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Abstract

Data scientists often implement machine learning algo-
rithms in imperative languages such as Java, Matlab
and R. Yet such implementations fail to achieve the per-
formance and scalability of specialised data-parallel pro-
cessing frameworks. Our goal is to execute impera-
tive Java programs in a data-parallel fashion with high
throughput and low latency. This raises two challenges:
how to support the arbitrary mutable state of Java pro-
grams without compromising scalability, and how to re-
cover that state after failure with low overhead.

Our idea is to infer the dataflow and the types of state
accesses from a Java program and use this information
to generate a stateful dataflow graph (SDG). By explic-
itly separating data from mutable state, SDGs have spe-
cific features to enable this translation: to ensure scala-
bility, distributed state can be partitioned across nodes if
computation can occur entirely in parallel; if this is not
possible, partial state gives nodes local instances for in-
dependent computation, which are reconciled according
to application semantics. For fault tolerance, large in-
memory state is checkpointed asynchronously without
global coordination. We show that the performance of
SDGs for several imperative online applications matches
that of existing data-parallel processing frameworks.

1 Introduction

Data scientists want to use ever more sophisticated im-
plementations of machine learning algorithms, such as
collaborative filtering [32], k-means clustering and logis-
tic regression [21], and execute them over large datasets
while providing “fresh”, low latency results. With the
dominance of imperative programming, such algorithms
are often implemented in languages such as Java, Matlab
or R. Such implementations though make it challenging
to achieve high performance.

On the other hand, data-parallel processing frame-
works, such as MapReduce [8], Spark [38] and Na-
iad [26], can scale computation to a large number of

nodes. Such frameworks, however, require developers
to adopt particular functional [37], declarative [13] or
dataflow [15] programming models. While early frame-
works such as MapReduce [8] followed a restricted func-
tional model, resulting in wide-spread adoption, recent
more expressive frameworks such as Spark [38] and Na-
iad [26] require developers to learn more complex pro-
gramming models, e.g. based on a richer set of higher-
order functions.

Our goal is therefore to translate imperative Java im-
plementations of machine learning algorithms to a repre-
sentation that can be executed in a data-parallel fashion.
The execution should scale to a large number of nodes,
achieving high throughput and low processing latency.
This is challenging because Java programs support ar-
bitrary mutable state. For example, an implementation
of collaborative filtering [32] uses a mutable matrix to
represent a model that is refined iteratively: as new data
arrives, the matrix is updated at a fine granularity and
accessed to provide up-to-date predictions.

Having stateful computation raises two issues: first,
the state may grow large, e.g. on the order of hundreds
of GBs for a collaborative filtering model with tens of
thousands of users. Therefore the state and its associated
computation must be distributed across nodes; second,
large state must be restored efficiently after node failure.
The failure recovery mechanism should have a low im-
pact on performance.

Current data-parallel frameworks do not handle large
state effectively. In stateless frameworks [8, 37, 38],
computation is defined through side-effect-free func-
tional tasks. Any modification to state, such as updat-
ing a single element in a matrix, must be implemented as
the creation of new immutable data, which is inefficient.
While recent frameworks [26, 10] have recognised the
need for per-task mutable state, they lack abstractions for
distributed state and exhibit high overhead under fault-
tolerant operation with large state (see §6.1).

Imperative programming model. We describe how,



with the help of a few annotations by developers, Java
programs can be executed automatically in a distributed
data-parallel fashion. Our idea is to infer the dataflow
and the types of state accesses from a Java program and
use this information to translate the program to an ex-
ecutable distributed dataflow representation. Using pro-
gram analysis, our approach extracts the processing tasks
and state fields from the program and infers the variable-
level dataflow.

Stateful dataflow graphs. This translation relies on the
features of a new fault-tolerant data-parallel processing
model called stateful dataflow graphs (SDGs). An SDG
explicitly distinguishes between data and state: it is a
cyclic graph of pipelined data-parallel tasks, which exe-
cute on different nodes and access local in-memory state.

SDGs include abstractions for maintaining large state
efficiently in a distributed fashion: if tasks can process
state entirely in parallel, the state is partitioned across
nodes; if this is not possible, tasks are given local in-
stances of partial state for independent computation.
Computation can include synchronisation points to ac-
cess all partial state instances, and instances can be rec-
onciled according to application semantics.

Data flows between tasks in an SDG, and cycles spec-
ify iterative computation. All tasks are pipelined—this
leads to low latency, less intermediate data during fail-
ure recovery and simplified scheduling by not having to
compute data dependencies. Tasks are replicated at run-
time to overcome processing bottlenecks and stragglers.

Failure recovery. When recovering from failures, nodes
must restore potentially gigabytes of in-memory state.
We describe an asynchronous checkpointing mechanism
with log-based recovery that uses data structures for dirty
state to minimise the interruption to tasks while taking
local checkpoints. Checkpoints are persisted to multiple
disks in parallel, from which they can be restored to mul-
tiple nodes, thus reducing recovery time.

With a prototype system of SDGs, we execute Java
implementations of collaborative filtering, logistic re-
gression and a key/value store on a private cluster and
Amazon EC2. We show that SDGs execute with high
throughput (comparable to batch processing systems)
and low latency (comparable to streaming systems).
Even with large state, their failure recovery mechanism
has a low performance impact, recovering in seconds.

The paper contributions and its structure are as fol-
lows: based on a sample Java program (§2.1) and the
features of existing dataflow models (§2.2), we motivate
the need for stateful dataflow graphs and describe their
properties (§3); §4 explains the translation from Java to
SDGs; §5 describes failure recovery; and §6 presents
evaluation results, followed by related work (§7).

