Adaptive Provisioning of
Stream Processing Systems in the Cloud

Javier Cervino#*, Evangelia Kalyvianaki*?, Joaquin Salvachda#®, Peter Pietzuch**

Dto. Ingenieria de Sistemas Telemdticos, Universidad Politécnica de Madrid
Avda. Complutense s/n, 28040 Madrid, Spain

! jcervino@dit.upm.es

3jsalvachua@dit .upm.es

*Department of Computing, Imperial College London
180 Queen’s Gate, South Kensington Campus, London SW7 2AZ, United Kingdom

2ekalyv@doc .ic.ac.uk

Abstract— With the advent of data-intensive applications that
generate large volumes of real-time data, distributed stream
processing systems (DSPS) become increasingly important in
domains such as social networking and web analytics. In prac-
tice, DSPSs must handle highly variable workloads caused by
unpredictable changes in stream rates. Cloud computing offers
an elastic infrastructure that DSPSs can use to obtain resources
on-demand, but an open problem is to decide on the correct
resource allocation when deploying DSPSs in the cloud.

This paper proposes an adaptive approach for provisioning
virtual machines (VMs) for the use of a DSPS in the cloud. We
initially perform a set of benchmarks across performance metrics
such as network latency and jitter to explore the feasibility
of cloud-based DSPS deployments. Based on these results, we
propose an algorithm for VM provisioning for DSPSs that
reacts to changes in the stream workload. Through a prototype
implementation on Amazon EC2, we show that our approach
can achieve low-latency stream processing when VMs are not
overloaded, while adjusting resources dynamically with workload
changes.

I. INTRODUCTION

There has been a surge in data-oriented applications in a
range of domains, including financial processing, web analyt-
ics, social networks and healthcare systems, which must pro-
cess continuous data streams. To this end, distributed stream
processing systems (DSPSs) execute continuous gqueries in
real-time [1], [2]. In DSPSs, data comes from sources and
is transformed by processing elements—usually referred to
as operators—that are interconnected to realise given query
semantics. Important performance requirements for continuous
queries are low latency and adequate throughput to handle all
input data in real-time.

Cloud computing has emerged as a flexible paradigm for
facilitating resource management for elastic application de-
ployments at unprecedented scale. Cloud providers offer a
shared set of machines to cloud tenants, often following
an Infrastructure-as-a-Service (IaaS) model. Tenants create
their own virtual infrastructures on top of physical resources
through virtualisation [3]. Virtual machines (VMs) then act as
execution environments for applications.

While deployments of DSPSs in the cloud promise to
exploit its inherent elasticity, an open problem is how to

4prp@doc .ic.ac.uk

provision resources (i.e. CPU, memory and network band-
width) in response to sudden, time-varying changes in stream
workloads. While cloud infrastructures are engineered to offer
VMs on-demand, this has been applied most successfully to
batch processing models such as map/reduce [4]. The real-time
nature of stream processing poses unique challenges due to the
need to achieve low latency and guaranteed throughput. Our
goal is to explore the performance implications of deploying
DSPSs on a public cloud infrastructure and to propose an
approach for allocating VMs based on workload demands in
order to maintain a given target throughput with low latency.

Resource management in DSPSs has been an active research
area for many years, with an emphasis on mechanisms for han-
dling overload. Previous solutions such as load-shedding [5],
[6], [7] , admission control [8], adaptive query planning [9],
load balancing [10], [11] and efficient initial operator place-
ment [12], do not address overload by obtaining additional
resources on-demand. In previous work [13], we presented a
hybrid approach that balances stream processing between a
local processor and cloud resources, but the focus of the work
was not on the elastic behaviour within the cloud. In contrast,
cloud deployments of DSPSs need mechanisms for making
decisions when to update their resource allocation in response
to workload changes and how.

In this paper, we propose an approach for on-demand
provisioning of resources in a cloud-deployed DSPS. Through
a set of benchmarks, we first explore the suitability of a
public cloud infrastructure for stream processing by measuring
network and processing latencies, jitter and throughput. Our
results show that the main factor dominating performance
is the latency introduced by the cloud deployment. On the
other hand, there is no significant throughput reduction when
VMs are not overloaded. Based on these results, we propose
an adaptive algorithm that resizes the number of VMs in
a DSPS deployment in response to workload demands by
taking throughput measurements of each involved VM. We
evaluate our provisioning approach experimentally by deploy-
ing it as part of a DSPS on the Amazon Elastic Compute
Cloud (EC2) [14]. We show that it works well regardless of
the computing power of the underlying VMs.

