
Is It Time To Put Cold Starts In The Deep Freeze?

Carlos Segarra
cs1620@ic.ac.uk

Imperial College London

Ivan Durev
i.durev23@imperial.ac.uk
Imperial College London

Peter Pietzuch
prp@imperial.ac.uk

Imperial College London

ABSTRACT
Cold-start times have been the “end-all, be-all” metric for
research in serverless cloud computing over the past decade.
Reducing the impact of cold starts matters, because they can
be the biggest contributor to a serverless function’s end-to-
end execution time. Recent studies from cloud providers,
however, indicate that, in practice, a majority of serverless
functions are triggered by non-interactive workloads. To
substantiate this, we study the types of serverless functions
used in 35 publications and find that over 80% of functions
are not semantically latency sensitive. If a function is non-
interactive and latency insensitive, is end-to-end execution
time the right metric to optimize in serverless? What if cold
starts do not matter that much, after all?
In this vision paper, we explore what serverless environ-

ments in which cold starts do not matter would look like.
We make the case that serverless research should focus on
supporting latency insensitive, i.e., batch, workloads. Based
on this, we explore the design space for DFaaS, a serverless
framework with an execution model in which functions can
be arbitrarily delayed. DFaaS users annotate each function
with a delay tolerance and, as long as the deadline has not
passed, the runtime may interrupt or migrate function execu-
tion. Our micro-benchmarks suggest that, by targeting batch
workloads, DFaaS can improve substantially the resource
usage of serverless clouds and lower costs for users.

CCS CONCEPTS
• Computer systems organization→ Cloud computing.

KEYWORDS
cloud computing, serverless, function-as-a-service, cold-starts,
batch processing, serverless accelerators

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SoCC ’24, November 20–22, 2024, Redmond, WA, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1286-9/24/11. . . $15.00
https://doi.org/10.1145/3698038.3698527

ACM Reference Format:
Carlos Segarra, Ivan Durev, and Peter Pietzuch. 2024. Is It Time
To Put Cold Starts In The Deep Freeze?. In ACM Symposium on

Cloud Computing (SoCC ’24), November 20–22, 2024, Redmond, WA,

USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3698038.3698527

1 INTRODUCTION
Prior research on serverless cloud computing has focused on
reducing cold-start latencies [1, 4, 12, 18, 36, 38, 47, 51, 53,
59, 60, 68]. The cold-start latency refers to the time that it
takes the serverless provider to provision an execution en-
vironment for a serverless function. Production traces from
serverless environments in clouds show that cold start times
can dominate the end-to-end execution time of serverless
functions, measured as the time elapsed between function in-
vocation and response [26, 40, 57]. By optimizing cold starts,
prior work is, in fact, optimizing end-to-end execution time.

The same production traces, however, also reveal another
trait of serverless functions in practice: most function invo-
cations are triggered by non-interactive events from storage,
queueing, or orchestration systems. For example, Azure re-
ports that over 64% of function invocations are triggered
by non-interactive events [57]; at Meta, this percentage is
85% [52]. If functions are triggered by non-interactive events,
is end-to-end execution time the right metric to reduce?

Based on the hypothesis that serverless functions are used
in non-interactive workloads, we classify the serverless func-
tions in 35 research articles depending on their use case,
and find that 80% of functions do not have a latency focus.
We call these functions latency insensitive. For example, a
function to compress an image [15, 28, 31, 68] for long-term
archival storage does not have a strict latency requirement.
If functions are latency insensitive, why reduce end-to-end
execution time?
Based on an empirical analysis (§2), we conclude that,

contrary to established wisdom, much serverless usage today
is for non-interactive latency insensitive workloads, which
do not benefit from cold-start optimizations. We do not know
if this is due to the demands of real-world workloads, or
cold-start optimizations in serverless infrastructure lagging
behind research [16, 40].

Instead, we make the case that batch workloads are a gen-
uinely good fit for a serverless model: in traditional cloud
computing, the user controls the application (what), the

https://orcid.org/0000-0003-3455-7563
https://orcid.org/0009-0006-7583-7069
https://orcid.org/0000-0002-6963-5640
https://doi.org/10.1145/3698038.3698527
https://doi.org/10.1145/3698038.3698527
https://doi.org/10.1145/3698038.3698527

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Carlos Segarra, Ivan Durev, and Peter Pietzuch

server (where), and the request (when); in current server-
less models, the user controls the what and the when, and
the cloud provider controls the where. This separation of
concerns leads to the ease-of-use of serverless and its cost
savings. When serverless is applied to batch workloads, the
user still controls the what, but the cloud provider can now
control both the when and the where. This further separation
of concerns is an important next step to fully realize the
benefits of a serverless model [25].