Algorithm 1: Online collaborative filtering

1 @Partitioned Matrix userItem = new Matrix();
2 @Partial Matrix coOcc = new Matrix();

4 void addRating(int user, int item, int rating) {
s userItem.setElement(user, item, rating);

6 Vector userRow = userItem.getRow(user);

7 for (int i = @; i < userRow.size(); i++)

8 if (userRow.get(i) > 0) {

9 int count = coOcc.getElement(item, i);
10 coOcc.setElement(item, i, count + 1);
1 coOcc.setElement (i, item, count + 1);
12 }

13}

14 Vector getRec(int user) {

15 Vector userRow = userItem.getRow(user);

16 @Partial Vector userRec = @Global coOcc.multiply(
userRow) ;

17 Vector rec = merge(@Global userRec);

18 return rec;

19 }

20 Vector merge(@Collection Vector[] allUserRec) {

21 Vector rec = new Vector(allUserRec[0].size());

2 for (Vector cur : allUserRec)

23 for (int i = @; i < allUserRec[@].size(); i++)
24 rec.set(i, cur.get(i) + rec.get(i));

25 return rec;

26 }

2 State in Data-Parallel Processing

We describe an imperative implementation of a machine
learning algorithm and investigate how it can execute in
a data-parallel fashion on a set of nodes, paying attention
to its use of mutable state (§2.1). Based on this analysis,
we discuss the features of existing data-parallel process-
ing models for supporting such an execution (§2.2).

2.1 Application example

Alg.1 shows a Java implementation of an on-
line machine learning algorithm, collaborative filter-
ing (CF) [32].! It outputs up-to-date recommendations of
items to users (function getRec) based on previous item
ratings (function addRating).

The algorithm maintains state in two data structures:
the matrix userItem stores the ratings of items made by
users (line 1); the co-occurrence matrix coOcc records
correlations between items that were rated together by
multiple users (line 2).

For many users and items, useritem and coOcc become
large and must be distributed: userItem can be parti-
tioned across nodes based on the user identifier as an
access key; since the access to coOcc is random, it cannot
be partitioned but only replicated on multiple nodes in
order to parallelise updates. In this case, results from a
single instance of coOcc are partial, and must be merged
with other partial results to obtain a complete result, as
described below.

The function addRating first adds a new rating to
userItem (line 5). It then incrementally updates coOcc by
increasing the co-occurrence counts for the newly-rated

IThe annotations (starting with *@”) will be explained in §4 and
should be ignored for now.



Computational Programming State handling Dataflow )
model Systems model Represen-  Large Fine-grained . .= Lo Iter- Failure recovery
tation state size  updates latency  ation

MapReduce [8] map/reduce as data n/a X scheduled X X recompute

DryadLINQ [37] functional as data n/a X scheduled X v recompute
Stateless dataflow Spark [38] functional as data n/a X hybrid X v recompute

CIEL [25] imperative as data n/a X scheduled X v recompute

HaLoop [5] map/reduce cache v X scheduled X v recompute

Incoop [4] map/reduce cache v X scheduled X X recompute
gz:;;‘::{ma] Nectar [11] functional cache v X scheduled X X recompute

CBP [19] dataflow loopback v v scheduled X X recompute

Comet [12] functional as data n/a X scheduled v X recompute
Batched dataflow D-Streams [39] functional as data n/a X hybrid v v recompute

Naiad [26] dataflow explicit X v hybrid v v sync. global checkpoints
Continuous Storm, S4 dataflow as data n/a X pipelined v X recompute
dataflow SEEP [10] dataflow explicit v pipelined v X sync. local checkpoints
Parallel in-memory  Piccolo [30] imperative explicit v n/a v v async. global checkpoints
Stateful dataflow SDG imperative explicit v pipelined v v async. local checkpoints

Table 1: Design space of data-parallel processing frameworks

item and existing items with non-zero ratings (line 7-12).
This requires userItem and coOcc to be mutable, with ef-
ficient fine-grained access. Since userItem is partitioned
based on the key user, and coOcc is replicated, addRating
only accesses a single instance of each.

The function getRec takes the rating vector of a
user, userRow (line 15), and multiplies it by the co-
occurrence matrix to obtain a recommendation vec-
tor userRec (line 16). Since coOcc is replicated, this must
be performed on all instances of coOcc, leading to mul-
tiple partial recommendation vectors. These partial vec-
tors must be merged to obtain the final recommendation
vector rec for the user (line 17). The function merge sim-
ply computes the sum of all partial recommendation vec-
tors (lines 21-24).

Note that addRating and getRec have different per-
formance goals when handling state: addRating must
achieve high throughput when updating coOcc with new
ratings; getRec must serve requests with low latency, e.g.
when recommendations are included in dynamically gen-
erated web pages.

2.2 Design space

The above example highlights a number of required fea-
tures of a dataflow model to enable the translation of
imperative online machine learning algorithms to exe-
cutable dataflows: (i) the model should support large
state sizes (on the order of GBs), which should be rep-
resented explicitly and handled with acceptable perfor-
mance; in particular, (ii) the state should permit efficient
fine-grained updates. In addition, due to the need for up-
to-date results, (iii) the model should process data with
low latency, independently of the amount of input data;
(iv) algorithms such as logistic regression and k-means
clustering also require iteration; and (v) even with large
state, the model should support fast failure recovery.

In Table 1, we classify existing data-parallel process-
ing models according to the above features.

State handling. Stateless dataflows, first made popular
by MapReduce [8], define a functional dataflow graph in
which vertices are stateless data-parallel tasks. They do
not distinguish between state and data: e.g. in a word-
count job in MapReduce, the partial word counts, which
are the state, are output by map tasks as part of the
dataflow [8]. Dataflows in Spark, represented as RDDs,
are immutable, which simplifies failure recovery but re-
quires a new RDD for each state update [38]. This is in-
efficient for online algorithms such as CF in which only
part of a matrix is updated each time.

Stateless models also cannot treat data differently from
state. They cannot use custom index data structures
for state access, or cache only state in memory: e.g.
Shark [36] needs explicit hints which dataflows to cache.

Incremental dataflow avoids rerunning entire jobs af-
ter updates to the input data. Such models are fundamen-
tally stateful because they maintain results from earlier
computation. Incoop [4] and Nectar [11] treat state as a
cache of past results. Since they cannot infer which data
will be reused, they cache all. CBP transforms batch jobs
automatically for incremental computation [19].

Our goals are complementary: SDGs do not infer in-
cremental computation but support stateful computation
efficiently, which can realise incremental algorithms.

Existing models that represent state explicitly, such as
SEEP [10] and Naiad [26], permit tasks to have access to
in-memory data structures but face challenges related to
state sizes: they assume that state is small compared to
the data. When large state requires distributed processing
through partitioning or replication, they do not provide
abstractions to support this.