In the next section, we review previous studies of cloud
performance. In §III, we report new benchmarking results for
stream processing on the Amazon EC2 cloud by measuring
jitter and end-to-end latency. §IV presents a novel adaptive
algorithm to dynamically allocate VMs in the presence of
workload changes, and we evaluate our approach on Ama-
zon EC2 in §V. Finally we discuss future work in §VI and
draw conclusions in §VII.

II. BACKGROUND

Next we review related work on performance of public
clouds for different application domains with the aim of
understanding the implications of deploying DSPSs in clouds.

Network performance. Rehr et al. [15] present preliminary
network performance measurements running the widely used
x-ray spectroscopy benchmark on Amazon EC2. They report
that network performance is substantially lower than what can
normally be achieved in academic compute clusters. Wang et
al. [16] study end-to-end network performance among Ama-
zon EC2 VMs where they observe abnormal delay variations
and unstable TCP/UDP throughput. Barker et al. [17] evaluate
the effectiveness of cloud platforms for running latency-
sensitive multimedia applications. Their results reveal that the
experienced latencies and jitter are fairly typical of wide-
area networks. Jackson et al. [18] indicate that Amazon EC2
clusters are slower than other typical mid-range Linux clusters
or high-performance computing systems and that the network
limits performance, causing significant variability in applica-
tions. Finally, Evangelinos et al. [19] report that public cloud
resources are comparable to low-cost clusters, in which latency
and bandwidth are one to two orders of magnitude lower
compared to large compute centre facilities.

CPU performance. Ostermann et al. [20] indicate that per-
formance and reliability of Amazon EC2 is insufficient for
scientific computing at large. Wang et al. [16] find that co-
location of VMs causes decline in overall performance of
VMs. Barker et al. [17] show that jitter and throughput
measured in an application can degrade when VMs are co-
located. Finally, Dittrich et al. [21] compare data from running
a map/reduce application on Amazon EC2 for a month with re-
sults obtained on a local cluster. They observe highly variable
CPU performance across different processor architectures.

Discussion. Although not all studies agree, latency instabilities
arise in Amazon EC2 in the face of intensive network usage.
In addition, the VMs offered are not fully isolated and hence
experience some performance variability when running high-
performance compute tasks. An open question is how this may
affect the performance of cloud deployments of DSPSs due to
time critical nature of stream processing. On the one hand,
stream processing may not fully utilise a virtual processor
when there is sufficient headroom given particular input data
rates. Maintaining headroom is important to avoid unnecessary
queueing or discarded data items due to load shedding. On the
other hand, stream processing has fixed resource requirements
to handle a given stream rate. Variance in the availability of

PROCESSING
ENGINE

Fig. 1.

Experimental set-up for network measurements

network and processing resources may impact user-observed
performance when the minimum resource requirements cannot
be achieved during transient periods of time.

III. CLOUD STREAM PROCESSING PERFORMANCE

Our initial goal is to answer the following questions: Is it
feasible to stream data from sources on the Internet to various
public cloud data centre (DC) sites, as provided by Amazon or
Google? In other words, can wide-area Internet paths support
streaming data into cloud DCs? We also investigate if laaS
clouds are suitable for hosting stream processing systems.
Do best effort VMs have a sufficient level of predictability
to support low-latency, low-jitter and high-throughput stream
processing? Is the computational power of Amazon EC2 VMs
appropriate when used for standard stream processes tasks?

A. Network measurements

The network parameters that affect stream processing con-
ditions are latency, jitter and bandwidth. Latency is important
because it contributes to the end-to-end delay of a real-time
processing system. Jitter matters for several reasons: first, it
must be bounded, otherwise it increases overall latency caused
by the usage of large buffers; second, it changes tuple inter-
arrival times in a DSPS and thus reduces system predictability.
Finally, bandwidth restricts achievable processing throughput.

