of ω(3,1), stream batch b1 contains 3 complete windows,
w1, w2, and w3, and fragments of two windows, w4 and w5. The
remaining tuples of the latter two windows are contained in stream
batch b2. For the larger window definition ω(7,2), the first stream
batch b′1 contains only window fragments: none of w1, w2, and w3
are complete windows. Instead, these windows also span across
tuples in stream batch b′2.
Operators. A stream batch can contain complete windows or only
window fragments. Hence, the result of the stream query for a
particular sequence of windows (one per input stream) is assembled
from the results of multiple query tasks. That is, a window w =
〈t1, ... , tk〉 of one of the input streams is partitioned into m window
fragments {d1, ... ,dm}, di ∈ T̂ ∗, such that the concatenation of the
window fragments yields the window.

As shown in Fig. 3, this has consequences for the realisation of the
n-ary operator function f q: it must be decomposed into a fragment
operator function f q

f and an assembly operator function f q
a . The

fragment operator function f q
f : (T̂ ∗)n→ T̂ ∗ defines the processing

for a sequence of n window fragments, one per stream, and yields a
sequence of tuples, i.e. a window fragment result.
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The assembly operator function f q
a : T̂ ∗ → T̂ ∗ constructs the

complete window result by combining the window fragment results
from f q

f . The composition of the fragment operator function f q
f and

the assembly operator function f q
a yields the operator function f q.

The decomposition of function f q into functions f q
f and f q

a is
operator-specific. For many associative and commutative functions
(e.g. aggregation functions for count or max), both f q

f and f q
a are the

original operator function f q. For other functions, such as median,
more elaborate decompositions must be defined [50].

The decomposition also introduces a synchronisation point in the
data-parallel execution because the assembly function may refer
to the results of multiple tasks. In §4.3, we describe how this
synchronisation can be implemented efficiently by reusing threads
executing query tasks to perform the assembly function.
Incremental computation. When processing a query task with a
sliding window, it is more efficient to use incremental computation:
the computation for a window fragment should exploit the results
already obtained for preceding window fragments in the same batch.

The hybrid model captures this optimisation through a batch oper-
ator function f q

b : ((T̂ ∗)n)m→ (T̂ ∗)m that is applied to a query task.
The batch operator function takes as input m sequences of n window
fragments, where n is the number of input streams and m is the
maximum number of window fragments per stream batch in the task.
It outputs a sequence of m window fragment results. The same result
would be obtained by applying the fragment operator function f q

f
m-times to each of the m sequences of n window fragments.
Example. The effect of applying the hybrid stream processing
model is shown in Fig. 3. Windows w1 and w2 span two stream
batches, and they are processed by two query tasks. For each task,
the batch operator function computes the results for the window
fragments contained in that task. The assembly operator function
constructs the window results from the window fragment results.

4. SABER ARCHITECTURE
We describe SABER, a relational stream processing engine for

CPUs and GPGPUs that realises our hybrid stream processing
model. We begin this section with an overview of the engine’s
architecture, and then explain how query tasks are dispatched (§4.1),
scheduled (§4.2), and their results collected (§4.3).
Processing stages. The architecture of SABER consists of four
stages controlling the lifecycle of query tasks, as illustrated in Fig. 4:

(i) A dispatching stage creates query tasks of a fixed size. These
tasks can run on either type of processor and are placed into a
single, system-wide queue.

(ii) A scheduling stage decides on the next task each processor
should execute. SABER uses a new heterogeneous lookahead
scheduling (HLS) algorithm that achieves full utilisation of all
heterogeneous processors, while accounting for the different
performance characteristics of query operators.
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Figure 4: Overview of the Saber architecture

(iii) An execution stage runs the query tasks on a processor by
evaluating the batch operator function on the input window
fragments. A task executes either on one of the CPU cores or
the GPGPU.

(iv) A result stage reorders the query task results that may arrive
out-of-order due to the parallel execution of tasks. It also
assembles window results from window fragment results by
means of the assembly operator function.

Worker thread model. All four stages are executed by worker
threads. Each worker is a CPU thread that is bound to a physical
core, and one worker uses the GPGPU for the execution of query
tasks. Worker threads handle the complete lifecycle of query tasks,
which means that they are always fully utilised. This is in contrast
to having separate threads for the dispatching or result stage, which
could block due to out-of-order processing of query tasks.

Starting with the scheduling stage, the lifecycle of a worker thread
is as follows: When a worker thread becomes idle, it invokes the
scheduling algorithm to retrieve a task to execute from the system-
wide task queue, indicating if it will execute the task on a CPU
core or the GPGPU. The worker thread then executes the retrieved
task on its associated heterogeneous processor. After task execution
completes, the worker thread enters the result stage. In synchronisa-
tion with other worker threads, it orders window fragment results
and, if possible, assembles complete window results from their frag-
ments. Any assembled window results are then appended to the
corresponding query’s output data stream.

4.1 Dispatching of query tasks
Dispatching query tasks involves two steps: the storage of the

incoming streaming data and the creation of query tasks. Query
tasks are inserted into a system-wide queue to be scheduled for
execution on the heterogeneous processors.
Buffering incoming data. To store incoming tuples, SABER uses
a circular buffer per input stream and per query. By maintaining
a buffer per query, processing does not need to be synchronised
among the queries. Data can be removed from the buffer as soon as
it is no longer required for query task execution.

The circular buffer is backed by an array, with pointers to the
start and end of the buffer content. SABER uses byte arrays, so that
tuples are inserted into the buffer without prior deserialisation. The
implementation is lock-free, which is achieved by ensuring that only
one worker thread inserts data into the buffer (worker threads are
only synchronised in the result stage) and by explicitly controlling
which data is no longer kept in the buffer. A query task contains a
start pointer and an end pointer that define the respective stream
batch. In addition, for each input buffer of a query, a query task
contains a free pointer that indicates up to which position data can
be released from the buffer.

A worker thread that executes a query task has only read-access to
the buffer. Releasing data as part of the result stage, in turn, means
moving the start pointer of the buffer to the position of the free
pointer of a query task for which the results have been processed.



Query task creation. The worker thread that inserts data into a
circular buffer also handles the creation of query tasks. Instead of
first deserialising tuples and computing windows in the sequential
dispatching stage, all window computation is handled by the highly
parallel query execution stage.