In contrast, Piccolo [30] supports scalable distributed
state with a key/value abstraction. However, it does not
offer a dataflow model, which means that it cannot ex-
ecute an inferred dataflow from a Java program but re-
quires computation to be specified as multiple kernels.
Latency and iteration. Tasks in a dataflow graph can



be scheduled for execution or materialised in a pipeline,
each with different performance implications. Some
frameworks follow a hybrid approach in which tasks on
the same node are pipelined but not between nodes.

Since tasks in stateless dataflows are scheduled to pro-
cess coarse-grained batches of data, such systems can
exploit the full parallelism of a cluster but they can-
not achieve low processing latency. For lower latency,
batched dataflows divide data into small batches for pro-
cessing and use efficient, yet complex, task schedulers
to resolve data dependencies. They have a fundamental
trade-off between the lower latency of smaller batches
and the higher throughput of larger ones—typically they
burden developers with making this trade-off [39].

Continuous dataflow adopts a streaming model with
a pipeline of tasks. It does not materialise intermedi-
ate data between nodes and thus has lower latency with-
out a scheduling overhead: as we show in §6, batched
dataflows cannot achieve the same low latencies. Due to
our focus on online processing with low latency, SDGs
are fully pipelined (see §3.1).

To improve the performance of iterative computation

in dataflows, early frameworks such as HalLoop [5] cache
the results of one iteration as input to the next. Recent
frameworks [15, 38, 25, 9] generalise this concept by
permitting iteration over arbitrary parts of the dataflow
graph, executing tasks repeatedly as part of loops. Simi-
larly SDGs support iteration explicitly by permitting cy-
cles in the dataflow graph.
Failure recovery. To recover from failure, frameworks
either recompute state based on previous data or check-
point state to restore it. For recomputation, Spark rep-
resents dataflows as RDDs [38], which can be recom-
puted deterministically based on their lineage. Contin-
uous dataflow frameworks use techniques such as up-
stream backup [14] to reprocess buffered data after fail-
ure. Without checkpointing, recomputation can lead to
long recovery times.

Checkpointing periodically saves state to disk or the
memory of other nodes. With large state, this becomes
resource-intensive. SEEP recovers state from memory,
thus doubling the memory requirement of a cluster [10].

A challenge is how to take consistent checkpoints
while processing data. Synchronous global checkpoin-
ting stops processing on all nodes to obtain consistent
snapshots, thus reducing performance. For example, Na-
iad’s “stop-the-world” approach exhibits low throughput
with large state sizes [26]. Asynchronous global check-
pointing, as used by Piccolo [30], permits nodes to take
consistent checkpoints at different times.

Both techniques include all global state in a check-
point and thus require all nodes to restore state after fail-
ure. Instead, SDGs use an asynchronous checkpointing
mechanism with log-based recovery. As described in §5,
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it does not require global coordination between nodes
during recovery, and it uses dirty state to minimise the
disruption to processing during local checkpointing.

3 Stateful Dataflow Graphs

The goal of stateful dataflow graphs (SDGs) is to make
it easy to translate imperative programs with mutable
state to a dataflow representation that performs paral-
lel, iterative computation with low latency. Next we de-
scribe their model (§3.1), how they support distributed
state (§3.2) and how they are executed (§3.3).

3.1 Model

We explain the main features of SDGs using the CF al-
gorithm from §2.1 as an example. As shown in Fig. 1,
an SDG has two types of vertices: task elements, t € T,
transform input to output dataflows; and state elements,
s € S, represent the state in the SDG.

Access edges, a = (t,s) € A, connect task elements to

the state elements that they read or update. To facilitate
the allocation of task and state elements to nodes, each
task element can only access a single state element, i.e. A
is a partial function: (t;,s;) € A, (ti,5x) € A=s; = 5.
Dataflows are edges between task elements, d = (t;,¢;) €
D, and contain data items.
Task elements (TEs) are not scheduled for execution but
the entire SDG is materialised, i.e. each TE is assigned to
one or more physical nodes. Since TEs are pipelined, it is
unnecessary to generate the complete output dataflow of
a TE before it is processed by the next TE. Data items are
therefore processed with low latency, even across a se-
quence of TEs, without scheduling overhead, and fewer
data items are handled during failure recovery (see §5).

The SDG in Fig. 1 has five TEs assigned to three

nodes: the updateUserItem, updateCoOcc TEs realise the
addRating function from Alg. 1; and the getUserVec,
getRecVec and merge TEs implement the getRec function.
We explain the translation process in §4.2.
State elements (SEs) encapsulate the state of the compu-
tation. They are implemented using efficient data struc-
tures, such as hash tables or indexed sparse matrices. In
the next section, we describe the abstractions for dis-
tributed SEs, which span multiple nodes.

Fig. 1 shows the two SEs of the CF algorithm: the
userItem and the coOcc matrices. The access edges spec-



ify that userItem is updated by the updateUserItem TE
and read by the getUserVec TE; coOcc is updated by
updateCoOcc and read by getRecVec.

Parallelism. For data-parallel processing, a TE #; can be
instantiated multiple times to handle parts of a dataflow,
resulting in multiple TE instances, fi7 i< n. As we
explain in §3.3, the number of instances n; for each TE
is chosen at runtime and adjusted based on workload de-
mands and the occurrence of stragglers.

An appropriate dispatching strategy sends items in

dataflows to TE instances: items can be (i) partitioned
using hash- or range-partitioning on a key; or (ii) dis-
patched to an arbitrary instance, e.g. in a round-robin
fashion for load-balancing.
Iteration. In iterative algorithms, SEs are accessed mul-
tiple times by TEs. There are two cases to be distin-
guished: (i) if the repeated access is from a single TE, the
iteration is entirely local and can be supported efficiently
by a single node; and (ii) if the iteration involves multi-
ple pipelined TEs, a cycle in the dataflow of the SDG can
propagate updates between TEs.

With cycles in the dataflow, SDGs do not provide co-
ordination during iteration by default. This is sufficient
for many iterative machine learning and data mining al-
gorithms because they can converge from different inter-
mediate states [31], even without explicit coordination.
A strong consistency model for SDGs could be realised
with per-loop timestamps, as used by Naiad [26].