Experimental set-up. We implement a scenario, in which a
node (i.e. the stream source) sends stream data to another node
(i.e. the stream processing engine) for processing. We place
the engines in different Amazon DCs distributed around the
world: we select a DC in the US, one in Europe and a third in
Asia (cf. Fig. 1), repeating a set of measurements in each. The
engines use a large Amazon EC2 instance, which has 7.5 GB
of memory and 4 EC2 compute units'. The sources are hosted
on nine PlanetLab nodes to emulate a global set of data sources
(three in Asia, three in Europe and three in the US). Each set
of nodes is associated with the nearest Amazon EC2 DC.
For each DC location, we conduct several experiments
divided into three basic runs, involving a different Planet-
Lab stream source node with the same Amazon node. We
repeat each experiment with three source rates: 10 kbps (low),
100 kbps (medium) and 1 Mbps (high). The experiments are
conducted over a 24-hour period, computing averages to avoid
undesired effects due to variations in Internet traffic.

!Typically, one EC2 compute unit provides the equivalent CPU capacity of
a 1.0-1.2 GHz 2007 AMD Opteron or a 2007 Intel Xeon CPU.

‘ < highrate + mediumrate © low rate‘

4000 ‘ — : g —— S S
2 + * e}
E 2000f 4 ; gl .]
5 § o X 4 o 1 x
E oifeg glégii iéauia!égg ei§&
L e F ol SR L \ B
1 2 3 4 5 6 7 8 9
PlanetLab nodes
Fig. 2. Jitter experienced when sending streams to Amazon EC2
B \g/ 300
o
29 /
3 E 200} e
% = ——ideal
et - ST
2 £ 100} * america
2. O asia
z % + europe
0 L L L S —
= 0 50 100 150 200 250

Application—Level Round—Trip Time (ms)

Fig. 3. Comparison of network- and application-level delay on Amazon EC2

Results. Fig. 2 shows the average jitter experienced by packets
sent from each PlanetLab source to the engine. We observe that
the average jitter is less than 2.5 us, although some outliers
exhibit a value of almost 4 seconds. To compensate for this,
a DSPS would need to use a buffer size of at least this size,
increasing overall system latency, or to discard these items.
The observed level of jitter appears independent of the stream
rate, and we believe that it is dominated by network effects.

In terms of application-level delay, we show the relationship
between measured network-level and application-level round-
trip delay in Fig. 3. Application-level round-trip times are
obtained by comparing the timestamps when a tuple is sent by
the source and when the result tuple is received by the same
source after processing by the engine. Network-level round-
trip times are reported based on ICMP ping messages between
the two machines. We see that the cloud DC does not cause
application-level delay to increase. It is instead dominated by
the network latency of the wide-area Internet paths.

B. Processing measurements

Next we benchmark processing performance. We deploy the
Esper stream processing engine [22] with several types of
VMs available on Amazon EC2, and we explore if there is
performance variation correlated with the time-of-day, affect-
ing processing latency and throughput.

Esper processing engine. Esper processes continuous streams
of time-based data. We use the native Esper benchmark tool
that is composed of a data generator and a submitter. It
generates a stream of shares and stock values for a given
symbol at a fixed rate, set as a configuration parameter. In
our case, we set the rate to be 30,000 stock values sent per
second, generating a stream with 1000 different symbols. A
query, which is defined in the Esper language, calculates the
maximum stock value of a symbol in each second.

Day 1 Day 2

50
g5 AP]- x}{,{\
£z FEL by DT
—

’ 10’

X
é'@ ity 337 | F-]-1-
$32 f : e B T S e S
=
22
F

0 7 8 910111213141516171819
Time of day, 24—hour format

7 8 910111213141516171819
Time of day, 24—hour format

Fig. 4. Performance of Esper as a function of time on Amazon EC2

Since our goal is to explore if time-of-day variation affects
processing latency when VMs are overloaded, we separate
processing from network latency by placing all nodes in
the same Amazon EC2 DC located in Virginia, US. We
carry out 10 runs, executing processing engines in small VM
instances with 1.7 GB of memory and 1 EC2 compute unit.
The submitter machines are extra large instances with 15 GB
of memory and 8 EC2 compute units. Each submitter sends
30,000 tuples/second to the engine to potentially overload it.

Results. The results in Fig. 4 show the variation of processing
latency and throughput during different times over two week
days. The observed throughput remains relatively stable over
the measurement period, although latency suffers more from
unpredictable outliers. We did not find an obvious pattern
that correlated cloud performance with time-of-day for best-
effort VMs, i.e. there is no significant variation consistent
across multiple week days. We leave a study over longer time
intervals for future work.