In the dispatching stage, the data inserted into the buffer is added
to the current stream batch and, as soon as the sum of stream batch
sizes in all query input streams exceeds the query task size φ , a
query task is created. A query task identifier is assigned to each
task so that all tasks of a query are totally ordered. This permits the
result stage to order the results of query tasks.

4.2 Scheduling of query tasks
The scheduling goal is to utilise all heterogeneous processors

fully, yet to account for their different performance characteristics.
The challenge is that the throughput of a given type of heterogeneous
processor is query-dependent. Query tasks should therefore primar-
ily execute on the processor that achieves the highest throughput for
them. At the same time, overloading processors must be avoided
because this would reduce the overall throughput. The schedul-
ing decision must thus be query-specific and take the (planned)
utilisation of the processors into account.

Instead of using a performance model, SABER observes the query
task throughput, i.e. the number of query tasks executed per unit of
time, defined per query and processor. Based on this, it estimates
which processor type is preferred for executing a query task.

At runtime, the preferred processor may be busy executing other
tasks. In such cases, SABER permits a task to execute on a non-
preferred processor as long as it is expected to complete before the
preferred processor for that task would become available.

Making scheduling decisions based on the observed task through-
put has two advantages: (i) there is no need for hardware-specific
performance models and (ii) the scheduling decisions are adaptive to
changes in the query workload, e.g. when the selectivity of a query
changes, the preferred processor for the tasks may also change.
However, this approach assumes that the query behaviour is not too
dynamic because, in the long term, the past execution of tasks must
allow for the estimation of the performance of future tasks for a
given query. Our experimental evaluation shows that this is indeed
the case, even for workloads with dynamic changes.
Observing query task throughput. SABER maintains a matrix that
records the relative performance differences when executing a query
on a given type of processor. The query task throughput, denoted by
ρ(q, p), is defined as the number of query tasks of query q that can
be executed per time unit on processor p. For the CPU, this value
denotes the aggregated throughput of all CPU cores; for the GPGPU,
it is the overall throughput including data movement overheads.

For a set of queries Q = {q1, ... ,qn} and two types of processors,
P = {CPU,GPGPU}, we define the query task throughput matrix as

C =

ρ(q1,CPU) ρ(q1,GPGPU)
...

...
ρ(qn,CPU) ρ(qn,GPGPU)

 .

Intuitively, in each row of this matrix, the column with the largest
value indicates the preferred processor (highest throughput) for the
query; the ratio r = ρ(q,CPU)/ρ(q,GPGPU) is the speed-up (r > 1)
or slow-down (r < 1) of the CPU compared to the GPGPU.

The matrix is initialised under a uniform assumption, with a fixed
value for all entries. It is then continuously updated by measuring
the number of tasks of a query that are executed in a certain time
span on a particular processor. Based on the average time over a
fixed set of task executions, the throughput is computed and updated.

Algorithm 1: Hybrid lookahead scheduling (HLS) algorithm
input : C , a query task throughput matrix over Q = {q1, ... ,qn}

and P = {CPU,GPGPU},
p ∈ {CPU,GPGPU}, the processor for which a task shall be scheduled,
w = 〈v1, ... ,vk〉, k > 1, a queue of query tasks, ι(vi) ∈ Q for 1≤ i≤ k,
count : Q×P→ N, a function assigning a number of executions per

query and processor,
st, a switch threshold.

output : v ∈ {v1, ... ,vk} - the query task selected for execution on processor p

1 pos← 1 ; // Initialise position in queue
2 delay← 0 ; // Initialise delay

// While end of queue is not reached
3 while pos <= k do
4 q← ι(w[pos]) ; // Select query of task at current position
5 ppre f ← argmaxp′∈P C (q, p′) ; // Determine preferred processor

// If p is preferred or preference ignored due to delay or switch threshold
6 if (p = ppre f ∧ count(q, p)< st) ∨

(p 6= ppre f ∧ (count(q, ppre f )≥ st ∨ delay≥ 1/C (q, p))) then
// If preference was ignored, reset execution counter

7 if count(q, ppre f )≥ st then count(q, ppre f )← 0 ;

8 count(q, p)← count(q, p)+1 ; // Increment execution counter
9 return w[pos] ; // Select task at current position

10 delay← delay+1/C (q, ppre f ) ; // Update delay

11 pos← pos+1 ; // Move current position in queue

12 return w[pos];

Hybrid lookahead scheduling (HLS). The HLS algorithm takes as
input (i) a query task throughput matrix; (ii) the system-wide queue
of query tasks; (iii) the processor type (CPU or GPGPU) on which
a worker thread intends to execute a task; (iv) a function that counts
how often query tasks have been executed on each processors; and
(v) a switch threshold to ensure that tasks are not executed only on
one processor. It iterates over the tasks in the queue and returns the
task to be executed by the worker thread on the given processor.

At a high level, the decision as to whether a task v is selected by
the HLS algorithm depends on the identified preferred processor
and the outstanding work that needs to be done by the preferred
processor for earlier tasks in the queue. Such tasks may have the
same preferred processor and will be executed before task v, thereby
delaying it. If this delay is large, it may be better to execute task v
on a slower processor if task execution would complete before the
preferred processor completes all of its other tasks.

To perform this lookahead and quantify the amount of outstanding
work for the preferred processor, the HLS algorithm sums up the
inverses of the throughput values (variable delay). If that delay is
larger than the inverse of the throughput obtained for the current task
with the slower processor, the slower processor leads to an earlier
estimated completion time compared to the preferred processor.

Over time, the above approach may lead to the situation that tasks
of a particular query are always executed on the same processor,
rendering it impossible to observe the throughput of other processors.
Therefore, the HLS algorithm includes a switch threshold, which
imposes a limit on how often a given task can be executed on the
same processor without change: a given task is not scheduled on
the preferred processor if the number of tasks of the same query
executed on the preferred processor exceeds this threshold.

The HLS algorithm is defined more formally in Alg. 1. It iterates
over the tasks in the queue (lines 3–11). For each task, the query
operator function of the task is selected (line 4). Then, the preferred
processor for this query is determined by looking up the highest
value in the row of the query task throughput matrix (line 5).

