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Abstract

In finance and healthcare, event processing systems han-
dle sensitive data on behalf of many clients. Guarantee-
ing information security in such systems is challenging
because of their strict performance requirements in terms
of high event throughput and low processing latency.

We describe DEFCON, an event processing system
that enforces constraints on event flows between event
processing units. DEFCON uses a combination of static
and runtime techniques for achieving light-weight isola-
tion of event flows, while supporting efficient sharing of
events. Our experimental evaluation in a financial data
processing scenario shows that DEFCON can provide in-
formation security with significantly lower processing la-
tency compared to a traditional approach.

1 Introduction

Applications in finance, healthcare, systems monitoring
and pervasive sensing that handle personal or confiden-
tial data must provide both strong security guarantees and
high performance. Such applications are often imple-
mented as event processing systems, in which flows of
event messages are transformed by processing units [37].
Preserving information security in event processing with-
out sacrificing performance is an open problem.

For example, financial data processing systems must
support high message throughput and low processing la-
tency. Trading applications handle message volumes
peaking in the tens of thousands of events per second dur-
ing the closing periods on major stock exchanges, and
this is expected to grow in the future [1]. Low process-
ing latency is crucial for statistical arbitrage and high fre-
quency trading; latencies above a few milliseconds risk
losing the trading initiative to competitors [12].

At the same time, information security is a major con-
cern in financial applications. Internal proprietary traders
have to shield their buy/sell message flows and trading
strategies from each other, and be shielded themselves

from the client buy/sell flows within a bank. Informa-
tion leakage about other buy/sell activities is extremely
valuable to clients, as it may lead to financial gain, mo-
tivating them to look for leaks. Leakage of client data
to other clients may damage a bank’s reputation; leak-
age of such data to a bank’s internal traders is illegal in
most jurisdictions, violating rules regarding conflicts of
interest [8]. The UK Financial Service Authority (FSA)
repeatedly fines major banks for trading on their own be-
half based on information obtained from clients [15].

Traditional approaches for isolating information flows
have limitations when applied to high-performance event
processing. Achieving isolation between client flows by
allocating them to separate physical hosts is impractical
due to the large number of clients that use a single event
processing system. In addition, physical rack space in
data centres close to exchanges, a prerequisite for low la-
tency processing, is expensive and limited [23]. Isolation
using OS-level processes or virtual machines incurs a per-
formance penalty due to inter-process or inter-machine
communication, when processing units must receive mul-
tiple client flows. This is a common requirement when
matching buy/sell orders, performing legal auditing or
carrying out fraud detection. The focus on performance
means that current systems do not guarantee end-to-end
information security, instead leaving it to applications to
provide their own, ad hoc mechanisms.

We enforce information security in event processing
using a uniform mechanism. The event processing sys-
tem prevents incorrect message flows between process-
ing units but permits desirable communication with low
latency and high throughput. We describe DEFCON, an
event processing system that supports decentralised event
flow control (DEFC). The DEFC model applies infor-
mation flow control principles [27] to high-performance
event processing: parts of event messages are annotated
with appropriate security labels. DEFCON tracks the
“taint” caused by messages as they flow through process-
ing units and prevents information leakage when units



lack appropriate privileges by controlling the external
visibility of labelled messages. It also avoids the infer-
ence of information through implicit information flows—
the absence of a unit’s messages after that unit becomes
tainted would otherwise be observable by other units.

To enforce event flow control, DEFCON uses appli-
cation-level virtualisation to separate processing units.
DEFCON isolates processing units within the same ad-
dress space using a modified Java language runtime. This
lightweight approach allows efficient communication be-
tween isolation domains (or isolates). To separate iso-
lates, we first statically determine potential storage chan-
nels in Java, white-listing safe ones. After that, we add
run-time checks by weaving interceptors into potentially
dangerous code paths. Our methodology is easily repro-
ducible; it only took us a few days to add isolation to
OpenJDK 6.

Our evaluation using a financial trading application
demonstrates a secure means of aggregating clients’
buy/sell orders on a single machine that enables them to
trade at low latency. Our results show that this approach
gives low processing latencies of 2 ms, at the cost of a
20% median decrease in message throughput. This is an
acceptable trade-off, given that isolation using separate
processes results in latencies that are almost four times
higher, as shown in §6.

In summary, the main contributions of the paper are:

e a model for decentralised event flow control in event
processing systems;

e Java isolation with low overhead for inter-isolate
communication using static and runtime techniques;

e a prototype DEFCON implementation and its evalu-
ation in a financial processing scenario.

The next section provides background information on
event processing, security requirements and related work
on information flow control. In §3, we describe our model
for decentralised event flow control. Our approach for
achieving lightweight isolation in the Java runtime is pre-
sented in §4. In §5, we give details of the DEFCON pro-
totype system, followed by evaluation results in §6. The
paper finishes with conclusions (§7).

2 Background

2.1 Event processing

Event processing performs analysis and transformation
of flows of event messages, as found in financial, mon-
itoring and pervasive applications [24]. Since events are
caused by real-world phenomena, such as buy/sell orders
submitted by financial traders, event processing must oc-
cur in near real-time to keep up with a continuous flow
of events. Popular uses of event processing systems are

in fraud detection, Internet betting exchanges [7] and, in
the corporate setting, for enterprise application integra-
tion and business process management [5]. While we fo-
cus on centralised event processing in this paper, event
processing also finds applicability in-the-large to inte-
grate “systems of systems” by inter-connecting applica-
tions without tightly coupling them [26].

Event processing systems, such as Oracle CEP [38],
Esper [14] and Progress Apama [2], use a message-driven
programming paradigm. Event messages (or events) are
exchanged between processing units. Processing units
implement the “business logic” of an event processing
application and may be contributed by clients or other
third-parties. They are usually reactive in design—events
are dispatched to processing units that may emit further
events in response. There is no single data format for
event messages, but they often have a fixed structure,
such as key/value pairs.

Financial event processing. In modern stock trading,
low processing latency is key to success. As financial
traders use automated algorithmic trading, response time
becomes a crucial factor for taking advantage of opportu-
nities before the competition do [20]. To support algorith-
mic trading, stock exchanges provide appropriate inter-
faces and event flows. To achieve low latency, they charge
for the service of having machines physically co-located
in the same data centre as parts of the exchange [16].

It was recently suggested that reducing latency by 6 ms
may cost a firm $1.5 million [9]. The advantage that they
get from reacting faster to the market than their compe-
tition may translate to increased earnings of $0.01 per
share, even for trades generated by other traders [12].
However, even with co-location within the same data cen-
tre rack, there is a minimum latency penalty due to inter-
machine network communication.

Therefore having multiple traders acting for competing
institutions share a single, co-located machine has several
benefits. First, trading latency is reduced since client pro-
cessing may be placed on the same physical machine as
the order matching itself [34]. Second, the traders can
share the financial burden of co-location within the ex-
change. Third, they can carry out local brokering by
matching buy/sell orders among themselves—a practice
known as a “dark pool”—thus avoiding the commission
costs and trading exposure when the stock exchange is
involved [44].