Next we examine how cloud VMs support increasing input
data rates. We manually increase the number of VMs running
Esper engines, while also gradually changing the stream rate
from 100,000-200,000 tuples/second. The Esper submitter is
deployed on an extra-large EC2 instance. When a VM is close
to saturation, i.e. the engine cannot process all incoming data,
we manually add another VM of the same type.

Fig. 5 on the left plots the throughput when using small VM
instances and large instances are presented on the right. Dif-
ferent patterns represent different VMs of both instance types.
We can see that the cloud VMs can be used to scale efficiently
with an increasing input rate, achieving higher throughput. The
number of VMs required to obtain a given throughput value
depends on their type: as expected, fewer large than small
instances are needed to achieve the same throughput. While
running these scenarios we did not experience any significant
degradation in the CPU performance and throughput that could
be explained by VM co-location.

C. Discussion

We considered metrics related to cloud-deployed stream
processing systems. First, end-to-end latency is composed of
network and processing latency. Our results show that network
latency is dominated by the geographic distance between the
cloud DC and the sources, and the virtualised cloud infrastruc-

s Small VM instances Large VM instances

HX 10
« 1.8
s16
g‘ 1.4
D12
5 1
£08
2 0.6
=04
=02
0] 357 9 11131517 1 3 5 7 9 11 13 15 17
Input Data Rate — x10000 tuples/s Input Data Rate — x10000 tuples/s
Fig. 5. Increase in throughput with different instance sizes on Amazon EC2

(Different shades/colours correspond to different VMs.)

VM
engine
VM

N engine

source |

VM collector
'| engine

source 2

VM
engine
Sub-query 1

Stream source Sub-query 2

Fig. 6. Elastic DSPS with query partitioning across processing VMs

ture itself does not increase end-to-end latency significantly.
Therefore, it is preferable to deploy stream processing engines
at cloud sites within close network proximity to sources.

Second, it is important to consider that jitter suffers from
high outliers that can be orders of magnitude above the aver-
age. Typically systems compensate for jitter through buffering
or discarding of late-arriving data. In our experiments, dis-
carding delayed data items would have resulted in a small
percentage of lost data (approx. 3%).

In summary, when deploying a DSPS in a public cloud,
it is necessary to understand the trade-offs when scaling to
different numbers of VMs. A challenging issue is to decide
on the right number of VMs and their instance types to support
a given stream processing workload. After deployment, it is
necessary to monitor the performance of processing VMs, and
if they show decreasing throughput, to scale out to more VMs.

IV. ADAPTIVE CLOUD STREAM PROCESSING

We now present an adaptive algorithm to scale the number
of VMs required to deploy a DSPS in the cloud. Our goal
is to build an elastic stream processing system that resizes
the number of VMs in response to input streams rates. The
goal is to maintain low latency with a given throughput, while
keeping VMs operating to their maximum processing capacity.
We assume that a workload can be partitioned among multiple
VMs, balancing streams equally across them. We also assume
that there are always sufficiently many VMs available to scale
up to workload demands.

As shown in Fig. 6, we assume that the DSPS executes
a query, which can be decomposed across multiple VMs by
splitting the query into sub-queries, each processing a sub-
stream on a given engine. The input stream can be equally

Algorithm 1 Adaptive provisioning of a cloud-based DSPS

Require: totallnRate, N, maxRatePerVM

Ensure: N’ s.t. projRatePerVM x N’ = totallnRate
1: expRatePerVM = |totalInRate/N |

. totalExtraRateForVMs = 0; totalProcRate = 0

: for all deployed VMs do

totalExtraRateForVMs += expRatePer VM -

getRate(VM)

5. totalProcRate += getRate(VM)

6: end for

7: avgRatePerVM = |(totalProcRate/N) |

8

9

AW

. if totalExtraRateForVMs > 0 then
. N’ = N+[(totalExtraRateForVMs/avgRatePer VM)]
10: mazRatePerVM = avgRatePerVM
11: else if totalExtraRateForVMs < O then
122 N’ = [totalInRate/mazRatePer VM|
13: end if
14: projRatePerVM = totallnRate/N’
15: return N’

partitioned into sub-streams. For example, queries that com-
pute aggregate and topK functions are naturally decomposable
in this fashion. The results from sub-queries are then sent to
a collector that merges them by executing another sub-query,
emitting the overall query result. We further assume that load
shedding is employed by the DSPS in overloaded conditions
to sustain low-latency processing.