The current task is executed on the processor associated with the
worker thread: (i) if the preferred processor matches the worker’s
processor, and the number of executions of tasks of this query on
this processor is below the switch threshold or (ii) if the worker’s



q2

q1 q3 q3 q2 q2q2q1

...

Query Task Queue
Queue 
Head

z1(CPU)

v7 v6 v5 v4 v3 v2 v1

Query of Tasks

q1 q3 q2 q2q2q1

...

z2(GPGPU)

v8 v7 v6 v5 v3 v2 v1

Time

q1
q2
q3

(CPU

50
GPGPU

20
5 15
20 30

)

Figure 5: Example of hybrid lookahead scheduling

processor is not the preferred one but the accumulated delay of the
preferred processor means that execution on the worker’s processor
is beneficial, or the number of tasks of this query on the preferred
processor is higher than the switch threshold (line 6).

If a non-preferred processor is selected for the current task, the
execution counter of the preferred processor is reset (line 7). The exe-
cution counter for the selected processor is incremented (line 8), and
the current task is returned for execution (line 9). If the current task
is not selected, the accumulated delay is updated (line 10), because
the current task is planned to be executed on the other processor.
Finally, the next query task in the queue is considered (line 11).
Example. Fig. 5 gives an example of the execution of the HLS
algorithm. The query task queue contains tasks for three queries, q1–
q3. Assuming that a worker thread z1 for processor CPU becomes
available, HLS proceeds as follows: the head of the queue, v1, is
a task of query q2 that is preferably executed on GPGPU. Hence,
it is not selected and the planned delay for GPGPU is set to 1/15.
The second and third tasks are handled similarly, resulting in an
accumulated delay for GPGPU of 1/15+1/15+1/30 = 1/6. The
fourth task v4 is also preferably executed on GPGPU. However, the
estimation of the accumulated delay for GPGPU suggests that the
execution of v4 on CPU would lead to an earlier completion time,
hence it is scheduled there. Next, if a worker thread z2 that executes
tasks on GPGPU becomes available, it takes the head of the queue
because GPGPU is the preferred processor for tasks of query q2.

4.3 Handling of task results
The result stage collects the results from all tasks that belong to

a specific query and creates the output data stream. To maintain
low processing latency, results of query tasks should be processed
as soon as they are available, continuously creating the output data
stream from the discretised input data streams. This is challenging
for two reasons: first, the results of query tasks may arrive out-of-
order due to their parallel execution, which requires reordering to
ensure correct results; second, the window fragment results of a
window may span multiple query tasks, which creates dependencies
when executing the assembly operator function.

To address these challenges, the result stage reduces the synchro-
nisation needed among the worker threads. To this end, processing
of query task results is organised in three phases, each synchronised
separately: (i) storing the task results, i.e. the window fragment
results, in a buffer; (ii) executing the assembly operator function
over window fragment results to construct the window results; and
(iii) constructing the output data stream from the window results.
Result storage. When worker threads enter the result stage, they
store the window fragment results in a circular result buffer, which
is backed by a byte array. The order in which results are stored is
determined by the query task identifiers assigned in the dispatch
stage: a worker thread accesses a particular slot in the result buffer,
which is the query task identifier modulo the buffer size.

To ensure that worker threads do not overwrite results of earlier
query tasks stored in the result buffer, a control buffer records status
flags for all slots in the result buffer. It is accessed by worker threads
using an atomic compare-and-swap instruction. To avoid blocking a

worker thread if a given slot is already populated, the result buffer
has more slots than the number of worker threads. This guarantees
that the results in a given slot will have been processed before this
slot is accessed again by another worker thread.
Assembly of window results. After a worker thread has stored the
results of a query task, it may proceed by assembling window results
from window fragment results. In general, the results of multiple
tasks may be needed to assemble the result of a single window,
and assembly proceeds in a pairwise fashion. Given the results of
two consecutive tasks, the windows are processed in their logical
order, as defined by the query task identifier. The window result is
calculated by applying the assembly operator function to all results
of relevant fragments, which are contained in the two query task
results. The obtained window results directly replace the window
fragment results in the result buffer.

If additional fragment results are needed to complete the assembly
for a window, i.e. the window spans more than two query task results,
multiple assembly steps are performed. The assembly operator
function is then applied to the result of the first assembly step and
the fragment results that are part of the next query task result.

If a window spans more than two query tasks, and the assembly
of window results is not just a concatenation of fragment results,
the above procedure is not commutative—a window fragment result
may be needed to construct the results of several windows, which are
part of different evaluations of the assembly operator function. In
that case, the pairwise assembly steps must be executed in the order
defined by the query task identifiers. Such ordering dependencies
can be identified by considering for each query task whether it con-
tained windows that opened or closed in one of the stream batches.
A query task result is ready for assembly either if it does not contain
windows that are open or closed in one of the stream batches, or if
the preceding query task result has already been assembled.

The information about task results that are ready for assembly
and task results that have been assembled are kept as status flags in
the control buffer. After a worker thread stores the result of a query
task in the result buffer, it checks for slots in the result buffer that
are ready for assembly. If there is no such slot, the worker thread
does not block, but continues with the creation of the output stream.
Output stream construction. After window result assembly, the
output data stream is constructed. A worker thread that finished
assembly of window results (or skipped over it) checks if the slot of
the result buffer that contains the next window result to be appended
to the output stream is ready for result construction. If so, the worker
thread locks the respective slot and appends the window results to
the output stream. If there is no such slot, the worker thread leaves
the result stage and returns to the scheduling stage.

5. QUERY EXECUTION
We now describe SABER’s query execution stage in more detail.

A challenge is that the performance of streaming operators may
be restricted by their memory accesses. SABER thus explicitly
manages memory to avoid unnecessary data deserialisation and
dynamic object creation (§5.1). Whether the GPGPU can be utilised
fully depends on how efficiently data is transferred to and from the
GPGPU. SABER employs a novel approach to pipelined stream data
movement that interleaves the execution of query tasks with data
transfer operations (§5.2). Finally, we describe our implementation
of streaming operators on the CPU (§5.3) and GPGPU (§5.4).