3.2 Distributed state

The SDG model provides abstractions for distributed
state. An SE s; may be distributed across nodes, leading
to multiple SE instances §; ;, because (i) it is too large
to fit into the memory of a single node; or (ii) it is ac-
cessed by a TE that has multiple instances to process the
dataflow in parallel. This requires also multiple SE in-
stances so that the TE instances access state locally.

Fig. 1 illustrates these two cases: (i) the userItem SE
may grow larger than the main memory of a single node;
and (ii) the data-parallel execution of the CPU-intensive
updateCoOcc TE leads to multiple instances, each requir-
ing local access to the coOcc SE.

An SE can be distributed in different ways, which are

depicted in Fig. 2: a partitioned SE splits its internal data
structure into disjoint partitions; if this is not possible, a
partial SE duplicates its data structure, creating multiple
copies that are updated independently. As we describe
in §4, developers selected the required type of distributed
state using source-level annotations according to the se-
mantics of their algorithm.
Partitioned state. For algorithms for which state can be
partitioned, SEs can be split and SE instances placed on
separate nodes (see Fig. 2b). Access to the SE instances
occurs in parallel.

merge
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Figure 2: Types of distributed state in SDGs

Developers can use predefined data structures for SEs
(e.g. Vector, HashMap, Matrix and DenseMatrix) or de-
fine their own by implementing dynamic partitioning and
dirty state support (see §5). Different data structures sup-
port different partitioning strategies: e.g. a map can be
hash- or range-partitioned; a matrix can be partitioned by
row or column. To obtain a unique partitioning, TEs can-
not access partitioned SEs using conflicting strategies,
such as accessing a matrix by row and by column.

In addition, the dataflow partitioning strategy must be

compatible with the data access pattern by the TEs, as
specified in the program (see §4.2). For example, mul-
tiple TE instances with an access edge to a partitioned
SE must use the same partitioning key on the dataflow
so that they access SE instances locally: in the CF al-
gorithm, the userItem SE and the new rating and rec
request dataflows must all be partitioned by row, i.e. the
users for which ratings are maintained.
Partial state. In some cases, the data structure of an SE
cannot be partitioned because the access pattern of TEs
is arbitrary. For example, in the CF algorithm, the coOcc
matrix has an access pattern, in which the updateCoOcc
TE may update any row or column. In this case, an SE
is distributed by creating multiple partial SE instances,
each containing the whole data structure (see Fig. 2c).
Partial SE instances can be updated independently by dif-
ferent TE instances.

When a TE accesses a partial SE, there are two possi-
ble types of accesses based on the semantics of the algo-
rithm: a TE instance may access (i) the local SE instance
on the same node; or (ii) the global state by accessing all
of the partial SE instances, which introduces a synchro-
nisation point. As we describe in §4.2, the type of access
to partial SEs is determined by annotations.

When accessing all partial SE instances, it is possible
to execute computation that merges their values, thus rec-
onciling the differences between them. This is done by a
merge TE that computes a single global value from partial
SE instances. Merge computation is application-specific
and must be defined by the developer. In the CF algo-
rithm, the merge function takes all partial userRec vectors
and computes a single recommendation vector.

3.3 Execution

To execute an SDG, the runtime system allocates TE and
SE instances to nodes, creating instances on-demand.

Allocation to nodes. Since we want to avoid remote
state access, the general strategy is to colocate TEs and



SEs that are connected by access edges on the same node.
The runtime system uses four steps for mapping TEs and
SEs to nodes: if there is a cycle in the SDG, all SEs ac-
cessed in the cycle are colocated if possible to reduce
communication in iterative algorithms (step 1); the re-
maining SEs are allocated on separate nodes to increase
available memory (step 2); TEs are colocated with the
SEs that they access (step 3); and finally, any unallocated
TEs are assigned to separate nodes (step 4).

Fig. 1 illustrates the above steps for allocating the
SDG to nodes n; to n3: since there are no cycles (step 1),
the userItem SE is assigned to node n;, and the coOcc
SE is assigned to n (step 2); the updateUserItem and
getUserVec TEs are assigned to ny, and the updateCoOcc
and getRecVec TEs are assigned to n, (step 3); finally, the
merge TE is allocated to a new node n3 (step 4).

Runtime parallelism and stragglers. Processing bot-
tlenecks in the deployed SDG, e.g. caused by the com-
putational cost of TEs, cannot be predicted statically,
and TEs instances may become stragglers [40]. Previ-
ous work [26] tries to reduce stragglers proactively for
low latency processing, which is hard due to the many
non-deterministic causes of stragglers.

Instead, similar to speculative execution in MapRe-
duce [40], SDGs adopt a reactive approach. Using a dy-
namic dataflow graph approach [10], the runtime system
changes the number of TE instances in response to strag-
glers. Each TE is monitored to determine if it constitutes
a processing bottleneck that limits throughput. If so, a
new TE instance is created, which may result in new par-
titioned or partial SE instances.

3.4 Discussion

With an explicit representation of state, a single SDG can
express multiple workflows over that state. In the case of
the CF algorithm from Alg. 1, the SDG processes new
ratings by updating the SEs for the user/item and co-
occurrence matrices, and also serves recommendation re-
quests using the same SEs with low latency.

Without SDGs, these two workflows would require
separate offline and online systems [23, 32]: a batch pro-
cessing framework would incorporate new ratings peri-
odically, and online recommendation requests would be
served by a dedicated system from memory. Since it is
inefficient to rerun the batch job after each new rating,
the recommendations would be computed on stale data.

A drawback of the materialised representation of
SDGs is the start-up cost. For short jobs, the deploy-
ment cost may dominate the running time. Our prototype
implementation deploys an SDG with 50 TE and SE in-
stances on 50 nodes within 7 s, and we assume that jobs
are sufficiently long-running to amortise this delay.

4 Programming SDGs

We describe how to translate stateful Java programs stat-
ically to SDGs for parallel execution. We do not attempt
to be completely transparent for developers or to address
the general problem of automatic code parallelisation.
Instead, we exploit data and pipeline parallelism by re-
lying on source code annotations. We require developers
to provide a single Java class with annotations that indi-
cate how state is distributed and accessed.

4.1 Annotations

When defining a field in a Java class, a developer can
indicate if its content can be partitioned or is partial
by annotating the field declaration with @Partitioned or
@Partial, respectively.

