
Balancing Load in Stream Processing
with the Cloud

Wilhelm Kleiminger #1, Evangelia Kalyvianaki ∗2, Peter Pietzuch ∗3

#Department of Computer Science, ETH Zürich
Universitätstrasse 6, 8092 Zürich, Switzerland

1kleiminger@inf.ethz.ch

∗Department of Computing, Imperial College London
180 Queen’s Gate, South Kensington Campus, London SW7 2AZ, United Kingdom

2ekalyv@doc.ic.ac.uk 3prp@doc.ic.ac.uk

Abstract— Stream processing systems must handle stream
data coming from real-time, high-throughput applications, for
example in financial trading. Timely processing of streams is
important and requires sufficient available resources to achieve
high throughput and deliver accurate results. However, static
allocation of stream processing resources in terms of machines is
inefficient when input streams have significant rate variations—
machines remain underutilised for long periods of average load.

We present a combined stream processing system that, as the
input stream rate varies, adaptively balances workload between
a dedicated local stream processor and a cloud stream processor.
This approach only utilises cloud machines when the local stream
processor becomes overloaded. We evaluate a prototype system
with financial trading data. Our results show that it can adapt
effectively to workload variations, while only discarding a small
percentage of input data.

I. INTRODUCTION

Today’s information processing systems face difficult chal-
lenges as they are presented with new data at ever-increasing
rates [1]. Especially in the financial industry, high volume
streams of data have to be processed by high-throughput
systems in order to derive accurate statistics for modelling
the markets. For example, for 7 days in November 2010, the
average data rate from a NYSE market data feed was 1.3 Mbps
with 123.7 Mbps during bursts [2].

Stream processing systems are fundamentally different from
ordinary data management systems. Streams are infinite and
important events are sparse [3]. This means that data has to
be processed by continuous queries and results made available
on-the-fly. In contrast to batch-processing systems, the size of
the processed data is not constant but determined by the arrival
rate of the input stream. These processing demands encourage
stream processing systems to be distributed across multiple
machines [4].

In financial data streams, tuple arrival times are not uniform
during a trading day. At certain times, the workload peaks
at a multiple of the average load. Since a typical trading
day is from 8am to 4pm, it is less economically efficient to
dedicate resources that cover peak loads for 24 hours a day,
7 days a week. Traditionally, stream processing systems use
load shedding when the workload exceeds their processing

capabilities [5]. This employs a trade-off between delivering
a low-latency response and ensuring that all incoming tuples
are processed. However, load shedding is not feasible when
the variance between peak and average workload is high. A
system that must discard the majority of tuples is of limited
use when accurate processing is needed.

Ideally, a stream processing system should be self-adapting
by load balancing in order to handle changes in the work-
load. To avoid load shedding, we propose to distribute the
computational load of stream processing in a way that utilises
a scalable cluster infrastructure in a cloud computing service
such as Amazon EC2 [6]. Our goal is to provide a scalable
local stream processor that automatically streams a partial data
stream across a high bandwidth network channel to a cloud
service when local resources become insufficient. By fully
utilising the local processor and only processing data in the
cloud on demand, the cost and energy consumption of stream
processing can be reduced.

Achieving parallel stream processing in a cloud environment
with good performance is challenging. In general, complex
queries allow for higher throughput through parallelisation.
A complex query can often be broken down into a series
of steps that construct a pipelined job. However, when it
comes to window size, the solution is not quite as clear.
The size of the input window is usually specified by the
query. It can be variable if the query refers to a timespan
(time-based window) or constant if it specifies a number of
tuples (count-based window). A large window may be split
across multiple machines using a divide-and-conquer approach
such as MapReduce [1]. This is only feasible for complex
queries with large windows. As windows become smaller,
parallelisation at tuple granularity (data parallelism) introduces
too much overhead. Small windows must be processed at
window granularity.