Hosting competing traders on the same machine has
significant security implications. To avoid disclosing pro-
prietary trading strategies, each trader’s stock subscrip-
tions and buy/sell order feeds must be kept isolated. The
co-location provider must respect clients’ privacy; bugs
must never result in information leakage.



2.2 Security in event processing

Today’s event processing systems face challenging secu-
rity requirements as they are complex, process sensitive
data and support the integration of third-party code. This
increases the likelihood of software defects exposing in-
formation. Information leaks have serious consequences
because of the sensitive nature of data in domains such as
finance or healthcare. As in the stock-trading platform
example, the organisation providing the event process-
ing service is frequently not the owner of the processed
data. Processing code may also be contributed by multi-
ple parties, for example, when trading strategies are im-
plemented by the clients of a trading platform.

Event processing systems should operate according to
data security policies that specify system-wide, end-to-
end confidentiality and integrity guarantees. For exam-
ple, traders on a trading platform require their trading
strategies not to be exposed to other traders (confiden-
tiality). The input data to a trading strategy should only
be stock tick events provided by the stock exchange (in-
tegrity). This cannot be satisfied by simple access con-
trol schemes, such as access control lists or capabilities,
because they alone cannot give end-to-end guarantees:
any processing unit able to access traders’ orders may
cause a leak to other traders due to bugs or malicious be-
haviour. Anecdotal evidence from the (rather secretive)
financial industry, and existing open source projects [35],
suggest that current proprietary trading systems indeed
lack mechanisms to enforce end-to-end information secu-
rity. Instead, they rely on the correctness (and compliant
behaviour) of processing units.

Threat model. We aim to improve information secu-
rity in event processing by addressing the threat that in-
formation in events may be perceived or influenced by
unauthorised parties. Our threat model is that processing
units may contain unintentional bugs or perform inten-
tional information leakage. We do not target systems that
run arbitrary code of unknown provenance: event pro-
cessing systems are important assets of organisations and
are thus carefully guarded. Only accountable parties are
granted access to them. As a consequence, we are not
concerned about denial-of-service attacks from timing-
related attacks or misuse of resources—we leave protec-
tion against them for future work. However, we do want
protection from parties that may otherwise be tempted not
to play by the rules, e.g. by trying to acquire information
that they should not access or leak information that they
agreed to keep private. We assume that the operating sys-
tem, the language runtime and our event processing plat-
form can be trusted.

2.3 Information flow control

We found that information flow control, which provides
fine-grained control over the sharing of data in a system,

is a natural way to realise the aforementioned kind of se-
curity that event processing systems require.

Information flow control is a form of mandatory ac-
cess control: a principal that is granted access to infor-
mation stored in an object cannot make this information
available to other principals, for example, by storing the
information in an unprotected object (no-write-down or
*-property) [6]. It was initially proposed in the context of
military multi-level security [11]: principals and objects
are assigned security labels denoting levels, and access
decisions are governed by a “can-flow-to” partial order.
For example, a principal operating at level “secret” can
read a “confidential” object but cannot read a “top-secret”
or write to a “confidential” object. Through this model, a
system can enforce confinement of “secret” information
to principals with “secret” (or higher) clearance.

Equivalently, IFC-protected objects may be thought of
as having a contaminating or tainting effect on the princi-
pals that process them—a principal that reads a “secret”
document must be contaminated with the “secret” label,
and will contaminate all objects it subsequently modifies.

Compartments created by labels are fairly coarse-
grained and declassification of information is performed
outside of the model by a highly-trusted component. My-
ers and Liskov [27] introduce decentralised information
flow control (DIFC) that permits applications to parti-
tion their rights by creating fresh labels and controlling
declassification privileges for them. Jif [28] applies the
DIFC model to variables in Java. Labels are assigned and
checked statically by a compiler that infers label informa-
tion for expressions and rejects invalid programs. In con-
trast, event-processing applications require fresh labels at
runtime, for example, when new clients join the system.
Trishul [29] and Laminar [32] use dynamic label checks
at the JVM level. However, tracking flows between vari-
ables at runtime considerably reduces performance.

Myers and Liskov’s model also resulted in a new
breed of DIFC-compliant operating systems that use la-
bels at the granularity of OS processes [13, 43, 22]. As-
bestos [13] enables processes to protect data and enforces
flow constraints at runtime. Processes’ labels are dy-
namic, which requires extra care to avoid implicit infor-
mation leakage, and Asbestos suffers from covert storage
channels. HiStar [43] is a complete OS redesign based
on DIFC to avoid covert channels. Flume [22] brings
DIFC to Linux by intercepting system calls and augment-
ing them with labels. All of the above projects isolate
processes in separate address spaces and provide IPC ab-
stractions for communication. For event processing, this
would require dispatching events to processing units by
copying them between isolates, resulting in lower perfor-
mance (cf. §6).

The approach closest to ours is Resin [41], which dis-
covers security vulnerabilities in applications by modify-



ing the language runtime to attach data flow policies to
data. These policies are checked when data flows cross
guarded boundaries, such as method invocations. Resin
only tracks the policy when data is explicitly copied or al-
tered, making it unsuitable to discover deliberate, implicit
leakage of information, as it may be found in financial ap-
plications.

3 DEFCON Design

This section describes the design of our event processing
system in terms of our approach for controlling the flow
of events. We believe that it is natural to apply informa-
tion flow constraints at the granularity of events because
they constitute explicit data flow in the system. This is
in contrast to applying constraints with operating system
objects or through programming language syntax exten-
sions, as seen in related research [13, 43, 22, 27].

3.1 DEFC model

We first describe our model of decentralised event flow
control (DEFC). The DEFC model uses information flow
control to constrain the flow of events in an event pro-
cessing system. In this paper, we focus on aspects of the
model related to operation within a single machine as op-
posed to a distributed system.

The DEFC model has a number of novel features,
which are specifically aimed at event processing: (1) mul-
tiple labels are associated with parts of event messages
for fine-grained information security (§3.1.2); (2) privi-
leges are separated from privilege delegation privileges—
this lets event flows be constrained to pass through par-
ticular processing units (§3.1.3); (3) privileges can be
dynamically propagated using privilege-carrying events,
thus avoiding implicit, covert channels (§3.1.5); and
(4) events can be partially processed by units without
tainting all event parts (§3.1.6).

3.1.1 Security labels

Event flow is monitored and enforced through the use of
security labels (or labels), which are similar to labels in
Flume [22]. Labels are the smallest structure on which
event flow checking operates, and protect confidentiality
and integrity of events. For example, labels can act to en-
force isolation between traders in a financial application,
or to ensure that particularly sensitive aspects of patient
healthcare data are not leaked to all users.