5.1 Memory management
Dynamic memory allocation is one of the main causes of perfor-

mance issues in stream processing engines implemented in managed
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Figure 6: Data movement and pipelining for GPGPU-based
execution of query tasks

languages with garbage collection, such as Java or C#. The SABER
implementation therefore minimises the number of memory alloca-
tions by means of lazy deserialisation and object pooling.
Lazy deserialisation. To manage the data in input streams effi-
ciently, SABER uses lazy deserialisation: tuples are stored in their
byte representation and deserialised only if and when needed. De-
serialisation is controlled per attribute, i.e. tuple values that are not
accessed or needed to compute windows are not deserialised. Dese-
rialisation only generates primitive types, which can be efficiently
packed in byte arrays without the overhead of pointer dereferencing
of object types. In addition, whenever possible, operators in SABER
realise direct byte forwarding, i.e. they copy the byte representation
of the input data to buffers that store intermediate results.
Object pooling. To avoid dynamic memory allocation on the critical
processing path, SABER uses statically allocated pools of objects, for
all query tasks, and of byte arrays, for storing intermediate window
fragment results. To avoid contention for the byte arrays when many
worker threads access it, each thread maintains a separate pool.

5.2 Pipelined stream data movement
Executing a query task on the GPGPU involves several data move-

ment operations, as shown on the left side of Fig. 6: (i) the input data
is copied from Java heap memory to pinned host memory (copyin);
(ii) using DMA, data is transferred from pinned host memory to
GPGPU memory for processing (movein); (iii) after the query task
has executed (execute), the results are transferred back from the
GPGPU memory to pinned host memory (moveout); and (iv) the
results are copied back to Java heap memory (copyout).

Performing these data movement operations sequentially would
under-utilise the GPGPU. Given that stream processing handles
small amounts of data in practice, the PCIe throughput becomes the
bottleneck—executing the copyin and copyout operations sequen-
tially would reduce the throughput to half of the PCIe bandwidth.

SABER therefore uses a five-stage pipelining mechanism, which
interleaves I/O and compute operations to reduce idle periods and
yield higher throughput. Pipelining is achieved by having dedicated
threads execute each of the five data movement operations in par-
allel: two CPU threads copy data from and to Java heap memory
(copyin and copyout), and two GPGPU threads implement the data
movement from and to GPGPU memory (movein and moveout).
The remaining GPGPU threads execute query tasks (execute).

The right side of Fig. 6 shows the interleaving of data movement
operations. Each row shows the five operations for a single query
task. The interleaving of operations can be seen, for example, at
time t1, when moveout of task 1, execute of task 2, movein of task 3,
and the copy operations of task 4 all execute concurrently.

The interleaving of operations respects data and thread dependen-
cies. For a specific query task, all operations are executed sequen-

tially because each operation relies on the data of the previous one.
The CPU threads executing the copy operations, however, run in
parallel so that the result data of the i-th task is copied by the copyout

operation of the (i+4)-th task: as shown in Fig. 6, task 5’s copyout

operation returns the results of task 1. If task 1’s moveout operation
has not completed, task 5 will be blocked until a notification from
the dedicated GPGPU thread performing moveout.

The execution of each data movement operation by a thread also
results in the sequential execution of the same operation of different
tasks: in the example, task 2’s moveout operation must complete
before the respective thread executes task 3’s moveout operation.

5.3 CPU operator implementations
To execute a query task on a CPU core, a worker thread applies

the window batch function of a given query operator to the window
fragments of the stream batches for this task. SABER implements
the operator functions as follows.
Projection and selection operators are both stateless, and their
batch operator function is thus a single scan over the stream batch
of the corresponding query task, applying the projection or selection
to each tuple. The assembly operator function then concatenates the
fragment results needed to obtain a window result according to the
stream creation function (see §2.4).
Aggregation operators, such as sum, count and average, over slid-
ing windows exploit incremental computation [12, 50]. In a first
step, the batch operator function computes window fragments by
partitioning the stream batch of the query task into panes, i.e. dis-
tinct subsequences of tuples. To compute the aggregation value per
window fragment, the batch operator function reuses the aggregated
value—the result—of previous window fragments and incorporates
tuples of the current fragment.

For an aggregation operator, a window result cannot be con-
structed by simply concatenating window fragment results, but the
operator function must be evaluated for a set of fragment results.
The assembly of window results from window fragment results is
done stepwise, processing the window fragment results of two query
tasks at a time. As described in §4.3, SABER keeps track for each
fragment whether it is part of a window that opened, closed, is
pending (i.e. neither opened nor closed), or fully contained in the
stream batch of the query task. This is achieved by storing window
fragment results in four different buffers (byte arrays) that contain
only fragments that belong to windows in specific states.

SABER also supports the definition of HAVING and GROUP-BY clauses.
The implementation of the HAVING clause reuses the selection opera-
tor. For the GROUP-BY clause, the batch operator function maintains a
hash table with an aggregation value per group. To avoid dynamic
memory allocation, SABER uses a statically allocated pool of hash
table objects, which are backed by byte arrays.
Join operators implement a streaming θ -join, as defined by Kang et
al. [35]. The execution of query tasks for the join is sequential be-
cause, unlike other task-parallel join implementations [27], SABER
achieves parallelism by the data-parallel execution of query tasks.

5.4 GPGPU operator implementations
GPGPU operators are implemented in OpenCL [40]. Each opera-

tor has a generic code template that contains its core functionality.
SABER populates these templates with tuple data structures, based
on the input and output stream schemas of each operator, and query-
specific functions over tuple attributes (e.g. selection predicates or
aggregate functions). Tuple attributes are represented both as prim-
itive types and vectors, which allows the implementation to use
vectorised GPGPU instructions whenever possible.



Each GPGPU thread evaluates the fragment operator function. To
exploit the cache memory shared by the synchronised threads on a
single GPGPU core, tuples that are part of the same window are as-
signed to the same work group. The assembly operator function that
derives the window results from window fragment results (see §4.3)
is evaluated by one of the CPU worker threads.
Projection and selection. To perform a projection, the threads in a
work group load the tuples into the group’s cache memory, compute
the projected values, and write the results to the global GPGPU
memory. Moving the data to the cache memory is beneficial because
the deserialisation and serialisation of tuples becomes faster. For
the selection operator, the result from a fragment operator function
is stored as a binary vector in the group’s cache memory. Here, each
vector entry indicates whether a tuple has been selected.