@Partitioned. This annotation specifies that a field can
be split into disjoint partitions (see §3.2). A reference to
a @Partitioned field always refers to a single partition.
This requires that access to the field uses an access key to
infer the partition. In the CF algorithm in Alg. 1, rows of
the userItem matrix are updated with information about
a single user only, and thus userItem can be declared as
a partitioned field.

@Partial. Fields are annotated with @Partial if dis-
tributed instances of the field should be accessed inde-
pendently (see §3.2). Partial fields enable developers
to define distributed state when it cannot be partitioned.
In CF, matrix coOcc is annotated with @Partial, which
means that multiple instances of the matrix may be cre-
ated, and each of them is updated independently for users
in a partition (lines 10-11).

@Global. By default, a reference to a @Partial field refers
to only one of its instances. While most of the time, com-
putation should apply to one instance to make indepen-
dent progress, it may also be necessary to support oper-
ations on all instances. A field reference annotated with
@Global forces a Java expression to apply to all instances,
denoting “global” access to a partial field, which intro-
duces a synchronisation barrier in the SDG (see §4.2).

Java expressions deriving from @Global access be-
come logically multi-valued because they include results
from all instances of a partial field. As a result, any local
variable that is assigned the result of a global field access
becomes partial and must be annotated as such.

In CF, the access to the coOcc field carries the @Global
annotation to compute all partial recommendations: each
instance of coOcc is multiplied with the user rating vec-
tor userRow, and the results are stored in the partial local
variable userRec (line 16).

@Collection. Global access to a partial field applies to
all instances, but it hides the individual instances from
the developer. At some point in the program, how-
ever, it may be necessary to reconcile all instances. The
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Figure 3: Translation of an annotated Java program to an SDG

control flow

@Collection annotation therefore exposes all instances of
a partial field or variable as a Java array after @Global ac-
cess. This enables the program to iterate over all values
and, for example, merge them into a single value.

In CF, the partial recommendations are combined by
accessing them using the @Global annotation and then
invoking the merge method (line 17). The parameter of
merge is annotated with @Collection, which specifies that
the method can access all instances of the partial userRec
variable to compute the final recommendation result.
Limitations. Java programs need to obey certain restric-
tions to be translated to SDGs due to their dataflow na-
ture and fault tolerance properties:

Explicit state classes. All state in the program must be
implemented using the set of SE classes (see §3.2). This
gives the runtime system the ability to partition objects
of these classes into multiple instances (for partitioned
state) or distribute them (for partial state), and recover
them after failure (see §5).

Location independence. Each object accessed in the pro-
gram must support transparent serialisation/deserialisa-
tion: as SDGs are distributed, objects are propagated be-
tween nodes. The program also cannot make assump-
tions about its execution environment, e.g. by relying on
local network sockets or files.

Side-effect-free parallelism. To support the parallel
evaluation of multi-valued expressions under @Global
state access, such expressions must not affect single-
valued expressions. For example, the statement, @Global
coOcc.multiply(userRow), in line 16 in Alg. 1 cannot up-
date userRow, which is single-valued.

Deterministic execution. The program must be determin-
istic, i.e. it should not depend on system time or ran-
dom input. This enables the runtime system to re-execute
computation when recovering after failure (see §5).

4.2 Translating programs to SDGs

Annotated Java programs are translated to SDGs by the
java2sdg tool. Fig.3 shows the steps performed by
java2sdg: it first statically analyses the Java class to iden-
tify SEs, TEs and their access edges (steps 1-5); it then
transforms the Java bytecode of the class to generate TE
code, ready for deployment (steps 6-8).

1. SE generation. The class is compiled to Jimple code,

a typed intermediate representation for static analysis
used by the Soor framework [33] (step 1). The Jimple
code is analysed to identify SEs with partitioned or par-
tial fields and partial local variables (step 2). Based on
the annotations in the code, access to SEs is classified as
local, partitioned or global (step 3).
2. TE and dataflow generation. Next TEs are created
so that each TE only accesses a single SE, i.e. a new
TE is created from a block of code when access to a
different SE or a different instance of the current SE
is detected (step 4). The dispatching semantics of the
dataflows between created TEs (i.e. partitioned, all-to-
one, one-to-all or one-to-any) is chosen based on the type
of state access. More specifically, a new TE is created:

1. for each entry point of the class;

2. when a TE uses partitioned access to a new SE (or
to a previously-accessed SE with a new access key).
The access key is extracted using reaching expression
analysis, and the dataflow edge between the two TEs
is annotated with the access key;

3. when a TE uses global access to a new partial SE. In
this case, the dataflow edge between the two TEs is
annotated with one-to-all dispatching semantics;

4. when a TE uses local access to a new partial SE, the
dataflow edge is annotated with one-to-any dispatch-
ing semantics. In case of local (or partitioned) ac-
cess after global access, all TE instances must be syn-
chronised using a distributed barrier before control is
transferred to the new TE, and the dataflow edge has
all-to-one dispatching semantics; and

5. for @Collection expressions. A synchronisation bar-
rier collects values from multiple TEs instances, and
its dataflow edge has all-to-one semantics.

After generating the TEs, java2sdg identifies the vari-
ables that must propagate across TEs boundaries (step 5).
For each dataflow, live variable analysis identifies the set
of variables that are associated with that dataflow edge.
3. Bytecode generation. Next java2sdg synthesises the
bytecode for each TE that will be executed by the run-
time system. It compiles the code assigned with each
TE in step 4 to bytecode and injects it into a TE tem-
plate (step 6) using Javassist. State accesses to fields and
partial variables are translated to invocations of the run-
time system, which manages the SE instances (step 7).

Finally data dispatching across TEs is added (step 8):
java2sdg injects code, (i) at the exit point of TEs, to seri-
alise live variables and send them to the correct successor
TE instance; and, (ii) at the entry point of a TE, to add
barriers for all-to-one dispatching and to gather partial
results for merge TEs.

5 Failure Recovery

To recover from failures, it is necessary to replace failed
nodes and re-instantiate their TEs and SEs. TEs are state-



less and thus are restored trivially, but the state of SEs
must be recovered. We face the challenge of designing
a recovery mechanism that: (i) can scale to save and re-
cover the state of a large number of nodes with low over-
head, even with frequent failures; (ii) has low impact on
the processing latency; and (iii) achieves fast recovery
time when recovering large SEs.