As illustrated in Figure 1, security labels are pairs,
(S, 1), consisting of a confidentiality component S and
an integrity component I. S and I are each sets of rags.
Each tag is used to represent an individual, indivisible
concern either about the privacy, placed in .S, or the in-
tegrity, placed in I, of data. Tags are opaque values,

‘qc: name data integrity tags  confidentiality tags
G| type bid | {itrader-77} o
- event
body {i-trader-77} {dark-pool} parts
trader_id | trader-77| {i-trader-77} |{dark-pool,s-trader-77}
——
security label

Figure 1: An event message with multiple named parts, each
containing data protected by integrity and confidentiality tags.

implemented as unique, random bit-strings. We refer to
them using a symbolic name, such as i-trader-77 (an in-
tegrity tag in this case).

Tags in confidentiality components are “sticky”: once
a tag has been inserted into a label component, data pro-
tected by that label cannot flow to processing units with-
out that tag, unless privilege over the tag is exercised. In
contrast, tags in integrity components are “fragile”: they
are destroyed when information with such tags is mixed
with information not containing the tag, again unless a
privilege is exercised.

For example, if a processing unit in a trading applica-
tion receives data from two other units with confidential-
ity components {s-trading, s-client-2402} and {s-trading,
s-trader-77} respectively, then any resulting data will in-
clude all of the tags {s-trading, s-client-2402, s-trader-
77}. This reflects the sensitivity with respect to both
sources of the data. Similarly, if data from a stock ticker
with an integrity component {i-stockticker} is combined
with client data with integrity {i-trader-77}, the produced
data will have integrity {}. This shows that the data can-
not be identified as originating directly from the stock
ticker any more.

Labels form a lattice: for the confidentiality compo-
nent (.5), information labelled S, can flow to places hold-
ing component Sj, if and only if S, C Sy; here C is the
“can flow to” ordering relation [42]. For integrity labels
(1), “can flow to” order is the superset relation O. Thus
we define the “can flow to” relationship L, < L for la-
belsas: L, <L, iff S, CSyandI, DI,

where L, = (Sq, I,) and Ly = (Sp, Ip)

3.1.2 Anatomy of events

A key aspect of our model is the use of information flow
control at the granularity of events. An event consists of a
number of event parts. Each part has a name, associated
data and a security label. Using parts within an event
allows it to be processed by the system as a single, con-
nected entity, but yet to carry data items within its parts
that have different security labels. Dispatching a single
event with secured parts supports the principle of least
privilege—processing units only obtain access to parts of
the event that they require.

Figure 1 shows a bid event in a financial trading ap-
plication with three parts. The event is tagged with the



trader’s integrity tag. The information contained in the
bid has different sensitivity levels: the type part of the
event is public, while the body part is confined to match
within the dark pool by the dark-pool tag. The identity
part of the trader is further protected by a trader-private
confidentiality tag.

Access to event parts is controlled by the system that
implements DEFC. When units want to retrieve or mod-
ify event parts, or to create new events, they must use an
API such as the one described in §5.

3.1.3 Constraining tags and labels

Each processing unit can store state—its data can per-
sist between event deliveries. Rather than associate la-
bels with each piece of state in that unit, a single label
(Su, I,,) is maintained with the overall confidentiality and
integrity of the unit’s state. (We also refer to this as the
unit’s contamination level.) This avoids the need for spe-
cific programming language support for information flow
control, as most enforcement can be done at the API level.

The ability of a unit to add or remove a tag to/from
its label is a privilege. A unit u’s run-time privileges are
represented using two sets: O;F and O, . If a tag appears
in O}, then u can add it to S, or I,,. Likewise, u can
remove any tag in O from any of its components.

If unit « adds tag t € O] to S, then ¢ is used as a
confidentiality tag, moving u to a higher level of secrecy.
This lets u “read down” no less (and probably more) data
than before. If ¢ is used as an integrity tag, then adding
it to I, would be exercising an endorsement privilege.
Conversely, removing a confidentiality tag ¢t € O, from
S, involves unit u exercising a declassification privilege,
while removing an integrity tag ¢ from I, is a transition
to operation at lower integrity.

For dynamic privilege management, privileges over tag
privileges themselves are represented in two further sets
per unit: O 2" and O 2"*", We define their semantics
with a short-hand notation: ¢ means that t € O;; ¢,
means t € O ; t72%" means ¢ € OFauth; ¢-auth meang
t € O, ! for tag t and unit u. We will omit the u sub-
script when the context is clear.

t24th lets u delegate the corresponding privilege over
tag ¢ to a target unit v. After delegation, ¢, holds. Like-
wise for ¢auth If ¢auth 4 can also delegate to v the
ability to delegate privilege, yielding ¢, ***! (likewise for
tauthy Delegation is done by passing privilege-carrying
events between units (cf. §3.1.5), ensuring that the DEFC
model is enforced without creating a covert channel.

The separation of O and O;F*"*"_ in contrast to As-
bestos/HiStar or Flume, allows our model to enforce spe-
cific processing topologies. For example, a Broker unit
can send data to the Stock Exchange unit only through a
Regulator unit, by preventing the Regulator from delegat-

ing to the Broker the right to communicate with the Stock
Exchange directly.

Units can request that tags be created for them at run-
time by the system. Although opaque to the units, tags
and tag privilege delegations are transmittable objects.
When a tag t is successfully created for a unit u, then
t;2uth and ¢+auth In many cases, u will apply these priv-
ileges to itself to obtain ¢, or ¢ .

A unit can have both ¢,, and ¢ ; then u has complete
privilege over ¢. Note that the privilege alone does not let
u transfer its privileges to other units.

3.1.4 Input/Output labels

Processing units need a convenient way to express their
intention to use privileges when receiving or sending
events. A unit u applies privileges by controlling an input
label (S, Iin), which is equivalent to its contamination
level (S, I,), and an output label (SSU*, I"*). Changes
to these labels cause the system automatically to exercise
privileges on behalf of the unit when it receives or sends
events, in order to reach a desired level. Input/output
labels increase convenience for unit programmers: they
avoid repeated API calls to add and remove tags from
labels when outputting events, or to change a unit’s con-
tamination label temporarily in order to be able to receive
a given event.

For example, a Broker unit can add an integrity tag ¢ to
IS"t but not to I™. This enables it to vouch for the in-
tegrity of the stock trades that it publishes without having
to add tag ¢ explicitly each time. Similarly, adding tag ¢
temporarily to S but not to SOU* allows a Broker to re-
ceive and declassify ¢-protected orders without changing
the code that handles individual events. In both cases, the
use of privileges is only required when changing the in-
put and output labels and not every time when handling
an event.

Note that systems that allow for implicit contamination
risk leaking information. For example, one could posit a
model in which a unit’s input and output labels rose auto-
matically if that unit read an event part that included tags
that were not within the unit’s labels. The problem with
this is that if unit u observes that it can no longer commu-
nicate with unit v that has been implicitly contaminated,
then information has leaked to u. Therefore we require
explicit requests for all changes to the input/output labels.

3.1.5 Dynamic privilege propagation

We use privilege-carrying events as an in-band mecha-
nism to delegate privileges between processing units. A
request to read a privilege-carrying part will bestow priv-
ileges on the requesting unit—but only if the unit already
has a sufficient input label to read the data in that part.