In a second step, SABER uses a prefix-sum (or scan) opera-
tion [14] to write the output data to a continuous global GPGPU
memory region: it scans the binary vector and obtains continuous
memory addresses to which selected tuples are written. These ad-
dresses are computed per window fragment and offset based on the
start address of each fragment in order to compress the results for
all fragments in a stream batch.
Aggregation first assigns a work group to each of the window frag-
ments in the stream batch of the query task. For the implemented
commutative and associative operator functions, each thread of the
work group repeatedly reads two tuples from the global GPGPU
memory and aggregates them. The threads thus form a reduction
tree from which the window fragment result is derived. As in CPU-
based execution (§5.3), the results are stored while keeping track
for each fragment whether it is part of a window that opens, closes,
is pending, or is fully contained in the stream batch.

To implement aggregations with HAVING clauses, SABER relies
on the aforementioned approach for selection, which is applied to
the aggregation results. For a GROUP-BY clause, every work group
populates an open-addressing hash table. The table uses a linear
probing approach combined with a memory-efficient representation.
The size of the table and the hash function used on the CPU and
GPGPU are the same to ensure that, given a tuple in the CPU table,
it can be searched in the GPGPU table, and vice versa.

An additional challenge, compared to the CPU implementation,
is to ensure that the hash table for a window fragment is thread-
safe. We reserve an integer in the intermediate tuple representation
to store the index of the first input tuple that has occupied a table
slot. Threads try to atomically compare-and-set this index. When a
collision occurs, a thread checks if the key stored is the same as the
current key, in which case it atomically increments the aggregate
value, or it moves to the next available slot.

If the window fragment is incomplete, the hash table is output
as is—this is necessary because the result aggregation logic is the
same for both CPU and GPGPU. Otherwise, all sparsely populated
hash tables are compacted at the end of processing.
Join operators exploit task-parallelism, similar to the cell join [27].
To avoid quadratic memory usage, however, SABER adopts a tech-
nique used in join processing for in-memory column stores [32] and
performs a join in two steps: (i) the number of tuples that match the
join predicate is counted and (ii) the results are compressed in the
global GPGPU memory, as for selection.

6. EVALUATION
We evaluate SABER to show the benefits of its hybrid stream

processing model. First, we demonstrate that such a model achieves
higher performance for both real-world and synthetic query bench-
marks (§6.2). We then explore the trade-off between CPU and

Datasets Queries

Name # Attr. Name Windows Operators Values

Synthetic (Syn) 7 PROJm various πa1 ,...,am 1≤ m≤ 10
SELECTn various σp1 ,...,pn 1≤ n≤ 64
AGGf various α f f ∈ {avg,sum}
GROUP-BYovarious γg1 ,...,go 1≤ o≤ 64
JOINr various 1p1 ,...,pr 1≤ r ≤ 64

Cluster 12 CM1 ω60,1 π,γ,αsum
Monitoring (CM) CM2 ω60,1 π,σ ,γ,αavg

Smart Grid (SG) 7 SG1 ω3600,1 π,αavg
SG2 ω3600,1 π,γ,αavg
SG3 ω1,1,ω1,1 π,σ ,1

Linear Road 7 LRB1 ω∞ π

Benchmark LRB2 ω30,1,ωpart πdistinct,1
(LRB) LRB3 ω300,1 π,σ ,γ,αavg

LRB4 ω30,1 π,γ,αcount

Table 1: Summary of evaluation datasets and workloads

GPGPU execution for different queries (§6.3). After that, we in-
vestigate the impact of the query task size on performance (§6.4)
and show that SABER’s CPU operator implementations scale (§6.5).
Finally, we evaluate the effectiveness of HLS scheduling (§6.6).

6.1 Experimental set-up and workloads
All experiments are performed on a server with 2 Intel Xeon

E5-2640 v3 2.60 GHz CPUs with a total of 16 physical CPU cores,
a 20 MB LLC cache and 64 GB of memory. The server also hosts
an NVIDIA Quadro K5200 GPGPU with 2,304 cores and 8 GB
GDDR 5 memory, connected via a PCIe 3.0 (×16) bus. When
streaming data to SABER from the network, we use a 10 Gbps
Ethernet NIC. The server runs Ubuntu 14.04 with Linux kernel 3.16
and NVIDIA driver 346.47. SABER uses the Oracle JVM 7 with the
mark-and-sweep garbage collector.

Table 1 summarises the query workloads and datasets in our evalu-
ation. We use both synthetic queries, for exploring query parameters,
and application queries from real-world use cases. The CQL repre-
sentations of the application queries are listed in Appendix A.
Synthetically-generated workload (Syn). We generate synthetic
data streams of 32-byte tuples, each consisting of a 64-bit timestamp
and six 32-bit attribute values drawn from a uniform distribution—
the default being integer values, but for aggregation and projection
the first value being a float. We then generate a set of queries using
the operators from §2.4, and vary key parameters: the number of
attributes and arithmetic expressions in a projection; the number of
predicates in a selection or a join; the function in an aggregation;
and the number of groups in an aggregation with GROUP-BY.
Compute cluster monitoring (CM). Our second workload em-
ulates a cluster management scenario. We use a trace of time-
stamped tuples collected from an 11,000-machine compute cluster
at Google [53]. Each tuple is a monitoring event related to the tasks
of compute jobs that execute on the cluster, such as the successful
completion of a task, the failure of a task, or the submission of a
high-priority task for a production job.

We use two queries, CM1 and CM2, that express common cluster
monitoring tasks [23,38]: CM1 combines a projection and an aggre-
gation with a GROUP-BY clause to compute the sum of the requested
share of CPU utilisation per job category; and CM2 combines a
projection, a selection, and an aggregation with a GROUP-BY to report
the average requested CPU utilisation of submitted tasks.
Anomaly detection in smart grids (SG). This workload focuses
on anomaly detection in energy consumption data from a smart
electricity grid. The trace is a stream of smart meter readings from
different electrical devices in households [34].