We achieve these goals with a mechanism that

(a) combines local checkpoints with message replay, thus
avoiding both global checkpoint coordination and global
rollbacks; (b) divides state of SEs into consistent state,
which is checkpointed, and dirty state, which permits
continued processing while checkpointing; and (c) par-
titions checkpoints and saves them to multiple nodes,
which enables parallel recovery.
Approach. Our failure recovery mechanism combines
local checkpointing and message logging and is inspired
by failure recovery in distributed stream processing sys-
tems [14]. Nodes periodically take checkpoints of their
local SEs and output communication buffers. Dataflows
include increasing TE-generated scalar timestamps, and
a vector timestamp of the last data item from each input
dataflow that modified the SEs is included in the check-
point. Once the checkpoint is saved to stable storage, up-
stream nodes can trim their output buffers of data items
that are older than all downstream checkpoints.

After failure, a node recovers its SEs from the last

checkpoint, replays its output buffers and reprocesses
data items received from the upstream output buffers.
Downstream nodes detect duplicate data items based on
the timestamps and discard them. This approach allows
nodes to recover SEs locally beyond the last checkpoint,
without requiring nodes to coordinate global rollback,
and it avoids the output commit problem.
State checkpointing. We use an asynchronous parallel
checkpointing mechanism that minimises the processing
interruption when checkpointing large SEs with GBs of
memory. The idea is to record updates in a separate data
structure, while taking a checkpoint. For each type of
data structure held by an SE, there must be an imple-
mentation that supports the separation of dirty state and
its subsequent consolidation.

Checkpointing of a node works as follows: (1) to initi-
ate a checkpoint, each SE is flagged as dirty and the out-
put buffers are added to the checkpoint; (2) updates from
TEs to an SE are now handled using a dirty state data
structure: e.g. updates to keys in a dictionary are written
to the dirty state, and reads are first served by the dirty
state and, only on a miss, by the dictionary; (3) asyn-
chronously to the processing, the now consistent state is
added to the checkpoint; (4) the checkpoint is backed up
to multiple nodes (see below); and (5) the SE is locked
and its state is consolidated with the dirty state.

State backup and restore. To be memory-efficient,

remote
storage

— Restore to n nodes ———

Backup to m nodes

Figure 4: Parallel, m-to-n state backup and restore

checkpoints must be stored on disk. We overcome the
problem of low I/O performance by splitting checkpoints
across m nodes. To reduce recovery time, a failed SE in-
stance can be restored to n new partitioned SE instances
in parallel. This m-to-n pattern prevents a single node
from becoming a disk, network or processing bottleneck.

Fig. 4 shows the distributed protocol for backing up
checkpoints. In step B1, checkpoint chunks, e.g. ob-
tained by hash-partitioning checkpoint data, are created,
and a thread pool serialises them in parallel (step B2).
Checkpoint chunks are streamed to m nodes, selected in
a round-robin fashion (step B3). Nodes write received
checkpoint chunks directly to disk.

After failure, n new nodes are instantiated with the lost
TEs and SEs. Each node with a checkpoint chunk splits
it into n partitions, each of which is streamed to one of
the recovering instances (step R1). The new SE instances
reconcile the chunks, reverting the partitioning (step R2).
Finally, data items from output buffers are reprocessed to
bring the recovered SE state up-to-date (step R3).

6 Evaluation

The goal of our experimental evaluation is to explore if
SDGs can (i) execute stateful online processing applica-
tions with low latency and high throughput while sup-
porting large state sizes with fine-grained updates (§6.1);
(ii) scale in terms of nodes comparable to stateless batch
processing frameworks (§6.2); handle stragglers at run-
time with low impact on throughput (§6.3); and (iii) re-
cover from failures with low overhead (§6.4).

We extend the SEEP streaming platform to implement
SDGs and deploy our prototype on Amazon EC2 and
a private cluster with 7 quad-core 3.4 GHz Intel Xeon
servers with 8 GB of RAM. To support fast recovery, the
checkpointing frequency for all experiments is 10 s un-
less stated otherwise. Candlesticks in plots show the 5%
251 50t 75t and 95" percentiles, respectively.

6.1 Stateful online processing

Throughput and latency. First we investigate the per-
formance of SDGs using the online collaborative filter-
ing (CF) application (see §2.1). We deploy it on 36 EC2
VM instances (“cl.xlarge”; 8 vCPUs with 7 GB) using
the Netflix dataset, which contains 100 million movie
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ratings for evaluating recommender systems. We add
new ratings continuously (addRating), while requesting
fresh recommendations (getRec). The state size main-
tained by the system grows to 12 GB.

Fig. 5 shows the throughput of getRec and addRating
requests and the latencies of getRec requests when the
ratio between the two is varied. The achieved through-
put is sufficient to serve 10,000-14,000 requests/s, with
the 95" percentile of responses being at most 1.5 s stale.
As the workload ratio includes more state reads (getRec),
the throughput decreases slightly due to the cost of the
synchronisation barrier that aggregates the partial state
in the SDG. The result shows that SDGs can combine
the functionality of a batch and an online processing sys-
tem, while serving fresh results with low latency and
high throughput over large mutable state.

State size. Next we evaluate the performance of SDGs
as the state size increases. As a synthetic benchmark, we
implement a distributed partitioned key/value store (KV)
using SDGs because it exemplifies an algorithm with
pure mutable state. We compare to an equivalent im-
plementation in Naiad (version 0.2) with global check-
pointing, which is the only fault-tolerance mechanism
available in the open-source version. We deploy it in one
VM (“ml.xlarge”) and measure the performance of serv-
ing update requests for keys.

Fig. 6 shows that, for a small state size of 100 MB,
both SDGs and Naiad exhibit similar throughput of
65,000 requests/s with low latency. As the state size in-
creases to 2.5 GB, the SDG throughput is largely un-
affected but Naiad’s throughput decreases due to the
overhead of its disk-based checkpoints (Naiad-Disk).
Even with checkpoints stored on a RAM disk (Naiad-
NoDisk), its throughput with 2.5 GB of state is 63%
lower than that of SDGs. Similarly, the 95™ percentile la-
tency in Naiad increases when it stops processing during
checkpointing—SDGs do not suffer from this problem.