An example of this is a Regulator unit trying to learn
the identity of a trader mentioned in a trade event.
The trader’s identity is protected against disclosure by a
unique tag ¢, but t* and ¢~ are included in another part
visible to the Regulator unit only. This means that the
Regulator can read this part, thus gaining ¢+ and ¢t~ and
then use these privileges to learn the trader’s identity.

Although the bestowing of privileges is implicit, the
privileges relate to a particular tag ¢, and the receiving
unit cannot invoke the privileges without a reference to
tag t itself. This reference is carried in the data part of
an event: units, by design, will know in advance when to
expect tags to be transferred to them, and when accessing
a part will result in a privilege delegation. In the previous
example, the tag ¢ itself has to be in the data part that the
Regulator accesses.

3.1.6 Partial event processing

Event processing frequently involves units transforming
events along a main dataflow path, augmenting events
as they flow through the system. To allow units to up-
date only some parts of an event, we distinguish event
processing on the main path from events generated by
units themselves. In the former case, a unit that adds a
part does not cause the labels of all parts of that event to
change to the unit’s output label. In the latter case, all
parts’ labels match the unit’s output label.

For example, partial event processing enables a Broker
unit to operate on orders without knowing the identity
of the originating trader. The Broker can have access to
some parts, such as the bid/ask price, and subsequently
add new parts, such as a reason why an order was re-
jected, without being aware of or affecting a protected
part with the trader identity.

When an event is dispatched to a unit, the unit may read
and/or modify some parts but not others. The unit must
then invoke a release API call, after which the event
dispatcher may deliver the event to other units. Unaltered
event parts do not need to have their labels changed. A re-
leased event must not cause additional deliveries to units
with lower input labels. When multiple units make con-
flicting modifications to a part, the resulting event will
have to contain both versions of the affected part.

3.2 DEFCON architecture

Our DEFCON architecture, that implements the DEFC
model, is illustrated in Figure 2. The DEFCON system
provides a runtime environment for a set of event process-
ing units that implement the business logic of an event
processing application. Units interact with the DEFCON
system through API calls. As shown in the figure, the
DEFCON system carries out the following tasks:

endorsement endorsement endorsement

privileges‘ privileges‘ privileges‘

declassification } declassification } declassification }
Unit 1 Processing Unit 2 Processing Unit 3 Processing
n Logic n Logic n Logic

Input label [ Output label Input label [ Output label Input label [ Output label

Event < Event

DEFCon System

Figure 2: Overview of the DEFCON architecture.

Label/tag management. DEFCON maintains the set of
defined tags in the fag store. It also keeps track of the
input and output labels and privileges for each unit. The
tags that make up labels are opaque to units. Units ac-
cess tags by reference but cannot modify them directly.

Inter-unit communication. DEFCON provides units
with a publish/subscribe API to send/receive events. To
receive call-backs that provide event references, units
register their interests by making subscriptions. An
event dispatcher sends events to units that have ex-
pressed interest previously. This decoupled communi-
cation means that the fact that a publish call has suc-
ceeded does not convey any information that might vio-
late DEFC (e.g. which units were actually notified).

Unit life-cycle management. DEFCON instantiates and
terminates event processing units. Having DEFCON
manage units allows it to apply restrictions to the oper-
ations that units can do, as described in the next section.

To enforce event flow control, DEFCON must prevent
units from communicating directly except through the
event dispatcher that can check DEFC constraints. Oth-
erwise a unit with clearance to receive confidential events
could avoid the confinement imposed by its label by using
a communication channel that is not protected by labels.
Therefore each unit must execute within its own isolate
that prevents it from interacting with other units or com-
ponents outside of the DEFCON system.

4 Practical, Light-weight Java Isolation

As described in §2.1, a requirement for DEFCON is
to prevent unauthorised processing units from commu-
nicating with each other, while supporting low latency,
high throughput event communication between permitted
units. Making units separate OS-level processes achieves
isolation but comes at the cost of increased communica-
tion latency due to inter-process communication, serial-
isation of potentially complex event message data and
context switching overhead. In §6, we show that this re-
sults in higher processing latencies. Therefore, we isolate
units executing within the same OS process through the
introduction of new mechanisms within the programming
language runtime.



We chose Java for our implementation because it is a
mature, strongly-typed language that is representative of
the languages used to build industrial-strength event pro-
cessing applications. Processing units are implemented
as Java classes, which means that they can communicate
efficiently using a shared address space.

We assume that we have access to the Java bytecode of
processing units and that they are implemented using the
DEFCON API (cf. §5). As a consequence, we can prevent
them from using any JDK libraries (e.g. for I/O calls) or
Java features (e.g. reflection) that are not strictly neces-
sary for event processing. However, units may still con-
tain bugs that cause them to expose confidential events to
other units during regular processing, or they may explic-
itly try to use events with confidential data as part of their
own processing to gain an illicit advantage.

Enforcing isolation between Java objects is not a triv-
ial task because Java was not designed with this need in
mind. Even if two Java objects never explicitly shared an
object reference, they can exploit a wide range of covert
channels to exchange information and violate isolation.
Covert channels can be classified into storage and timing
channels. Storage channels involve objects using unpro-
tected, shared state to exchange data. Therefore we must
close storage channels in Java. Since timing channels,
which are caused by the modulation of system resources,
such as CPU utilisation, are harder to exploit in practice,
we ignore them in this work.

There is a large number of existing storage channels in
Java, which can be exploited in three fundamental ways:
(1) There are about 4,000 static fields in the Java De-
velopment Kit (JDK) libraries (in OpenJDK 6). For ex-
ample, a static integer Thread.threadSegNum identi-
fies threads, which can be altered to act as a channel be-
tween two classes; (2) Java contains more than 2,000 na-
tive methods, which may expose global state of the Java
virtual machine (JVM) itself. Native methods of stan-
dard classes such as String and Object retrieve data
from global, internal data structures of the JVM; and (3)
Java has synchronisation primitives that enable classes to
exchange one bit of information at a time.

Several proposals have been made for achieving iso-
lation in Java. As we explain below, they do not satisfy
both of our two main requirements:

Low manual effort. It should be easy to add isolation
support to any production JVM, with a minimal number
of manual code changes. Many projects have been dis-
continued due in part to the difficulty of keeping them
synchronised with JDK updates;

Efficient inter-isolate communication. The communi-
cation mechanism between isolated processing units
should allow message passing with low latency and high
throughout.

4.1 Existing approaches

Isolation of shared state. Existing approaches to achiev-
ing Java isolation involve a great deal of manual work.
Modifying production JDKs is a daunting task, while, in
comparison, the overall performance of research JDKs is
lacking. Certifying a JVM to be free of storage channels
would require an exhaustive inspection.

J-Kernel [19] and Joe-E [25] prevent access to global
state in an ad hoc way: they restrict user code from defin-
ing new classes that contain mutable static fields. For the
JDK libraries, they prevent access to classes or methods
that are found to expose global state. They achieve this
by providing custom proxies to System, File and other
classes.