Our proposed provisioning algorithm uses a black-box ap-
proach, i.e. it is independent of the specifics of queries running
in the DSPS. It scales the number of VMs used solely based
on measurements of input stream rates. It detects an overload
condition when a decrease in the processing rate of input
data occurs because of discarded data tuples due to load-
shedding. The algorithm is invoked periodically and calculates
the new number of VMs that are needed to support the current
workload demand. This number can be larger than (when the
system is overloaded and requires more resources), smaller
than (when the system has spare capacity) or equal to the
current number of engines. The aim is to maintain the required
number of VMs, operating almost at their maximum capacity.

A. Algorithm

We present the provisioning algorithm more formally in
Alg. 1. The algorithm takes as input the aggregate rate of the
input stream, totallnRate, and the number of VMs currently
used by the DSPS, N. It also takes maxRatePer VM, which is
the maximum rate that a single VM can process, from previous
invocations based on measurements in overload conditions.
The algorithm takes a conservative approach, in which it
gradually increases the number of VMs to reach the required
set for sustainable processing. The output of the algorithm is
the number of VMs, N, that is needed to sustain totallnRate.
In this case, totalInRate is divided equally among VMs and
each handles projRatePerVM.

The algorithm initially estimates the stream rate each VM

is expected to process, ezpRatePerVM, given the number of
running VMs and the total input rate (line 1). expRatePerVM
is used to decide if the current partitioning of the input
stream across VMs is adequate to support totallnRate. To this
end, the algorithm calculates the difference between expected
and processed data rates across VMs, totalEztraRateForVMs
(lines 3-5). Note that the function getRate(VM) returns
the current processing rate for a given VM. In line 6, the
algorithm calculates the average processing capacity per VM,
avgRatePerVM, in terms of processing input rate (line 6).

A positive value of totalExtraRateForVMs (line 7) indi-
cates that the current number of VMs N is inadequate to sup-
port the incoming totallnRate. Therefore, we need to increase
the number of VMs to N’, which is calculated by dividing
the additional stream rate needed, totalExtraRateForVMs
by the average processing capacity per VM, avgRatePerVM
(line 8). At this point, the maximum processing capacity of
each VM, maxzRatePer VM, is updated (line 9). It is updated
each time an overload condition is detected and maintained
between invocations of the algorithm. If there is excess of
processing capacity, i.e. totalFxtraRateForVMs is negative,
we scale down VMs (lines 10-11). This is done by estimating
the number of VMs required to support totallnRate, given that
the maximum processing capacity per VM is mazRatePer VM
(line 11). Note that our approach assumes that the input stream
is equally partitioned across VMs. The stream rate sent to each
VM is given by projRatePerVM (line 12).

B. Implementation

We have implemented a prototype version of the adaptive
algorithm as a shell script. It is integrated with the Esper
processing system engine and uses a framework to control
VMs and to collect required performance metrics. Performance
metrics, i.e. throughput, processing latency and network la-
tency, are generated by Esper engines and stored locally in a
log file. The algorithm gathers them by remotely accessing
the logs from each engine. Esper engines are started and
stopped through standard calls to a management interface. We
deployed this enhanced version of Esper on Amazon EC2.
Based on our experience, this approach can be easily integrated
with other cloud environments or DSPSs.

V. EXPERIMENTAL EVALUATION

The goal of the evaluation is to illustrate the effectiveness
of our adaptive provisioning algorithm for scaling the number
of required VMs against variable input rates.

Experimental set-up. We use the same experimental setup
as in §III-B with Esper and data streams obtained from its
benchmark tool. We implement the Esper tuple submitter
and vary the input tuple rate in a step-wise way as shown
by the solid line in Fig. 7. Such variations in the input
rate emulate demanding and sharp changes in the workload,
similar to workloads adopted by others in dynamic resource
provisioning [23]. We use two submitter VMs to send data,
which are deployed on extra-large Amazon EC2 instances.
We perform two sets of experiments with the Esper system

—Input Rate * Tuples dropped - - -Number of nodes é
2 ! ¥
% 1 I
= i.-|pS
£ 0.5 2%
- 1 Z
0
100 200 300 400 500 600 700
Time (sec)
(a) Small EC2 instances
X 10°
—Input Rate * Tuples dropped - - -Number of nodes‘ ﬁ
] >
e 5
(=¥
:
* x % * yx * *x . ¥ Z
C 2 2 2 e 20 2 2 2 %
100 200 300 400 500 600 70
Time (sec)

(b) Large EC2 instances

Fig. 7. Dynamic adaptation of VM numbers based on changes in input rates

deployed on small and large VM instances. In all cases, the
VMs are created in advance to isolate the algorithm response
time from VM set-up times, which can take several minutes.