We execute three queries, SG1–3, that analyse the stream to detect
outliers. SG1 is a projection and aggregation that computes the
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Figure 7: Performance for application benchmark queries

 0

 2

 4

 6

 8

PROJ4 SELECT16 AGG* GROUP-BY8

T
h

ro
u

g
h

p
u

t 
(G

B
/s

)

Saber (CPU only)
Saber (GPGPU only)

Saber

 0

 0.1

 0.2

 0.3

 0.4

JOIN1

Figure 8: Performance for synthetic queries. AGG* evaluates all
aggregate functions and GROUP-BY evaluates cnt and sum.

sliding global average of the meter load; SG2 combines a projection
and aggregation with a GROUP-BY to derive the sliding load average
per plug in a household in a house; and SG3 uses a join to compare
the global load average with the plug load average by joining the
results of SG1 and SG2, and then counts the houses for which the
local average is higher than the global one.
Linear Road Benchmark (LRB). This workload is the Linear
Road Benchmark [8] for evaluating stream processing performance.
The benchmark models a network of toll roads, in which incurred
tolls depend on the level of congestion and the time-of-day. Tuples
in the input data stream denote position events of vehicles on a
highway lane, driving with a specific speed in a particular direction.

6.2 Is hybrid stream processing effective?
We first explore the performance of SABER for our application

benchmark queries. To put the achieved processing throughput into
perspective, we also compare to an implementation of the queries
in Esper [2], an open-source multi-threaded stream processing en-
gine. The input streams for the queries are generated by a separate
machine connected through a 10 Gbps network link.

Fig. 7 shows the processing throughput for SABER and Esper
for the application queries. For SABER, we also report the split
of the contribution of the CPU (upper black part) and the GPGPU
(lower grey part) to the achieved throughput. SABER manages to
saturate the 10 Gbps network link for many queries, including CM1,
CM2 and LRB1. In contrast, the performance of Esper remains two
orders of magnitude lower due to the synchronisation overhead of
its implementation and the lack of GPGPU acceleration.

Different queries exhibit different acceleration potential on the
CPU versus the GPGPU, which SABER automatically selects ac-
cording to its hybrid execution model. For CM1, the aggregation
executes efficiently on the CPU, whereas the selection in CM2 on
the GPGPU benefits from its high throughput, leaving aggregation
over sliding windows to the CPU. SG1 and LRB1 do not benefit
from the GPGPU because the CPU workers can keep up with the
task generation rate. SG2 and LRB3 utilise both heterogeneous
processors equally because they can split the load.
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Figure 10: Performance impact of query parameters

Next, we use our synthetic operator queries to compare the per-
formance achieved by SABER to CPU-only and GPGPU-only exe-
cution, respectively. Fig. 8 shows that the hybrid approach always
achieves higher throughput than only using a single type of heteroge-
neous processor. The contention in the dispatching and result stages
in SABER means that the combined throughput is less than the sum
of the throughput achieved by the CPU and the GPGPU only.

Fig. 9 shows the performance of SABER and Spark Streaming
with the CM1, CM2 and SG1 queries. Since Spark does not support
count-based windows, we change the queries to use 500 ms tumbling
windows based on system time for comparable results. For CM1

and CM2, SABER’s throughput is limited by the network bandwidth,
while, for SG1, SABER saturates 90% of the network bandwidth,
showing a throughput that is 6× higher than Spark Streaming, which
is limited due to scheduling overhead.

We put SABER’s performance into perspective by comparing it
against MonetDB [33], an efficient in-memory columnar database
engine. We run a θ -join query over two 1 MB tables with 32-byte
tuples. The tables are populated with synthetic data such that the
selectivity of the query is 1%. In SABER, we emulate the join
by treating the tables as streams and applying a tumbling window
of 1 MB. In MonetDB, we partition the two tables and join the
partitions pairwise so that the engine can execute each of the partial
θ -joins in parallel. The output is the union of all partial join results.

When the query output has only two columns—those on which
we perform the θ -join—MonetDB and SABER exhibit similar per-
formance: with 15 threads, MonetDB runs the query in 980 ms and
SABER in 1,088 ms.2 When the query output includes all columns
(select *), MonetDB is 2× slower than SABER because, as a colum-
nar engine, it spends 40% of the time reconstructing the output table
after the join evaluation. However, when we change the query to an
equi-join with the same selectivity (rather than a θ -join), MonetDB
is 2.7× faster because it is highly-optimised for such queries.

6.3 What is the CPU/GPGPU trade-off?
As we increase the complexity of some query operators, the CPU

processing throughput degrades. Keeping the number of worker
threads fixed to 15, Fig. 10 shows this effect for SELECTn and
JOINr when varying the number of predicates (the other operators
yield similar results). For SELECTn, we further observe that, for
few predicates, the throughput is bound by the rate at which the
dispatcher can generate tasks.
2We report the average of 5 runs. In all SABER runs, the GPGPU
consumes approximately 1/3 of the dispatched tasks.



 0

 2

 4

 6

 8

 10

 64  256  1024  4096
 0

 0.1

 0.2

 0.3

 0.4
T

h
ro

u
g
h
p
u
t 
(G

B
/s

)

L
a
te

n
c
y
 (

s
e
c
)

Query Task Size (KB)

Saber
Saber (CPU only)

Saber (GPGPU only)
Saber latency

(a) SELECT10 with ω32KB,32KB

 0

 2

 4

 6

 8

 10

 64  256  1024  4096
 0

 0.1

 0.2

 0.3

 0.4

T
h
ro

u
g
h
p
u
t 
(G

B
/s

)

L
a
te

n
c
y
 (

s
e
c
)

Query Task Size (KB)

Saber
Saber (CPU only)

Saber (GPGPU only)
Saber latency

(b) AGGavgGROUP-BY64 with ω32KB,32KB

 0

 0.1

 0.2

 0.3

 0.4

 64  256  1024  4096
 0

 1

 2

 3

 4

T
h
ro

u
g
h
p
u
t 
(G

B
/s

)

L
a
te

n
c
y
 (

s
e
c
)

Query Task Size (KB)

Saber
Saber (CPU only)

Saber (GPGPU only)
Saber latency

(c) JOIN4 with ω32KB,32KB

Figure 12: Performance impact of query task size φ for different query types
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Figure 13: Performance impact of query task size φ for different window sizes and slides
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Figure 11: Performance impact of window slide

We compare the CPU throughput with that obtained from using
just the GPGPU. Fig. 10 shows that there are regions where the
GPGPU is faster than the CPU, and vice versa. The GPGPU is
bound by the data movement overhead, and any performance benefit
diminishes when the query is not complex enough. Except for
the case in which the dispatcher is the bottleneck because of a
simple query structure (SELECTn, 1≤ n≤ 4), hybrid execution is
beneficial for both queries, achieving nearly additive throughput.