KaffeOS [4] reports to have manually assessed all of
the JDK classes with static fields. Classes were rewritten
to remove static fields, re-engineered to be aware of iso-
lates or “reloaded”. Reloading unsafe classes in the JVM
results in per-isolate instances of static fields. However,
this reloading mechanism cannot be applied to classes
that are transitively referenced by a shared class, such
as Object, requiring the manual assessment of a large
number of classes.

Sun’s MVM [10] and I-JVM [17] avoid manual exam-
ination of static fields by transparently replicating all of
them per isolate. The JVM is modified to keep replicated
copies of static fields per isolate. It also tracks which iso-
late is currently executing, making corresponding repli-
cas visible to that isolate. MVM is the only project that
reports to have attempted a complete assessment of the
native methods that can expose global state. The cost of
repeating this process for each new JVM release is con-
siderable and, since MVM was completed only on So-
laris/SPARC and is no longer maintained, reproducing it
without detailed knowledge of JVM internals is hard.

Inter-isolate communication. MVM (similar to .NET
AppDomains [33]) uses a separate heap space per iso-
late, which requires serialisation of objects exchanged be-
tween isolates. Incommunicado [30] improves MVM’s
inter-isolate communication by using deep-copying in
place of serialisation. These approaches limit the per-
formance of event processing applications because they
require message passing to copy data. As we show in
§6, this nullifies many of the performance advantages of
sharing an address space between isolates.

Efficient inter-isolate communication is supported by
KaffeOS and I-JVM, which allow objects to be shared
between isolates. However, this is not appropriate for
enforcing event flow control because once two isolates
have established a shared object, the system can no longer
separate them when their labels change. J-Kernel and
JX [18] provide an approach better suited to DEFC: they
use indirection through a proxy for objects created in dif-
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Figure 3: Illustrating our isolation enforcement between units using a combination of static white-listing and dynamic intercepts.

ferent isolates. However, their synchronous invocation
model is at odds with decoupled event processing, which
requires fast unidirectional communication.

4.2 QOur isolation methodology

We describe a practical methodology for achieving Java
isolation that provides fast, safe inter-isolate communica-
tion, while being easy to apply to new JDK versions. It
does not require changes to the JVM or exhaustive code
analysis.

We achieve efficient communication between isolates
using message passing. Units do not have references to
each other, only to objects controlled by DEFCON. For
objects exchanged through events, we want to provide
the semantics of passing objects by value, and exploit the
single address space to avoid data copying. Our perfor-
mance requirements preclude deep-copying of messages.
Additionally, shared state is unacceptable because it vi-
olates isolation. Thus, we only allow units to exchange
immutable objects, leaving it to units to perform copying
only when needed.

We developed tools that help in the analysis of danger-
ous JDK rargets: static fields, native methods and syn-
chronisation primitives that could be used by units to
communicate covertly. We were able to secure Open-
JDK 6 in four days by manually inspecting only 52 tar-
gets (15 native methods, 27 static fields, and 10 synchro-
nisation targets), without any modifications to the JVM.

As we illustrate in Figure 3, we divide potentially dan-
gerous targets into three sets, TpErcon, Lunits and Typk:
a set of targets in the JDK only used by the DEFCON
implementation (Ipgrcon), targets used by processing
units (Tynits), and targets used by neither (Tipk). Tunits
was based on the event processing units that form the im-
plementation of our trading platform described in §6.

Static dependency analysis. Targets not used at all
(T3pk), such as AWT/Swing classes, can be eliminated
from the JDK without further impact. As a first step, we
trim any classes that are not used by the DEFCON imple-
mentation or the event processing units of our financial

scenario. This resulted in a subset of the JDK contain-
ing more than 2,000 used targets (Ipercon U Tunits)—
approximately 20% of the full JDK.

A significant proportion of these targets are only
accessed by the DEFCON system (Ipgrcon) because
they are not useful to units for processing events.
Typically, (non-malicious) units use classes from the
java.lang and java.util packages and have little
reason to directly access classes from packages, such as
java.lang.reflect or java.security. Thus we
define a custom class loader that constrains the JDK
classes that units can access to a white-list—e.g. preclud-
ing calls such as the one labelled ‘A’ in Figure 3.

However, restricting the set of classes alone does not
prevent transitive access to dangerous targets. When the
custom class loader permits the resolution of a white-
listed JDK class, the loading of the class is delegated to
the JVM bootstrap class loader. If the class contains ref-
erences to other JDK classes, they are directly resolved
by the JVM bootstrap classloader and therefore cannot
be controlled.

Reachability analysis. In order to address the problem
discussed above, a static analysis tool computes all tar-
gets that are transitively reachable from classes specified
in the custom class loader white-list, i.e. Tyt targets.
This analysis enumerates possible method-to-method ex-
ecution paths. The reachability analysis must cover code
paths that involve dynamic method dispatch; a call to a
given signature in the bytecode could execute code from
any compatible subtype. Although the previous depen-
dency analysis reduces the number of false positives in
this phase, Tynits still has 1,200 dangerous targets reach-
able from java.lang—approximately 320 native meth-
ods and 900 static fields.

Heuristic-based white-listing. Some of the targets in
Tunits can be declared safe using simple heuristics:

e We can white-list the 66 static fields and 20 native
methods from the Unsafe class. This class provides
direct access to JVM memory and is guarded by the
Java Security Framework. Any access to it from user
code would be a critical JVM bug.



e Some final static fields classified as immutable, such
as strings or boxed primitive types, can be shared
because they are constants.

e The use of some private static fields can be deter-
mined to be safe: vectors of constants and primitive
fields that are not declared “final” but are only writ-
ten once.

Another tool white-lists according to the above heuris-
tics, reducing the number of dangerous targets to approx-
imately 500 static fields and 300 native methods. Such
cases are represented in Figure 3 by the call labelled ‘B’.

Automatic runtime injection. To secure targets in 7T} pis
left after the preceding static analysis stage, we would
have to duplicate unsafe static fields and manually as-
sess native methods for covert communication channels,
as done by other JVM isolation projects. In contrast to
these projects, we wanted to avoid any JVM source code
modification and to minimise the number of native JDK
methods that needed to be checked.

For this reason, we employ aspect-oriented program-
ming (AOP) [21]: by modifying JDK code in a pro-
grammatic way, we can duplicate static fields without
changing the JVM and inject access checks to protect
the execution of native methods. We employ the MA-
JOR/FERRARI framework [40] because it can manipu-
late JDK bytecode, as well as our own code, using the
Aspect] language. We specify pointcuts to intercept all
targets left after our static analysis, as follows:

Native methods: When access to a native target is as
part of a call to the DEFCON API (described in §5),
we can consider it safe by assuming the API is correctly
designed (call ‘D’ in Figure 3). Otherwise we raise a
security exception (call ‘C’).

Static fields: When a static field can be cloned without
creating references that are shared with the original, we
do an on-demand deep copy and create a per-unit refer-
ence. This occurs on a get access for most types, but
can be deferred to the time of a set method for prim-
itive or constant types. If field copying is not possible,
we raise a security exception.