The used query computes the maximum value of a stock
with a given symbol per time window. To control the number
of engines, we divide the query into two stages, as shown in
Fig. 6. This allows us to use multiple engines to process the
data in the first stage that takes the maximum value of each
stock symbols per second. In the second stage, the first-stage
results are collected and merged to obtain the final result.

A key parameter of our algorithm is the time interval
between successive invocations. A system with a short interval
would react quickly to varying input rates. However, it might
obtain incorrect throughput estimates caused by transient be-
haviour. A large interval would mean that the system can only
react slowly to changes in the input rate, staying in an over-
or under-loaded condition.

Based on our workloads, we determined empirically the
time interval as follows. The Esper engine calculates the
number of dropped tuples every second. Using Fig. 7(a),
which shows a large variation in the number of dropped tuples
when the input rates vary and the system is overloaded, we
determined that an invocation period of 30 seconds gives a
good trade-off between these two extremes.

Results. As the input rate varies, Figs. 7(a) and 7(b) show the
number of VMs allocated using small and large EC2 instances,
respectively. The solid lines depict the input data rates and the
dashed lines represent the number of VMs allocated by the
adaptive algorithm. Dropped tuples due to overload are shown
as stars. The processing latency maintained remains low (i.e.
7-28 us) throughout the entire experiment because the Esper
engine drops data tuples when overloaded.

When using small VM instances, the system scales up and

down the number of VMs as required by the input rate. During
a rate increase, we observe that the rate of dropped tuples
increases until the algorithm detects the change and allocates
more VMs. In the case of large instances, the algorithm
sustains processing with a single VM because it is enough to
handle the rate changes, with few tuples dropped throughout.

While our adaptive algorithm is able to scale the number of
VMs against the input rate changes, there is room for improve-
ment. There is a significant reaction delay before VMs are
scaled up and down. To reduce this delay, other performance
parameters, such as the percentage of idle CPU time or the
variance in dropped tuples, could also be considered. Another
challenge is that, in practice, it may take several minutes to
allocate extra VMs. A workaround may be to reduce this time
by exploiting Amazon EC2’s facility for creating point-in-time
snapshots of volumes using Elastic Block Storage. If used as
a starting point for new VMs, it can reduce boot-up time.

VI. FUTURE WORK

We propose multiple future research directions to adapt ex-
istent DSPS engines to a cloud computing paradigm. We want
to explore a wider range of VM types, monitoring performance
over longer periods of time and switching between VM types.
We also plan to test our approach in other cloud environments.

Second, we want to explore how to predict the future be-
haviour of input data rates and use this as part of our decision
making. This would allow us to proactively change the number
of processing VMs based on statistical workload variations. In
addition, we want to explore if latency measurements can be
used as an early predictor of overload conditions.

Third, we believe that there is scope for more advanced
autonomic techniques for resource provisioning with minimum
human intervention similar to [23], [24]. We plan to investigate
if VM parameters in a cloud-based DSPS can be controlled
dynamically based on continuous performance measurements,
taking actions when there are violations in the performance.

VII. CONCLUSIONS

Stream processing systems are becoming largely important
as the number of data-intensive applications increase. Cloud-
based DSPSs offer unique opportunities for scalable data
processing against time-changing stream rates. Based on our
experimental evidence, public clouds are suitable deployment
environments for stream processing. Our results show that
latency is the dominating factor governing the performance
of a cloud-based DSPS.

To answer the question of how to provision a DSPS in a
public cloud given a workload, we propose an adaptive algo-
rithm that scales a DSPS deployment in response to runtime
variations of input stream rates. Our algorithm periodically
estimates the number of VMs required to support the input
stream data rate such that none of the VMs is overloaded. We
evaluate this algorithm experimentally by deploying it as part
of the Esper stream processing system on the Amazon EC2
cloud. Results show that our approach can scale up and down
the number of DSPS engines on VMs as input rates change
and maintain low processing latency with low data loss.