In this paper, we present a combined stream processing
system that balances load between a local stream processor
and a distributed stream processor running on a scalable cloud
infrastructure. We describe an adaptive load balancing algo-
rithm that is capable of distributing the input stream at between
the local and the cloud stream processors. The cloud stream

processor supports stream partitioning at tuple granularity
and at window granularity to parallelise the processing task.
We evaluate the system using a realistic financial processing
workload and show that the main factor in load balancing
stream processing with the cloud is the bandwidth between
the load balancer and the cloud data centre.

In the remainder of this paper, we first discuss related work
in the next section. We introduce our approach for stream
processing with cloud resources in Section III. In Section IV,
we explain the load balancing algorithm used to support the
local stream processing. We evaluate the performance our
system in Section V and draw conclusions in Section VI.

II. BACKGROUND

Scalable stream processing. Previous work on stream
processing has explored the parallel execution of queries.
STREAM is a data stream management system (DSMS) de-
veloped by Arasu et al. [7]. It uses the Continuous Query
Language (CQL)—an extension of SQL. Queries are evaluated
by translating them to a physical query plan that is processed
by the DSMS. The distribution of the query can be achieved
through placement of operators across multiple machines.

The Mortar stream processor [3] is geared towards pro-
cessing of data from sensors. It uses an overlay network and
distributes the operators over a tree to increase fault-tolerance.
It supports a large number of stream sources, but there is no
provision for peak load scenarios as encountered in financial
data processing. Mortar supports in-network operators to re-
duce the amount of information sent over the network. Similar
pre-processing can be done by our load balancer to increase
throughput. We compress data before sending it to the cloud
processor, but further bandwidth optimisations such as filtering
are possible.

Cayuga [8] is an event processing system for handling
complex streaming data. A simple extension to Cayuga scales
stream processing by partitioning queries over n machines
using row/column scaling [9]. Tuples can be routed in a
round-robin fashion to different rows. However, this does not
preserve dependencies for stateful queries. This approach is
similar to our window-granularity approach for the simple
cloud stream processor. We distribute windows over a column
of processors to make efficient use of multiple machines.

Load balancing. Research on load balancing has focused
on data locality. Pai et al. [10] use a single load balancer
that receives requests from clients for static web content. The
content is stored on a number of back-end web servers. The
load balancer examines a request for a particular resource
and routes it to the server with the least load. In a stream
processing system, the roles are reversed because the query
is fixed. The load balancer has to deal with allocating the
data. This requires a robust load balancing algorithm that takes
bandwidth and latency constraints into account, as well as, the
processing time of the stream processor in order to utilise fully
the local node and a remote cluster.

Cloud

Load balancer

Stream provider
Client

Local stream processor

Processed window

Unprocessed window

Fig. 1. Overview of combined stream processing system.

Randles et al. [11] compare different load balancing strate-
gies in cloud computing. The emphasis lies on making the
best use of resources. For example, the “honeybee forag-
ing” algorithm probes available resources and advertises their
capabilities on a distributed shared-space address board. By
calculating the profitability of the individual servers (i.e. how
quickly they can serve a request), the system can adjust load.
Unprofitable resources are abandoned while the profitable ones
are allocated more tasks. However, this assumes an envi-
ronment with heterogeneous resources—in a homogeneous
cloud data centre, we can assume that the capabilities of the
participating nodes are known in advance. In our approach, a
dedicated node in the cloud handles the reception of jobs from
the load balancer.

III. CLOUD STREAM PROCESSING

We describe a combined stream processing system that uses
a local stream processor to handle average loads while utilising
cloud resources when faced with peak demand. The goal is to
ensure efficient usage of resources for any given workload,
while offering acceptable throughput and reliable processing
of data.

A typical stream processing query over stock market data
could notify a user about a particular stock exceeding a limit
(e.g. the user is interested if Schlumberger (SLB) shares rise
above $60). However, more complex composite queries are
possible—the user could ask to be notified about the aforemen-
tioned rise only if Royal Dutch Shell (RDS-A) shares dropped
at the same time. This is achieved by continuously processing a
window of financial data from these two companies. A window
is defined as a set of tuples. Each tuple signifies an event—in
this case, a change in the price of a share. The size of the
window is determined either by a time interval (i.e. has the
share price changed within the last 10 minutes), or by the
specification of a tuple count. A window can be seen as a unit
of work for the stream processor.