Manual white-listing. In this way, we automatically
close JDK covert storage channels without changes to the
JVM. However, before running the units in our financial
scenario, we had to manually check 15 native methods
and 27 static fields, which were intercepted and raised se-
curity exceptions. Below are a few examples of manually
white-listed targets with a brief justification:
java.lang.Object.hashCode: This effect of this
method is equivalent to reading a constant field.
java.lang.Object.getClass: Since Class objects
are unique and constant, this method essentially re-
trieves a constant static field.

java.lang.Double.longBitsToDouble: This
method does not access any JVM state.

java.lang.System.security: This targetis safe be-
cause the reference to the security manager is protected
from modification by units.

While the above methodology results in safe isolation,
intercepting targets adds an overhead. We therefore pro-
file the execution paths of units to identify frequently en-
countered targets that may be white-listed manually. Dur-
ing this profiling, we discovered 15 additional frequently-
accessed targets (6 static fields and 9 native methods) that
we were able to white-list.

4.3 Restricting synchronisation channels

As explained in §3.2, the DEFCON system must ensure
that references held by one unit cannot escape to another
unit. To avoid serialisation or deep-copying and to pre-
vent the establishment of unrestricted shared state, units
are limited to exchanging immutable objects whose refer-
ences can be shared safely. However, every Java object,
even if it is immutable, has a piece of modifiable infor-
mation: its synchronisation lock. The lock is modified by
synchronized blocks and by wait and notify calls.

This need to control synchronisation on shared objects
also closes a further Java-specific channel due to the “in-
terning” of strings. A string that has been interned is
guaranteed to have a unique reference, common with all
other strings of the same value in the JVM. This lets
reference comparison (==) replace the more expensive
equals method.

Previous proposals [10, 17] to avoid synchronisation
on shared objects such as interned St rings and Classes
provide a copy per isolate. This would defeat the purpose
of our message passing scheme that uses shared objects
with the intent of avoiding copying them.

Automatic runtime injection. Instead we allow units to
synchronise only on types that are guaranteed to never be
shared with other units. This is indicated by the type in
question implementing our NeverShared tagging inter-
face. A type T can implement NeverShared as long as
(a) the DEFCON system prevents instances of 7' being
put into events, (b) no (white-listed) native method can
return the same instance of 71" to two different units, and
(c) no static field of type T is white-listed as being safe.
Neither Class nor String objects satisfy these require-
ments and thus units cannot synchronise on them.

Units can instead make their own types for synchroni-
sation that implement NeverShared. If a type is stati-
cally known to implement NeverShared, then synchro-
nisation happens with no runtime overhead. Otherwise
AOP will be used to inject a runtime type check: if this
check fails and the attempt to synchronise comes from a
unit, a security exception is raised.



DEFCON API call

Description

createEvent() — e

addPart(e, S, I, name, data)
delPart(e, S, I, name)

readPart(e, name) — (label, data)*

attachPrivilegeToPart(e, name, S, 1, t, p)

cloneEvent(e, S, I) — €

publish(e)
release(e)
subscribe(filter) — s

subscribeManaged(handler, filter)— s

getBvent() — (e, s)
instantiateUnit(«/, S, I, OF,, OF¥™*")

changeOutLabel({S|I), (add|del), t)

changeInOutLabel((S|I), (add|del), t)

Creates a new event e.

Adds to event e a new part name containing data with label (S, I).

Removes from event e part name with label (S, I)

Returns the data in part name of event e. If there are multiple visible parts with the
same name, all are returned. S, C Si" and I, C I" must hold for every part
returned to the unit.

Attaches a privilege p over a tag t to part name with label (S,[) to create a privilege-
carrying event for delegation (cf. §3.1.5). The call succeeds if the caller has tP***},
Creates a new instance e’ of an existing event e. All the tags in the caller’s output con-
fidentiality label are attached to each part’s label and only the caller’s output integrity
tags are maintained on each cloned part. This precludes DEFC violations based on
observing the number of received events.

Publishes a new event e. Events without parts are dropped.

Releases an event e (cf. §3.1.6).

Subscribes to events with a non-empty filter, creating a subscription s. The filter is an
expression over the name and data of event parts. For an event to match, S, C Si"
and I, C I’™ must hold for each part in the filter at the time of matching.

Declares a managed subscription s that enables a unit to process multiple tags with-
out contaminating its state permanently. DEFCON then creates and reuses separate
unit instances with contaminations appropriate for the processing of incoming events.
Units with managed subscriptions are similar to Asbestos’ event processes [13].
Blocks the caller until an incoming event e matches one of the unit’s subscriptions s.
Instantiates a new unit u’ at a given label (S, I), as long as it can delegate privileges
to the new unit. The new unit inherits the caller’s contamination.

Adds/removes tag ¢ to/from a unit’s output label (S"*, I3"*) independently of the in-
put label (S*, I'™). The unit can then declassify/endorse parts with tag ¢ (cf. §3.1.4).
Adds/removes tag ¢ to/from a unit’s input label and output label.

Table 1: Description of the DEFCON API available to event processing units. Note that due to contamination independence
S and I in API calls may be transparently changed by the system: S’ = SU SS" and I’ = I N I3™

Manual inspection.

JDK methods that synchro-

tached transparently to generated parts. For example, a

nise on locks cannot safely be accessed from units.
For example, Classloader.loadClass () and many
StringBuffer methods are synchronised. However,
both are types that are never shared, i.e. they satisfy the
above three requirements. Instead of modifying them in
the JDK source-code, we transformed them to implement
NeverShared through an aspect that is applied before
the interception aspect.

S DEFCONAPI

We built a DEFCON prototype system in Java that im-
plements the DEFC model and enforces isolation as de-
scribed in §4. The API calls that units may use to interact
with the DEFCON system are described in Table 1.

Contamination independence. Most of the calls do not
impose restrictions on the caller, yet they are safe because
of a unit’s contamination. Calls such as addPart (),
which adds a new part to an event (cf. Table 1), should
not fail if a unit is unable to write at the requested con-
tamination level because units may not be aware of their
initial contamination. Instead DEFCON guarantees that
any tags present in the unit’s current output label are at-

unit with a label SS"* = {d} that invokes addPart with
label S = {t} causes that part to be labelled S’ = {d, t}.
This highlights an important property of the API: contam-
ination independence. It allows a unit to be sandboxed
by instantiating it at a higher contamination level that it
is unaware of. All of its input and output will be affected
by this initial contamination.

Freezing shared objects. Most of the API calls receive
or return potentially mutable objects. References to these
objects may not be communicated to other units since
changes to their state cannot be controlled. In particular,
this applies to objects representing event parts and labels.

The addpart () call allows a unit to include objects
of various types in a part. For immutable types, making
shared references is safe. However, this is not true for
mutable types (e.g. Date) or collection types that support
adding multiple objects to a part (e.g. HashMap<Date>).
To avoid the cost of serialising and copying such types
during event dispatching, DEFCON limits contents of
event parts to a subset of types. These types must be ei-
ther immutable or extend a package-private Freezable
base class.