Fig. 11 shows the impact of the window slide on the CPU/GPGPU
trade-off for two sliding window queries, SELECT10 and AGGavg,
under a fixed task size of 1 MB. The window size is 32 KB, while
the slide varies from 32 bytes (1 tuple) to 32 KB. As expected, the
slide does not influence the throughput or latency on any processor
for SELECT10 because the selection operator does not maintain any
state. For AGGavg, the CPU uses incremental computation, which
increases the throughput until it is bound by the dispatcher. On the
GPGPU, an increase of the window slide reduces the number of
windows processed, which increases throughput. At some point,
however, the GPGPU throughput is limited by the PCIe bandwidth.

6.4 How does task size affect performance?
Next, we investigate the impact of the query task size on per-

formance. Intuitively, larger tasks improve throughput but nega-
tively affect latency. We first consider three queries, SELECT10,
AGGavgGROUP-BY64, and JOIN4, with ω32KB,32KB. In each ex-
periment, we measure the throughput and latency when varying
query task sizes from 64 KB to 4 MB.

The results in Fig. 12 confirm our expectation. While the absolute
throughput values vary across the different queries, they exhibit a

similar trend: initially, the throughput grows linearly with the query
task size and then plateaus at around 1 MB. The only exception
is the GPGPU-only implementation of the JOIN query for which
throughput collapses with query task sizes beyond 512 KB. This is
due to a limitation of our current implementation: the computation
of the window boundaries is always executed on the CPU.

To validate our claim that the batch size is independent from the
window size and slide, we use a single type of query, SELECT1,
and vary the window size and slide: from a window size of just
1 tuple (ω32B,32B), to a slide of just 1 tuple (ω32KB,32B), and to a
large tumbling window (ω32KB,32KB).

Fig. 13 shows that SABER achieves a comparable performance
in all three cases, with the throughput growing approximately until
1 MB. This demonstrates that the batch size is independent from the
executed query but only depends on the hardware.

6.5 Does Saber scale on the CPU?
We now turn our attention to the scalability of SABER’s CPU oper-

ator implementations. We measure the throughput achieved by each
operator in isolation when varying the number of worker threads.
Fig. 14 shows the results for a PROJ6 query with ω32KB,32KB win-
dows. We omit the results for the other operators because they
exhibit similar trends. The results show that the CPU operator im-
plementation scales linearly up to 16 worker threads. Beyond this
number, the performance plateaus (or slightly deteriorates for some
operators) due to the context-switching overhead when the number
of threads exceeds the number of available physical CPU cores.

6.6 What is the effect of HLS scheduling?
We finish by investigating the benefit of hybrid lookahead schedul-

ing (HLS). For this, we consider a workload W1 with two queries,
Q1=PROJ6

* (i.e. PROJ6 with 100 arithmetic expressions for each
attribute) with ω32KB,32KB, and Q2=AGGcntGROUP-BY1 with
ω32KB,16KB, executed in sequence. These queries exhibit oppo-
site performance: when run in isolation, Q1 has higher throughput
on the GPGPU (1,475 MB/s vs. 292 MB/s), while Q2 has higher
throughput on the CPU (2,362 MB/s vs. 372 MB/s).

We compare the performance achieved by HLS against two base-
lines: a “first-come, first-served” (FCFS) scheduling policy and a
static scheduling policy (Static), in which Q1’s tasks are scheduled
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Figure 16: Adaptation of HLS scheduling

on the GPGPU and Q2’s task are scheduled on the CPU. Note that
this policy is infeasible in practice with dynamic workloads.

Fig. 15 shows that, as expected, FCFS has the worst performance
as tasks are not matched with the preferred processor. More inter-
esting is the comparison between Static and HLS: although Static
significantly improves over FCFS, HLS achieves higher throughput
because it exploits all available resources.

Next, we consider a scenario in which Static would under-perform.
Workload W2 consists of two queries, Q3=PROJ1 with ω32KB,32KB
and Q4=AGGsum with ω32KB,32KB, executed in sequence. Statically
assigning Q3 to the CPU and Q4 to the GPGPU yields full utilisa-
tion of the GPGPU, but CPU cores are under-utilised. Reversing the
assignment has the opposite effect. In Fig. 15, we show the latter
assignment due to its higher throughput. Splitting the workload with
FCFS, both CPU and GPGPU are fully utilised with a CPU/GPGPU
split of approximately 1:1.5 for both Q3 and Q4. HLS saturates both
processors too, but with peak throughput by converging to a better
CPU/GPGPU split of 1:2.5 for Q3 and 1:0.5 for Q4. The results for
W1 and W2 thus show the ability of HLS to support heterogeneous
processors without a priori knowledge of the workload.

Fig. 16 shows how HLS adapts to workload changes. We run a
SELECT500 query over the cluster management trace, filtering task
failure events. The selection predicate has the form p1∧ (p2∨·· ·∨
p500) such that when a failure event is selected (p1) all other pred-
icates are evaluated too, making query tasks with high selectivity
expensive to run. The trace contains a period with a surge of task
failure events, which we repeat. The resulting selectivity is shown
in the upper part of Fig. 16. To enable HLS to react to frequent
changes, we update the query task throughput matrix every 100 ms.

Fig. 16 shows how HLS adapts: when selectivity is low, the
CPU is faster than the GPGPU and monopolises the task queue—
the GPGPU contribution is limited to tasks permitted to run by
HLS’s switch threshold rule. When the selectivity increases, the
GPGPU is the faster processor. As the query task throughput for
both processors changes, HLS adapts by scheduling more tasks on
the GPGPU to sustain a high throughput.