Figure 1 gives an overview of our load balancing approach.
Our system consists of a front-end node running the local
stream processor that handles average load. The distributed
cloud stream processing system assists for peak processing

demands and can scale processing across many machines. The
stream provider delivers raw data streams to the front-end
node. Clients can submit queries to access the stream data. The
front-end node runs a load balancer that is the key component
of our system. It dynamically distributes the load between the
local processor and the cloud processor. In this way, cloud
processing remains transparent to the user. Once stream tuples
have been processed by the combined system, a result stream
is delivered to the client.

In practice, such an approach requires a high bandwidth
network link (e.g. 10–100 Mbps) between the local node and
the cloud, otherwise the network is unable to handle bursts in
the input data rate as mentioned before. The processing in the
cloud is bounded by the number of windows that it receives.
If the bandwidth between the local node and the cloud is not
sufficient, we can only “outsource” a limited amount of data.
These limitations can be overcome partly with techniques such
as tuple filtering [12] and compression [13]. Our system uses
the zlib compression library to reduce windows sizes prior
to transmission, with an observed reduction by a factor of 6
on average.
Cloud Stream Processor. The cloud stream processor consists
of a front-end node called a JobTracker and worker nodes
called TaskTrackers. Its architecture is inspired by a batch
processing system such as MapReduce [1]. In contrast to other
stream processing systems [7], we have followed Condie et al.
[14] and chosen a simple query semantics using map() and
reduce() functions over the more widely used SQL-like
approach. The resulting architecture allows for the seamless
addition and removal of resources in a cloud environment.

The map function takes a (key, value) pair and pro-
duces a list of pairs in a different domain. These tuples are then
grouped under the same key. The resulting tuples of (key,
[value]) pairs are processed by the reduce function that
produces output values in a (possibly) different domain.

When a user submits a query to the system, it is au-
tomatically distributed over all available TaskTrackers. The
cloud stream processor manages the addition and removal
of TaskTrackers to enable cloud scaling. The input stream
is received by the JobTracker and then partitioned over the
TaskTrackers. Once the output has been computed, the set of
result tuples is sent back to the client through the JobTracker.

The cloud stream processor operates at a window granu-
larity. Each TaskTracker computes the submitted query over
a whole window. If n TaskTrackers are registered with the
JobTracker, it is possible to compute n windows in parallel.

Given a sufficiently large window and a complex query,
a cluster of machines can also parallelise the query at tuple
granularity. In this case, the JobTracker receives a window,
partitions it into equally-sized chunks, and orders the Task-
Trackers to use the map and reduce functions for computing
the output in parallel. As our experimental evaluation reveals,
this approach does not work well because of the small size of
the input window, the simplicity of the query and the overhead
due the transmission of intermediate results between the nodes.
These problems are discussed further in Section V.

Cloud

Processed window Unprocessed window

Load balancer
Local stream processor

Stream provider

Client

Input queue

Output queue

1

4
3

2

Fig. 2. Queue management performed by load balancer. The numbers show
the sequence of steps.

idle local dual

item in queue window dropped

item in queue window dropped

queue empty

queue empty

dropped below threshold

item in queue

threshold exceeded

overloaded

Fig. 3. State diagram of transitions between local and cloud-assisted stream
processing.

Local Stream Processor. The local stream processor is a
simplified version of the cloud stream processor. Similar to
the cloud stream processor, the local stream processor uses
map() and reduce() functions to compute the query over
the data. Since it communicates with the load balancer over
network sockets, it does not have to run on the same node as
the load balancer. This means that our load balancer could be
used with a different stream processor such as Cayuga [8].

IV. ADAPTIVE LOAD BALANCING

When adaptively balancing the workload between the local
processor and the cloud processor, we expect the local node to
process the stream most of the time. Without load balancing,
the local stream processor would have to discard windows
when the incoming data rate increases beyond its processing
capacity. At this point, the load balancer forwards the excess
windows to the cloud processor in order to sustain throughput
at an increased input rate.