For Freezable objects, mutating operations are dis-
allowed after a call to freeze () has been made. This
incurs the overhead of checking an isFrozen flag on
each mutating operation. For collection classes, a call to
freeze () must efficiently freeze all contained objects.
To avoid iterating through collections, each Freezable
object that is attached to a Freezable collection has a
reference to the collection’s isFrozen flag. This makes
freeze () a constant time operation. The overhead of
mutating operations on a Freezable object is linear with
the number of collections the object is part of. A similar
approach is used to make the Label type immutable.

6 Evaluation

The goal of our experimental evaluation is to demonstrate
the practicality of the DEFC model in high-performance
event processing. We describe the implementation and
evaluation of a simple financial stock trading platform
built using DEFCON. We compare our implementation
to Marketcetera [3], a popular open source trading plat-
form written in Java. Although only one of few open
source offerings in a space dominated by proprietary so-
lutions, Marketcetera is gaining momentum by provid-
ing performance comparable to proprietary systems [35]
and features such as rapid strategy development, complex
event processing and interaction with various exchanges.

We quantify event processing performance using two
metrics: event throughput, the number of events pro-
cessed per unit time, and event latency, the delay that
events experience when being processed. We also mea-
sure the overhead of our DEFC approach on event-
driven applications in terms of processing performance
and memory consumption.

DEFCON isolates the trading strategies of traders, thus
allowing multiple strategies to be hosted on the same ma-
chine as the stock market feed. Instead, Marketcetera
uses multiple JVMs, one per client, to isolate trading
strategies, limiting the scalability of a similar deployment
to a smaller number of traders. DEFCON achieves low
event processing latency and high throughput, while scal-
ing to 10 times the number of traders compared to Mar-
ketcetera. As explained in §2.1, this makes co-location
affordable to more traders because a single machine can
securely serve a larger number of trading strategies.

6.1 Financial trading scenario

We adopt a classic trading algorithm called pairs
trade [39]. It is based on the observation that changes
in the stock prices of established companies in the same
industry are frequently correlated. Traders use this to pre-
dict the stock price for the immediate future and gain a
return. The performance of the pairs trade algorithm de-

pends heavily on the latency of trades: co-located traders’
orders will increase the price of the cheapest stock and
decrease the most expensive one, thus limiting the profit
margins for remote traders.

Marketcetera implementation. We implemented the
pairs trading strategy as a Strategy Agent in Mar-
ketcetera 1.5.0. Strategy Agents host one or more strate-
gies of the same client. For isolation, a separate JVM
is created for each client’s Strategy Agent. Since third-
party libraries may leak client data that they receive, each
client must vouch for their strategy’s implementation or
fully trust its developer. To use brokering services, Strat-
egy Agents communicate with an Order Routing Ser-
vice (ORS) that forwards requests to an exchange. We ex-
tended the ORS to provide local brokering facilities and
a corresponding market data feed to the Strategy Agents.

DEFCoN implementation. DEFCON allows compet-
ing traders to execute latency-sensitive operations in the
same JVM. The confidentiality guarantees provided by
the DEFC model enable concurrent execution of propri-
etary trading algorithms without fear of disclosure. As
illustrated in Figure 4, our trading platform has the fol-
lowing processing units:

Trader units encapsulate traders’ strategies for buying
and selling stocks using pairs trading.

Pair Monitor units provide pairs trading as a service
since it is used by all traders in our system. Based on
a stock pair and an investment threshold, it sends events
to traders when the expected price difference occurs.

A Local Broker unit enables traders to clear their orders
locally, without the need to involve the stock exchange,
by matching traders’ bid/ask orders.

A Stock Exchange unit is responsible for the commu-
nication with the stock exchange. In its simplest form, it
is the source of events regarding trades that occur there.

A Regulator unit samples a subset of local trades on be-
half of a regulatory body. It may verify that the volume
of a trader’s trades has not exceeded a given quota.

DEFCON operation. We describe the operation of our
trading platform using steps 1-9 in Figure 4.

Step 1: A Trader unit declares its interest in a given pair
of stocks. The published event is protected by a unique
trader tag ¢;, owned by Trader 1. Since the selection of
stocks and the parameters of the pairs trade are sensi-
tive information that must be protected from disclosure,
Trader 1 delegates the tT privilege only to the correspond-
ing Pair Monitor unit. This Pair Monitor uses this privilege
to learn about the pair of symbols to monitor. All its out-
put will only be visible to the Trader 1 that owns ¢;.

Step 2: The Pair Monitor issues two tick event subscrip-
tions: one for each of the two symbols that it has to mon-
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Figure 4: Workflow of the implementation of our stock trading platform in DEFCON, highlighting the DEFC aspects.

itor. Pair Monitor units are always instantiated with read
integrity s and are thus only able to perceive events pub-
lished by the Stock Exchange unit that owns s.

Step 3: Once a tick event is published with an adequate
price, the Pair Monitor sends an event to the Trader. This
event is tagged with ¢ and Trader 1 is the only unit with
the necessary confidentiality read label to receive it.

Step 4: Trader 1 may decide to sell stocks using the lo-
cal brokering facilities. A bid order is generated with the
offered price and the issuing Trader’s details. The issu-
ing Trader has three different security requirements for
a published order: (1) it must convey the details of the
order to the Broker to be matched against other orders;
(2) no other unit, apart from the Broker, should be able
to associate the order with the issuing Trader; (3) no unit
should be able to correlate two orders by the same Trader.
A competing Trader correlating orders may learn the un-
derlying trading strategy. In addition, a Trader does not
trust the Broker not to reveal information about trades. To
capture these security requirements, the first part of the
bid, price/symbol, is protected by a broker tag b while the
second, name, is protected both by b and by a randomly-
generated tag ¢, used only for this order. The Broker has
b and b~. The first part also carries the privilege ¢}, al-
lowing only the Broker to see the Trader’s name as long
as it accepts the additional contamination.

Step 5: The Broker can read the first part and declassify
it. It has to use a managed subscription (cf. §5) to learn
the Trader’s identity. Once a corresponding ask order is
received, the Broker matches it and completes a trade.

Step 6: The first part of the trade event is declassified and

visible publicly. The two additional parts with the sensi-
tive identities of the Traders are protected individually by
unique tags. Each Trader can identify its own trades while
DEFCON guarantees that no other unit can do the same.

Step 7: A Regulator may intercept trades to verify that
they are compliant with trading rules. If it observes a sus-
picious trade, it uses a managed subscription to receive ¢,
over the unique tag ¢, that protects the Trader’s identity.
Since this privilege is only needed for suspicious trades,
the Regulator receives it from the Broker on-demand. The
delegation event is only possible as long as t;”auth was in-
cluded in the second part of the bid order in step 4.
Steps 8+9: With this privilege, the Regulator can com-
municate a warning to the Trader. The Regulator owns
the integrity tag s and is able to republish the local trade
as a valid stock tick perceivable by the Pair Monitors.