To investigate how SDGs can support large distributed
state across multiple nodes, we scale the KV store by
increasing the number of VMs from 10 to 40, keeping
the number of dictionary keys per node constant at 5 GB.

Fig. 7 shows the throughput and the latency for read
requests with a given total state size. The aggregate

Aggregated memory (MB)

Figure 6: Throughput and latency with
increasing state size on single node

Aggregated memory (GB)
Figure 7: Throughput and latency with

increasing state size on multiple nodes
(key/value store)

throughput scales near linearly from 470,000 requests/s
for 50 GB to 1.5 million requests/s for 200 GB. The me-
dian latency increases from 8—29 ms, while the 95" per-
centile latency varies between 800 ms and 1000 ms.

This result demonstrates that SDGs can support state-
ful applications with large state sizes without compro-
mising throughput or processing latency, while executing
in a fault-tolerant fashion.

Update granularity. We show the performance of SDGs
when performing frequent, fine-grained updates to state.
For this, we deploy a streaming wordcount (WC) appli-
cation on 4 nodes in our private cluster. WC reports the
word frequencies over a wall clock time window while
processing the Wikipedia dataset. We compare to WC
implementations in Streaming Spark [39] and Naiad.

We vary the size of the window, which controls
the granularity at which input data updates the state:
the smaller the window size, the less batching can be
done when updating the state. Since Naiad permits
the configuration of the batch size independently of the
window size, we use a small batch size (1000 mes-
sages) for low-latency (Naiad-LowLatency) and a large
one (20,000 messages) for high-throughput process-
ing (Naiad-HighThroughput).

Fig. 8 shows that only SDG and Naiad-LowLatency
can sustain processing for all window sizes, but SDG
has a higher throughput due to Naiad’s scheduling over-
head. The other deployments suffer from the overhead
of micro-batching: Streaming Spark has a throughput
similar to SDG, but its smallest sustainable window size
is 250 ms, after which its throughput collapses; Naiad-
HighThroughput achieves the highest throughput of all,
but it also cannot support windows smaller than 100 ms.
This shows that SDGs can perform fine-grained state up-
dates without trading off throughput for latency.

6.2 Scalability

We explore if SDGs can scale to higher throughput with
more nodes in a batch processing scenario. We deploy an
implementation of logistic regression (LR) [21] on EC2
(“m1.xlarge”; 4 vCPUs with 15 GB). We compare to LR
from Spark [38], which is designed for iterative process-
ing, using the 100 GB dataset provided in its release.
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Fig. 9 shows the throughput of our SDG implementa-
tion and Spark for 25-100 nodes. Both systems exhibit
linear scalability. The throughput of SDGs is higher than
Spark, which is likely due to the pipelining in SDGs,
which avoids the re-instantiation of tasks after each it-
eration. With higher throughput, iterations are shorter,
which leads to a faster convergence time. We conclude
that the management of partial state in the LR application
does not limit scalability compared to existing stateless
dataflow systems.

6.3 Stragglers

We explore how SDGs handle straggling nodes by creat-
ing new TE and SE instances at runtime (see §3.3). For
this, we deploy the CF application on our cluster and in-
clude a less powerful machine (2.4 GHz with 4 GB).
Fig. 10 shows how the throughput and the number of
nodes changes over time as bottleneck TEs are identi-
fied by the system. At the start, a single instance of the
getRecVec TE is deployed. It is identified as a bottle-
neck, and a second instance is added at t=10s, which
also causes a new instance of the partial state in the
coOcc matrix to be created. This increases the through-
put from 3600-6200 requests/s. The throughput spikes
occur when the input queues of new TE instances fill up.
Since the new node is allocated on the less powerful
machine, it becomes a straggler, limiting overall through-
put. At r=30s, adding a new TE instance without re-
lieving the straggler does not increase the throughput. At
t=50s, the straggling node is detected by the system,
and a new instance is created to share its work. This in-
creases the throughput from 6200-11,000 requests/s.
This shows how straggling nodes are mitigated by al-
locating new TE instances on-demand, distributing new
partial or partitioned SE instances as required. In more
extreme cases, a straggling node could even be removed
and the job resumed from a checkpoint with new nodes.

6.4 Failure recovery

We evaluate the performance and overhead of our fail-
ure recovery mechanism for SDGs. We (i) explore the
recovery time under different recovery strategies; (ii) as-
sess the advantages of our asynchronous checkpointing
mechanism; and (iii) investigate the overhead with differ-
ent checkpointing frequencies and state sizes. We deploy

10

Figure 10: Runtime parallelism for han-
dling stragglers (collaborative filtering)

the KV store on one node of our cluster, together with
spare nodes to store backups and replace failed nodes.

Recovery time. We fail the node under different recov-
ery strategies: an m-to-n recovery strategy uses m backup
nodes to restore to n recovered nodes (see §5). For each,
we measure the time to restore the lost SE, re-process
unprocessed data and resume processing.

Fig. 11 shows the recovery times for different SE sizes
under different strategies: (i) the simplest strategy, 1-to-
1, has the longest recovery time, especially with large
state sizes, because the state is restored from a sin-
gle node; (ii) the 2-to-1 strategy streams checkpoint
chunks from two nodes in parallel, which improves disk
I/0O throughput but also increases the load on the recover-
ing node when it reconstitutes the state; (iii) in the 1-to-2
strategy, checkpoint chunks are streamed to two recov-
ering nodes, thus halving the load of state reconstruc-
tion; and (iv) the 2-to-2 strategy recovers fastest because
it combines the above two strategies—it parallelises both
the disk reads and the state reconstruction.

As the state becomes large, state reconstruction domi-
nates over disk I/O overhead: with 4 GB, streaming from
two disks does not improve recovery time. Adopting a
strategy that recovers a failed node with multiple nodes,
however, has significant benefit, compared to cases with
smaller state sizes.

Synchronous vs. asynchronous checkpointing. We in-
vestigate the benefit of our asynchronous checkpointing
mechanism in comparison with synchronous checkpoin-
ting that stops processing, as used by Naiad [26] and
SEEP [10].