The operation of the load balancer using multiple queues
is illustrated in Figure 2. We assume that the client fulfils a
dual role of being both the stream source and consumer of the
result stream. Incoming windows are added to an input queue
(step 1). The load balancer monitors the size of this queue to
decide when to make use of the cloud processor. Depending on
the state of the load balancer, windows are assigned to the local
stream processor, or to both, the local and the cloud stream
processor (step 2). The output from both stream processors is
sent to an output queue (step 3). The output queue is needed
to ensure that the output tuples are returned in the correct
order. Due to the different processing latencies between the
local and the cloud stream processors, windows might have
been re-ordered. In step 4, the output windows are sent back
to the client.

States diagram. The operation of the adaptive load balancer is
controlled according to the state transition diagram in Figure 3.
In the initial state, the load balancer is idle. When a window of
data is received, it is appended to the input queue and a state
transition to the local stream processing state occurs. As long
as the queue size remains below the threshold sT , the local
node can handle the demand and remains in the local state.
If the queue becomes empty, the load balancer falls back into
the idle state.

The threshold value must take into account processing
latency as well as the number of nodes in the cloud. A high
threshold means that cloud resources are used only when
needed. This reduces the number of state switches and avoids
unnecessary costs. However, the latency of the system is
dominated by the number of queued windows. In the worst
case, the size of the input queue stays constant at sT − 1. In
this case, the latency for a new window is sT × lL where lL is
the processing time of the local stream processor for a single
window. In our experiments in the next section, we use sT = 5
because we want to utilise fully the local processor and the
4 nodes in our test-bed cluster acting as the cloud service.

When the queue fills above threshold sT , the load balancer
transitions to the dual state. In this state, both the local
processor and the cloud processor process the input data. As
long as the queue size remains constant, the load balancer
stays in this state. A decreasing queue size means that there is
spare processing power. However, the balancer returns to the
local state only when the queue has been completely drained.
This is to ensure that the switching overhead is minimised.

When the input queue overflows even after all available
resources in the cloud are used, the load balancer moves to
the overloaded state and drops windows to handle the load.
In absence of any dropped windows, the load balancer returns
to the dual state.

V. EVALUATION

In this section, we evaluate how the adaptive load balancing
scheme performs when supporting the local stream processor
with additional capacity from the cloud. Our main goal is to
explore how the load balancer uses the cloud resources to
handle workload peaks in the input rate effectively without
losing any data during periods of transitions.

First we show that window-granularity stream processing
in the cloud outperforms the tuple-granularity approach. Then
we investigate how much added capacity (in terms of total
throughput) the cloud can provide in the combined system. Our
results show that throughput is increased and the percentage of
dropped tuples lowered by using the adaptive load balancing
algorithm.

We consider the following metrics for different input rates:
(a) the percentage of dropped tuples with respect to the total
number of tuples gives an indication of the efficiency of the
load balancer; (b) the throughput increase in the combined
stream processing system when utilising the cloud infrastruc-
ture; and (c) the CPU and memory utilisation at the local node

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200 250 300 350 400

N
um

be
r

of
 tu

pl
es

 (
10

00
’s

)

Time (minutes)

Fig. 4. Tuple arrival rates during single trading day (sampled every 10
minutes).

and cloud nodes. It is desirable to keep nodes fully utilised
for economical reasons.

A. Experimental setup

Both local and cloud nodes are AMD Opteron 2346 4-
core machines with 4 GB of RAM and are connected by
Gigabit Ethernet. In our set-up, the stream provider and client
run on the same node to accurately measure total processing
latency. They are implemented as a combination of Python and
shell scripts. We also monitor resource utilisation of the local
stream processor and the load balancer. The CPU utilisation
is sampled every second and averaged across a 10 minute
window.