6.2 Experimental results

We evaluated our system with a synthetic workload of
stock tick events that was derived from traces of trades
made on the London Stock Exchange. In our workload,
we selected the tick prices so that they triggered the pairs
trading algorithm for each pair once every 10 ticks. This
approach both generated a significant order load and also
allowed us to avoid the issue of choosing suitably corre-
lated pairs from real market data. Since the main bottle-
neck was the filtering that occurred between the Stock Ex-
change and the Pair Monitor units, the tick rate achieved
only caused transient queuing in the system.

We varied the number of Traders on the platform. Each
Trader monitors a single symbol pair that was chosen ac-
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cording to a Zipf distribution. This emulated the fact that
some symbol pairs are well known to be correlated and,
as a result, the majority of Traders monitor their prices.
All tests were run on a dual processor Intel Xeon ES540
2.53 GHz machine with a maximum of 1 GiB heap mem-
ory using Sun’s Hotspot JVM, version 1.6.0_16.

DEFCON performance. To explore the limits of our
DEFCOoN deployment, we had the Stock Exchange unit
replay tick event traces as quickly as possible, while
measuring the achieved throughput every 100 ms. Fig-
ure 5 shows the median throughput when increasing the
number of Traders in the system. In the simplest case
without security (no security), the system performance
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ranges from 220,000 events per second with 200 Traders
to 75,000 events with 2,000 Traders. (Note that the
Stock Exchange unit in our implementation is single-
threaded.) The overhead of introducing labels and freez-
able objects (labels+freeze) is within the error margin,
while the overhead of cloning (labels+clone) is around
30%, even with the simple data structures of our finan-
cial application. The overhead of adding isolation (la-
bels+freeze+isolation) is around 20%, staying constant
with the number of Traders.

Next we measured latency as the time difference be-
tween when a trade event is produced by the Broker and
the time when the originating tick event occurred. This
includes the processing time of the Stock Exchange, Pair
Monitor, Trader and Broker units. In Figure 6, we plot the
70" percentile of latencies, again increasing the number
of Traders. We ignore higher latency percentiles because
they are affected by the characteristics of the workload
and the operation of the Java garbage collector. Spikes
in trading activity, as commonly found when markets
open, result in transient congestion in the Broker and
thus queueing of events. Short periodic activations of the
garbage collector preempt processing threads for about
20 ms and increase the latency of individual events.

Figure 6, shows that the latency without security (no
security) is about 0.5 ms independently of the number of
Traders. Introducing label checks into the system sees la-



tencies rise to approximately 1 ms without and 2 ms with
isolation. This behaviour continues up to 1,500 Traders
after which the system becomes overloaded.

In Figure 7, we measured the memory consumption in
the above experiment. Of the total memory consumed,
about 300 MiB is used to cache tick events. We ob-
serve that while the overhead of (labels+freeze) is min-
imal compared to the base case, the weaving framework
incurs an overhead of 50 MiB for 200 Traders, and up to
200 MiB for 2,000 Traders.

Marketcetera performance. We compare the results
from DEFCON with the performance of Marketcetera.
The median throughput of Marketcetera is shown in Fig-
ure 8. Although the event rate for only 2 Traders is high,
the system does not scale well. (Note the lower num-
ber of Traders compared to Figure 5.) With just 10 ac-
tive Traders, the throughput falls below 10,000 events per
second. This is mostly due to Strategy Agents filtering
market data individually as the platform does not sup-
port centralised market data filtering. Memory consump-
tion is also significantly higher in Marketcetera. Starting
from 2 GiB for 20 Traders, the used memory across all
JVMs reaches 6 GiB for 100 Traders. Without multiple
JVMs allocating memory, DEFCON manages to support
1,500 Traders using less than 1 GiB of heap space.

For measuring latency in Marketcetera, we chose a
low rate of 1,000 events per second in the stock feed
with a small number of Traders. This reduces the CPU
load and allows us to draw conclusions about latency
while not being affected by scheduling phenomena. In
Figure 9, we show the 70" percentile of trades’ laten-
cies in Marketcetera, measured at the broker, when in-
creasing the number of Traders. (Figure 6 shows the
corresponding result for DEFCON but again note the
lower number of Marketcetera Traders.) Latency in
Marketcetera is around 8 ms. The plot breaks this to-
tal latency down into its individual contributions: the
time to filter unwanted events and execute the pairs
trading algorithm (processing), the time for tick prop-
agation from the Market Feed to the Strategy Agents
(ticks+processing) and order propagation from Strategy
Agents to the ORS (ticks+orders+processing). When we
introduced 100 Traders, the increasing cost of communi-
cation across JVMs surpassed the actual processing la-
tency. In contrast, DEFCON is able to provide latency
at around 1 ms for significantly more Traders. We be-
lieve that this is because DEFCON tick propagation uses
our event dispatching mechanism, which does not involve
communication across JVMs.

Security comparison. In DEFCON, the pairs trading al-
gorithm is a service that each Trader may decide to use.
DEFC guarantees that the unit that implements the algo-
rithm does not have the ability to leak traders’ choices.
Marketcetera requires that each Strategy implementation

be fully-trusted. As a result, it does not support third-
party services that Strategies may use. Moreover, DEF-
CON enables the efficient reuse of a single trading strat-
egy across multiple users; Marketcetera instead requires
a new JVM each time. Code reuse is particularly benefi-
cial when traders belong to the same organisation such
as a small hedge fund. The Marketcetera Broker can,
deliberately or involuntarily, leak a user’s trades or or-
ders to other parties. In contrast, the DEFCON Broker is
prevented by DEFC from correlating two clients’ orders.
The Broker’s developers can guarantee that no bugs may
result in data leaks that violate the Traders’ confidential-
ity. In addition, a regulatory service can only reliably be
integrated into Marketcetera by its original developers.
Instead, DEFCON can support a Regulator unit without
concern that the additional code may damage the security
properties of the system.

7 Conclusions

High-performance event processing applications, for ex-
ample as found in algorithmic stock trading, need strong
information security without sacrificing performance.
We presented DEFCON: an event processing system that
enforces decentralised event flow control (DEFC). This
model meets the particular security needs of event pro-
cessing by providing mandatory protection of event data
from bugs and intentional leaks. DEFCON relies on iso-
lation at the programming language level and we de-
scribed a practical methodology for achieving isolation
in Java with low manual effort. By isolating process-
ing units running in the same address space, we tried to
strike an optimal balance between the need for isolation
and efficient inter-isolate communication. Our evaluation
shows the practicality of our solution when compared to
an open source trading platform.

In future work, we plan to investigate issues in a dis-
tributed system build from a set of DEFCON nodes. We
also want to explore additional techniques for isolation in
Java, such as dynamic recompilation of classes, and ap-
proaches that facilitate provably secure hand-off of Java
references, such as Kilim [36]. Although we do not ad-
dress denial-of-service attacks in this work, we believe
that thanks to our message passing paradigm it is pos-
sible to use common profiling techniques from aspect-
oriented programming for resource accounting [40]. In
related work, we have begun to investigate how the DEFC
model can be applied to functional languages such as Er-
lang that naturally support isolation between components
through message-passing [31].
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