Fig. 12 compares the throughput and 99" percentile
latency with increasing state sizes. As the checkpoint
size grows from 1-4 GB, the average throughput under
synchronous checkpointing reduces by 33%, and the la-
tency increases from 2—8 s because the system stops pro-
cessing while checkpointing. With asynchronous check-
pointing, there is only a small (~5%) impact on through-
put. Latency is an order of magnitude lower and only
moderately affected (from 200-500 ms). This result
shows that a synchronous checkpointing approach can-
not achieve low-latency processing with large state sizes.

Overhead of asynchronous checkpointing. Next we
evaluate the overhead of our checkpointing mechanism
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Fig. 13 (top) shows the processing latency when vary-
ing the checkpointing frequency. The rightmost data
point (No FT) represents the case where the checkpoin-
ting mechanism is disabled. The bottom figure reports
the impact of the size of the checkpoint on latency.

Checkpointing has a limited impact on latency: with-
out fault tolerance, the 950 percentile latency is 68 ms,
and it increases to 500 ms when checkpointing 1 GB ev-
ery 10s. This is due to the overhead of merging dirty
state and saving checkpoints to disk. Increasing the
checkpointing frequency or size gradually also increases
latency: the 95™ percentile latency with 4 GB is 850 ms,
while checkpointing 2 GB every 4 s results in 1 s.

Beyond that, the checkpointing overhead starts to im-
pact higher percentiles more significantly. Checkpoin-
ting frequency and size behave almost proportionally: as
the state size increases, the frequency can be reduced to
maintain a low processing latency.

Overall this experiment demonstrates the strength of
our checkpointing mechanism, which only locks state
while merging dirty state. The locking overhead thus re-
duces proportionally to the state update rate.

7 Related Work

Programming model. Data-parallel frameworks typi-
cally support a functional/declarative model: MapRe-
duce [8] only has two higher-order functions; more re-
cent frameworks [15, 38, 13] permit user-defined func-
tional operators; and Naiad [26] supports different func-
tional and declarative programming models on top of its
timely dataflow model. CBP [19], Storm and SEEP [10]
expose a low-level dataflow programming model: algo-
rithms are defined as a dataflow pipeline, which is harder
to program and debug. While functional and dataflow
models ease distribution and fault tolerance, SDGs tar-
get an imperative programming model, which remains
widely used by data scientists [17].

Efforts exist to bring imperative programming to data-
parallel processing. CIEL [25] uses imperative con-
structs such as task spawning and futures, but this ex-
poses the low-level execution of the dynamic dataflow
graph to developers. Piccolo [30] and Oolong [24] offer
imperative compute kernels with distributed state, which

async. checkpointing
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quency and size on latency
requires algorithms to be structured accordingly.

In contrast, SDGs simplify the translation of impera-
tive programs to dataflows using basic program analysis
techniques, which infer state accesses and the dataflow.
By separating different types of state access, it becomes
possible to choose automatically an effective implemen-
tation for distributed state.

GraphLab [20] and Pregel [22] are frameworks for
graph computations based on a shared-memory abstrac-
tion. They expose a vertex-centric programming model
whereas SDGs target generic stateful computation.
Program parallelisation. Matlab has language con-
structs for parallel processing of large datasets on clus-
ters. However, it only supports the parallelisation of se-
quential blocks or iterations and not of general dataflows.

Declarative models such as Pig [28], DyradLINQ [37],
SCOPE [6] and Stratosphere [9] are naturally amenable
to automatic parallelisation—functions are stateless,
which allows data-parallel versions to execute on mul-
tiple nodes. Instead, we focus on an imperative model.

Other approaches offer new programming abstrac-
tions for parallel computation over distributed state.
FlumeJava [7] provides distributed immutable collec-
tions. While immutability simplifies parallel execution,
it limits the expression of imperative algorithms. In Pic-
colo [30], global mutable state is accessed remotely by
parallel distributed functions. In contrast, tasks in SDGs
only access local state with low latency, and state is al-
ways colocated with computation. Presto [35] has dis-
tributed partitioned arrays for the R language. Parti-
tions can be collected but not updated by multiple tasks,
whereas SDGs permit arbitrary dataflows.

Extracting parallel dataflows from imperative pro-
grams is a hard problem [16]. We follow an approach
similar to that of Beck et al. [3], in which a dataflow
graph is generated compositionally from the execution
graph. While early work focused on hardware-based
dataflow models [27], more recent efforts target thread-
based execution [18]. Our problem is simpler because we
do not extract task parallelism but only focus on data and
pipeline parallelism in relation to distributed state access.

Similar to pragma-based techniques [34], we use an-
notations to transform access to distributed state into ac-
cess to local instances. Blazes [2] uses annotations to



generate automatically coordination code for distributed
programs. Our goal is different: SDGs execute imper-
ative code in a distributed fashion, and coordination is
determined by the extracted dataflow.

Failure recovery. In-memory systems are prone to
failures [1], and fast recovery is important for low-
latency and high-throughput processing. With large state
sizes, checkpoints cannot be stored in memory, but stor-
ing them on disk can increase recovery time. RAM-
Cloud [29] replicates data across cluster memory and
eventually backs it up to persistent storage. Similar to
our approach, data is recovered from multiple disks in
parallel. However, rather than replicating each write re-
quest, we checkpoint large state atomically, while per-
mitting new requests to operate on dirty state.

Streaming Spark [39] and Spark [38] use RDDs for
recovery. After a failure, RDDs are recomputed in par-
allel on multiple nodes. Such a recovery mechanism is
effective if recomputation is inexpensive—for state that
depends on the entire history of the data, it would be pro-
hibitive. In contrast, the parallel recovery in SDGs re-
trieves partitioned checkpoints from multiple nodes, and
only reprocesses data from output buffers to bring re-
stored SE instances up-to-date.

8 Conclusions

Data-parallel processing frameworks must offer a famil-
iar programming model with good performance. Sup-
porting imperative online machine learning algorithms
poses challenges to frameworks due to their use of large
distributed state with fine-grained access.

We describe stateful dataflow graphs (SDGs), a data-
parallel model that is designed to offer a dataflow ab-
straction over large mutable state. With the help of anno-
tations, imperative algorithms can be translated to SDGs,
which manage partitioned or partial distributed state. As
we demonstrated in our evaluation, SDGs can support di-
verse stateful applications, thus generalising a number of
existing data-parallel computation models.
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