Our dataset contains quotes for options on the Apple stock
for a single trading day across multiple North American stock
exchanges from 8am to 4pm. The total size of the data set
is 1.6 GB, divided into 22,372,560 tuples with timestamps.
The average tuple arrival time is 777 tuples per second.
The average, however, is not characteristic of the actual
distribution, which is shown in Figure 4: trading during the
morning hours is more intensive. During the first 10 minutes,
2166 tuples arrive at the processor per second on average. This
is equivalent to a stream of 173 KB/s. After that arrival time
drops continuously until it reaches a trough around midday.
Such changes in the arrival rate have implications for load
balancing—in this setting, the cloud stream processor must
become active immediately to assist in the surge of morning
traffic.
Query. We use a realistic stream query that finds pairs of
exchanges with the same strike price and expiry data for
“put” and “call” options. This information could then be used
for put/call parity arbitrage algorithms [15]. Each tuple in
our dataset contains 16 comma-separated values including the
strike price, expiration day, expiration year, exchange identifier
and expiration month code. The first step is to re-order the
input tuples to obtain (key, value) pairs with the relevant
data:

key = (StrikePrice, ExpDay, ExpYear)
value = (Exchange, ExpMonthCode)

TABLE I
THROUGHPUT (IN KB/S) FOR STREAM PARTITIONING AT TUPLE AND

WINDOW GRANULARITY.

tuple- window-
granularity granularity
window size window size

TaskTrackers 100 1000 10000 10000
1 3.60 11.23 2.50 23.88
2 4.34 13.58 2.86 59.83
3 3.41 10.98 2.93 84.44
4 3.08 10.31 3.00 108.16

The list [(key, value)] of key-value pairs is then
grouped by key to give the (key, [value]) tuples for the
reduce function. The reduce function operates on one of these
tuples. It ignores the key and finds pairs of exchanges with
corresponding put and call options. It starts with the first value
in the list and compares it to all other values. If the value is a
put option, any matching call options are considered (and vice
versa). Once the first entry has been compared to the remainder
of the list, it continues with the next entry, ignoring duplicates.
This operation is repeated for every key. The complexity of
this process is O(n2). The paired exchanges are attached to
the keys and returned as a list of (key, [parity]) pairs,
where

parity = [((Exchange 1, ExpMonthCode 1),
(Exchange 2, ExpMonthCode 2))].

The output of the map function is concatenated to give the
final output of the algorithm.

B. Tuple vs window granularity

In this section, we compare partitioning at tuple and window
granularities, as used by the cloud stream processor to process
stream data in parallel. The processing is performed by the
TaskTrackers of the cloud stream processor.

We first consider the tuple granularity approach. Table I
shows the maximum throughput obtained for different window
sizes when increasing the number of TaskTrackers from one
to four. For all cases, the data is read directly from disk
in order to measure only the processing latency. Increasing
the number of TaskTrackers for small window sizes of less
than 10,000 tuples reduces the throughput of the system.
This is because the communication overhead involved when
the TaskTrackers exchange intermediate results is higher than
the processing latency of a single TaskTracker. However, our
system benefits from larger window sizes (10,000 tuples). In-
creasing the number of TaskTrackers improves the throughput
up to 20% in the case of four TaskTrackers.

To better understand the cause of this small improvement,
we observe the CPU utilisation of the cloud nodes. For
two TaskTrackers, most of the CPU time is spent on the
JobTracker, with the TaskTrackers idling at around 10% during
peak load times. Adding more TaskTrackers results in a similar
behaviour where the utilisation is less than 10%. Distributing
data by the hash of the input keys and thus avoiding the

Number of TaskTrackers

C
P

U
 u

til
is

at
io

n

1 2 3 4
0

50

100

150

200

250

300

350
JobTracker
TaskTracker 1
TaskTracker 2
TaskTracker 3
TaskTracker 4

Fig. 5. CPU utilisation for window granularity.

communication overhead is not possible. The keys during the
map and reduce phases are not necessarily identical. Thus,
in order to remove the need for communicating intermediate
results after the map phase, we ran the map function in the
JobTracker. As in our case, the map function merely re-orders
the tuples, which can be achieved with little overhead. The
benefit was relatively small and only increased the throughput
by a factor of 2 for a window size of 10,000 tuples.