7. RELATED WORK
Centralised stream processing engines have existed for decades,
yet engines such as STREAM [6], TelegraphCQ [20], and Nia-

garaCQ [21] focus on single-core execution. Recent systems such as
Esper [2], Oracle CEP [3], and Microsoft StreamInsight [39] support
multi-core architectures at the expense of weakening stream order-
ing guarantees in the presence of windows. Research prototypes
such as S-Store [18] and Trill [19] have strong window semantics
with SQL-like queries. However, S-Store does not perform parallel
window computation. Trill parallelises window processing through
a map/reduce model, but it does not support hybrid query execution.
Distributed stream processing systems such as Storm [52], Sam-
za [1] and SEEP [17] execute streaming queries with data-parallelism
on a cluster of nodes. They do not respect window semantics by de-
fault. Millwheel [4] provides strong window semantics, but it does
not perform parallel computation on windows and instead assumes
partitioned input streams. Spark Streaming [56] has a batched-
stream model, and permits window definitions over this model, thus
creating dependencies between window semantics, throughput and
latency. Recent work on adapting the batch size for Spark Stream-
ing [25] automatically tunes the batch size to stay within a given
latency bound. Unlike Streaming Spark, SABER decouples window
semantics from system performance.
Window computation. Pane-based approaches for window pro-
cessing [41] divide overlapping windows into panes. Aggregation
occurs at the pane level, and multiple panes are combined to provide
the final window result. In contrast to our hybrid stream processing
model, the goal is to partition windows so as to avoid redundant com-
putation, not to achieve data parallelism. Balkesen and Tatbul [11]
propose pane processing for distribution, which incurs a different set
of challenges compared to SABER due to its shared-nothing model.

Recent work [12, 50] has focused on the problem of avoiding
redundant computation with sliding windows aggregation. This
involves keeping efficient aggregation data structures, which can be
maintained with minimum overhead [12], even for general aggrega-
tion functions that are neither invertible nor commutative [50]. Such
approaches are compatible with the batch operator functions that
SABER uses to process multiple overlapping window fragments.
Accelerated query processing. In-memory databases have ex-
plored co-processing with CPUs and GPGPUs for accelerating
database queries for both in-cache and discrete systems. All such
systems [15, 16, 22, 30, 48, 55], however, target one-off and not
streaming queries, and they therefore do not require parallel window
semantics or efficient fine-grained data movement to the accelerator.

GStream [57] executes streaming applications on GPGPU clus-
ters, and provides a new API that abstracts away communication
primitives. Unlike GStream, SABER supports SQL window seman-
tics and deployments on single-node hybrid architectures.

8. CONCLUSIONS
We have presented SABER, a stream processing system that em-

ploys a new hybrid data parallel processing model to run continuous
queries on servers equipped with heterogeneous processors, namely
a CPU and a GPGPU. SABER does not make explicit decisions on
which processor a query should run but rather gives preference to
the fastest one, yet enabling other processors to contribute to the
aggregate query throughput. We have shown that SABER achieves
high processing throughput (over 6 GB/s) and sub-second latency
for a wide range of streaming queries.
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APPENDIX
A. BENCHMARK QUERIES

A.1 Cluster monitoring
-- Query 1
--
-- Input: TaskEvents
-- long timestamp
-- long jobId
-- long taskId
-- long machineId
-- int eventType
-- int userId
-- int category
-- int priority
-- float cpu
-- float ram
-- float disk
-- int constraints
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-- Output: CPUusagePerCategory
-- long timestamp
-- int category
-- float totalCpu
--
select timestamp , category , sum(cpu) as totalCpu
from TaskEvents [range 60 slide 1]
group by category
--
-- Query 2
--
-- Input: TaskEvents
-- Output: CPUusagePerJob
-- long timestamp
-- long jobId
-- float avgCpu
--
select timestamp , jobId , avg(cpu) as avgCpu
from TaskEvents [range 60 slide 1]
where eventType == 1
group by jobId

A.2 Smart grid
-- Query 1
--
-- Input: SmartGridStr
-- long timestamp
-- float value
-- int property
-- int plug
-- int household
-- int house
-- [int padding]
-- Output: GlobalLoadStr
-- long timestamp
-- float globalAvgLoad
--
select timestamp , AVG (value) as globalAvgLoad
from SmartGridStr [range 3600 slide 1]
--
-- Query 2
--
-- Input: SmartGridStr
-- Output: LocalLoadStr
-- long timestamp
-- int plug ,
-- int household
-- int house
-- float localAvgLoad
--
select timestamp , plug , household , house ,

AVG (value) as localAvgLoad
from SmartGridStr [range 3600 slide 1]
group by plug , household , house
--
-- Query 3
--
-- Input: GlobalLoadStr , LocalLoadStr
-- Output: Outliers
-- long timestamp
-- int house
-- float count
--
(
select L.timestamp , L.plug , L.household ,

L.house
from LocalLoadStr [range 1 slide 1] as L,

GlobalLoadStr [range 1 slide 1] as G
where L.house == G.house and

L.localAvgLoad > G.globalAvgLoad
) as R
--
select timestamp , house , count (*)
from R
group by house

A.3 Linear Road Benchmark
-- Query 1
--

-- Input: PosSpeedStr
-- long timestamp
-- int vehicle
-- float speed
-- int highway
-- int lane
-- int direction
-- int position
-- Output: SegSpeedStr
-- long timestamp
-- int vehicle
-- float speed
-- int highway
-- int lane
-- int direction
-- int segment
--
select timestamp , vehicle , speed ,

highway , lane , direction ,
(position /5280) as segment

from SegSpeedStr [range unbounded]
--
-- Query 2
--
-- Input: SegSpeedStr
-- Output: VehicleSegEntryStr
-- long timestamp
-- int vehicle
-- float speed
-- int highway
-- int lane
-- int direction
-- int segment
--
select distinct

L.timestamp , L.vehicle , L.speed , L.highway , L.lane ,
L.direction , L.segment

from SegSpeedStr [range 30 slide 1] as A,
SegSpeedStr [partition by vehicle rows 1] as L

where A.vehicle == L.vehicle
--
-- Query 3
--
-- Input: SegSpeedStr
-- Output: CongestedSegRel
-- long timestamp
-- int highway
-- int direction
-- int segment
-- float avgSpeed
--
select timestamp , highway , direction , segment ,

AVG(speed) as avgSpeed
from SegSpeedStr [range 300 slide 1]
group by highway , direction , segment
having avgSpeed < 40.0
--
-- Query 4
--
-- Input: SegSpeedStr
-- Output: SegVolRel
-- long timestamp
-- int highway
-- int direction
-- int segment
-- float numVehicles
--
(
select timestamp , vehicle , highway , direction , segment ,

count (*)
from SegSpeedStr [range 30 slide 1]
group by highway , direction , segment , vehicle
) as R
--
select timestamp , highway , direction , segment ,

count(vehicle) as numVehicles
from R
group by highway , direction , segment
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