ACKNOWLEDGEMENTS

This work was supported by grant EP/F035217/1 (“DISSP:
Dependable Internet-Scale Stream Processing”) from the UK
Engineering and Physical Sciences Research Council (EP-
SRC).

REFERENCES

[1] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk, “Gigascope:
A Stream Database for Network Applications,” in SIGMOD, 2003.

[2] D.J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel et al., “The Design
of the Borealis Stream Processing Engine,” in CIDR, 2005.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,” in
SOSP, 2003.

[4] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” in USENIX OSDI, 2004.

[5] B. Babcock, M. Datar, and R. Motwani, “Load Shedding for Aggregation
Queries over Data Streams,” in ICDE, 2004.

[6] N. Tatbul, U. Cetintemel, S. Zdonik, M. Chemiack, and M. Stonebraker,
“Load Shedding in a Data Stream Manager,” in VLDB, 2003.

[7]1 N. Tatbul, U. Cetintemel, and S. Zdonik, “Staying FIT: Efficient Load
Shedding Techniques for Distributed Stream Processing,” in VLDB,
2007.

[8] J. Wolf, N. Bansal, K. Hildrum, S. Parekh et al., “SODA: An Optimizing
Scheduler for Large-scale Stream-based Distributed Computer Systems,”
in Middleware, 2008.

[9] V. Markl, V. Raman, D. E. Simmen, G. M. Lohman, and H. Pirahesh,

“Robust Query Processing through Progressive Optimization,” in SIG-

MOD, 2004.

Y. Xing, S. B. Zdonik, and J.-H. Hwang, “Dynamic Load Distribution

in the Borealis Stream Processor,” in /CDE, 2005.

Y. Zhou, B. C. Ooi, K.-L. Tan, and J. Wu, “Efficient Dynamic Operator

Placement in a Locally Distributed Continuous Query System,” in OTM

Conferences, 2006.

E. Kalyvianaki, W. Wiesemann, Q. H. Vu, D. Kuhn, and P. Pietzuch,

“SQPR: Stream Query Planning with Reuse,” in ICDE, 2011.

W. Kleiminger, E. Kalyvianaki, and P. Pietzuch, “Balancing Load in

Stream Processing with the Cloud,” in SMDB, 2011.

“Amazon Elastic Compute Cloud (EC2),” accessed 2011. [Online].

Available: http://aws.amazon.com/ec2/

J. Rehr, F. Vila, J. Gardner, L. Svec, and M. Prange, “Scientific

Computing in the Cloud,” Computing in Science Engineering, vol. 12,

no. 3, 2010.

G. Wang and T. S. E. Ng, “The Impact of Virtualization on Network

Performance of Amazon EC2 Data Center,” IEEE INFOCOM, Mar.

2010.

S. K. Barker and P. Shenoy, “Empirical Evaluation of Latency-sensitive

Application Performance in the Cloud,” in ACM SIGMM conference on

Multimedia systems, ser. MMSys’10, 2010.

K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia,

J. Shalf, H. J. Wasserman, and N. J. Wright, “Performance Analysis

of High Performance Computing Applications on the Amazon Web

Services Cloud,” in CLOUDCOM, 2010.

C. Evangelinos, “Cloud Computing for Parallel Scientific HPC Ap-

plications: Feasibility of Running Coupled Atmosphere-Ocean Climate

Models on Amazon’s EC2.” CCA, vol. 2, no. 2.40, 2008.

S. Ostermann, R. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and

D. Epema, “An Early Performance Analysis of Cloud Computing

Services for Scientific Computing,” TU Delft, Tech. Rep., Dec. 2008.

J. Dittrich, J.-A. Quian, and J. Schad, “Runtime Measurements in the

Cloud: Observing, Analyzing, and Reducing Variance,” VLDB Endow-

ment, vol. 3, 2010.

[22] T. Bernhardt, “Esper,”

http://esper.codehaus.org/

P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Sing-

hal, and A. Merchant, “Automated Control of Multiple Virtualized

Resources,” in EuroSys, 2009.

E. Kalyvianaki, T. Charalambous, and S. Hand, “Self-adaptive and Self-

configured CPU Resource Provisioning for Virtualized Servers using

Kalman Filters,” in ICAC, 2009.

[10]

(11]

(12]
[13]
[14]

[15]

[16]

(17]

(18]

[19]
[20]
(21]
Nov. 2011.

[Online]. Available:

(23]

[24]