In summary, although a larger window improves system
scalability, tuple granularity is not efficient—the bulk of the
processing time is spent in the JobTracker partitioning tuples.
The TaskTrackers remain mostly idle for this simple query
and thus do not use cloud resources for increased throughput.
Due to the fact that the TaskTrackers are unaware of how the
window is split, the intermediate data is always communicated
back to the JobTracker after the reduce phase. This explains
the difference in the single node runs of the tuple- and window-
granularity approaches.

Table I also shows the throughput when partitioning at
window granularity. For a window size of 10,000 tuples,
the throughput increases significantly with the number of
TaskTrackers. Figure 5 shows how the window granularity
approach effectively utilises cloud resources as more Task-
Trackers are added for parallel processing. Each TaskTracker
uses on average between 60% and 80% of available CPU
time. For the rest of the evaluation, we use the window
granularity approach to process data in the cloud because
it scales well with the number of additional cloud nodes
executing TaskTrackers.

C. Adaptive load balancing

Next we evaluate the load balancer as it propagates windows
to the cloud stream processors and uses more cloud resources
with increasing input rates.

Figure 6 shows the throughput of the combined stream
processor with four TaskTrackers when input rates increase.
The graph is divided into three areas: (a) the throughput due
to the local processor only (lower area of the graph); (b) the
throughput due to the cloud processor only (middle area of the
graph); and (c) the throughput corresponding to lost/dropped

Input rate (KB/s)

T
hr

ou
gh

pu
t (

K
B

/s
)

0 2000 4000 6000 8000 10000 12000 14000 16000
0

50

100

150

200

250
Local stream processor
Cloud stream processor
Lost/dropped windows

Fig. 6. Tuples processed by the local and cloud processors as input rate
increases.

windows (top area). The total throughput of adding (a), (b)
and (c) is the throughput under perfect scalability when no
tuples are dropped and the input rate can be supported by the
network link to the cloud processor. The total throughput of
the combined processor is the sum of (a) and (b).

The total throughput of the combined processor increases
with the input rate, indicating that our system scales well
with increasing load. As the input rates increase, the local
processor handles a constant portion of the input data. At the
same time, the adaptive load balancer forwards a larger number
of windows to the cloud processor—the throughout of the
cloud processor increases. At an input rate of 12,000 KB/s, our
4 nodes in the test cloud are overloaded. Since the maximum
throughput (see Table I) is reached, windows are discarded.

To scale beyond 4 nodes, we have moved the cloud stream
processor to 10 nodes in the Amazon EC2 cloud. With the
load balancer running in our university data centre, we have
achieved an average processing latency of 2 seconds for a
window size of 10,000 tuples. In comparison, by running
the cloud system in the aforementioned 4 node scenario, we
achieved an average latency of 1 second. We have found the
bandwidth between the load balancer and the cloud to be
the limiting factor. Even with compression, the throughput
achieved by the cloud is limited to 90 KB/s. We believe that
further optimisations such as tuple filtering should allow us to
use cloud resources more efficiently.

VI. CONCLUSIONS

We have shown that it is possible to construct a combined
stream processing system that uses the resources of a cloud
infrastructure to assist a local stream processor. The combined
approach scales well with increasing input rates by using cloud
resources and achieves increased throughput. This is especially
relevant for stream processing applications with varying input
rates. While adapting to input rates, a small percentage of
windows are dropped when the load balancer switches states
between local and cloud stream processing to match small
periods of burstiness in the arrival rate of input tuples. Our
evaluation shows that the combined system is most effective
when the input stream is partitioned at a window granularity
for parallel processing.

There are several directions for future work. The throughput
of the combined system is affected by the quality of the
network link between the load balancer and the cloud stream
processor. Given our results from the local testbed, we want to
explore further tuple compression and leverage pre-processing
of the raw stream to reduce bandwidth requirements and thus
increase scalability on a cloud service such as Amazon EC2.
In our experiments, starting a new instance on EC2 takes well
over a minute. This is not fast enough to suit the needs of
financial data processing and to build an elastic cloud stream
processor. We believe that anticipatory provisioning may help
respond to peaks in the arrival time in a timely fashion without
dropping windows.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[2] (2010, Nov.) NYSE Euronext Homepage on LatencyStats. [Online].
Available: http://www.latencystats.com

[3] D. Logothetis and K. Yocum, “Wide-scale Data Stream Management,”
in ATC’08: Proc. of the USENIX 2008 Annual Technical Conference,
Boston, MA, June 2008.

[4] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Cetintemel, Y. Xing, and S. Zdonik, “Scalable Distributed Stream
Processing,” in CIDR ’03: Proc. of the Conference on Innovative Data
Systems Research, Asilomar, CA, Jan. 2003.

[5] N. Tatbul and S. Zdonik, “Window-aware Load Shedding for Aggrega-
tion Queries over Data Streams,” in VLDB’06: Proc. of the 32nd Int.
Conference on Very Large Data Bases, Seoul, Korea, Sept. 2006.

[6] (2006, Aug.) Amazon homepage on EC2 beta. [Online]. Available:
http://aws.typepad.com/aws/2006/08/amazon ec2 beta.html

[7] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito,
R. Motwani, U. Srivastava, and J. Widom, “STREAM: The Stanford
Data Stream Management System,” InfoLab, Stanford University, Menlo
Park, CA, Technical Report 2004-20, Mar. 2004.

[8] A. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. White, “Towards
Expressive Publish/Subscribe Systems,” in EDBT ’06: Advances in
Database Technology, ser. LNCS, Y. Ioannidis, M. H. Scholl, J. W.
Schmidt, F. Matthes, M. Hatzopoulos, K. Boehm, A. Kemper, T. Grust,
and C. Boehm, Eds. Berlin/Heidelberg, Germany: Springer-Verlag,
2006, vol. 3896, ch. 38, pp. 627–644.

[9] L. Brenna, J. Gehrke, M. Hong, and D. Johansen, “Distributed
Event Stream Processing with Non-Deterministic Finite Automata,” in
DEBS’09: Proc. of the Third ACM Int. Conference on Distributed Event-
Based Systems, Nashville, TN, July 2009.

[10] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W. Zwaenepoel,
and E. Nahum, “Locality-Aware Request Distribution in Cluster-based
Network Servers,” in ASPLOS ’98: Proc. of the 8th Int. Conference
on Architectural Support for Programming Languages and Operating
Systems, New York, NY, Oct. 1998.

[11] M. Randles, D. Lamb, and A. Taleb-Bendiab, “A Comparative Study
into Distributed Load Balancing Algorithms for Cloud Computing,” in
WAINA’10: Proc. of the 2010 IEEE 24th Int. Conference on Advanced
Information Networking and Applications Workshops, Perth, Australia,
Apr. 2010.

[12] V. Kumar, B. F. Cooper, and S. B. Navathe, “Predictive Filtering: A
Learning-based Approach to Data Stream Filtering,” in DMSN’04: Proc.
of the 1st Int. Workshop on Data Management for Sensor Networks,
Toronto, Canada, Aug. 2004.

[13] A. Reinhardt, M. Hollick, and R. Steinmetz, “Stream-oriented Lossless
Packet Compression in Wireless Sensor Networks,” in SECON’09: Proc.
of the 6th Annual IEEE Comm. Society Conference on Sensor, Mesh and
Ad Hoc Comm. and Networks, Rome, Italy, June 2009.

[14] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy,
and R. Sears, “MapReduce Online,” EECS Department, University of
California, Berkeley, CA, Tech. Rep. 2009-136, Oct 2009.

[15] (2010, Nov.) Understanding Put-Call Parity. [Online]. Available:
http://www.theoptionsguide.com/understanding-put-call-parity.aspx/