In addition, many batch workloads, such as machine learn-
ing (ML), require hardware acceleration [27, 32, 58]. Accel-
erators are an expensive resource and hard to provision and
configure [17]. We believe that – in the way how server-
less achieved CPU and memory transparency for functions –
serverless for batch workloads can achieve accelerator trans-
parency. The corresponding improvements in cost and ease-
of-use would make serverless an attractive execution model
for accelerated batch workloads.

Since workloads such as ML inference must batch requests
for cost efficiency, can serverless for batch workloads make
them more cost effective? Less expensive, pay-per-use ML
inference [20] would have a major impact on the popularity
of serverless offerings, and prompts us to ask the question
motivating this paper: How can we better support latency-

tolerant batch workloads through a serverless model?

Our attempt at answering this question is the exploration
of the design of DFaaS, a new serverless framework in which
function execution can be delayed (§3.1). DFaaS builds on
previous work that explores optimizations for serverless re-
source usage [62], including delay-tolerant (or time-shifted)
computation [52, 54], access to accelerators [17, 39], and
function multiplexing [62]. DFaaS bridges the gap between
function-as-a-service (FaaS) and batch: it annotates each
function with a latency deadline and, as long as the deadline
has not passed, the functionmay be interrupted andmigrated
arbitrarily. Unlike best-effort computing [67, 71], DFaaS
does not tolerate deadline violations and supports latency-
sensitive functions, i.e., ones that have no slack in their dead-
lines. To optimize resource usage, function execution may
be: (i) delayed to use warm resources (§3.2); (ii) fused with
other functions to pipeline compute and I/O blocks (§3.3);
and (iii) routed to dedicated per-language/accelerator queues
to increase memory density and improve performance (§3.4).
DFaaS naturally applies to serverless workflows as long

as chaining dependencies are preserved. In a serverless work-
flow, we consider the situation in which some functions are
latency sensitive and others are not. For example, in an im-
age processing workflow [15, 18, 31, 63, 65, 68, 69, 73], the
first function may have to return a visual acknowledgment
to the user, and thus is latency sensitive, but all subsequent
functions can do the actual processing in the background,
and thus become latency insensitive.

Our benchmarks show that DFaaS has potential to im-
prove serverless infrastructure utilization: by delaying func-
tion execution, it reduces peak resource demand by up to 72%
based on available production traces [26, 57]. By carefully
fusing functions from the same workflow, it can improve
CPU usage by up to 2×.

2 WHY COLD STARTS DO NOT MATTER
Next, we provide empirical evidence for the two claims as to
why cold starts do not matter (that much): (C1) many server-
less functions are triggered by non-interactive events; and
(C2) many serverless functions are latency insensitive. We
also claim that, as a consequence of cold-start optimizations,
(C3) serverless infrastructure resource usage is low. We back
these claims with empirical evidence from workload traces
and reports (§2.1), academic surveys (§2.2), and a study of
serverless research papers (§2.3).

2.1 Industry traces and reports
Meta, with its private serverless offering XFaaS [52], was
the first major company to acknowledge most of our claims,
and this work is inspired by their findings. Sahrei et al. claim
that functions triggered non-interactively (i.e. not via direct
HTTP requests) tend to be more delay tolerant. They report
that at least 85% of their function invocations fall under this
category (C1). They also claim that: “[. . .] at Meta, serverless

functions are rarely used to handle user-facing requests requir-

ing sub-second response times” [52]. This means that server-
less functions at Meta are, by construction, latency insensi-
tive (C2). We find this quote insightful, as it challenges the
long-standing effort to reduce cold starts. The authors also
report, after implementing a full set of infrastructure-wide
optimizations, an average CPU utilization on their worker
nodes of 66%, and claim that this could be several times
higher than other industrial FaaS platforms (C3). Although
they cannot back up this claim, they suggest focusing on high
resource usage and function throughput in public clouds.
Alibaba presented traces from their public FaaS offering,
Cloud Function Compute, as part of an effort to acceler-
ate FaaS container image provisioning [66]. These traces
include three representative FaaS applications: gaming, IoT,
and video processing. Wang et al. do not clarify whether
these applications are latency sensitive or not, but report
that 57% of image pulls for their Beijing region see laten-
cies longer than 45 seconds, and 86% of image pulls in their
Shanghai region see latencies longer than 80 seconds. These
latencies motivated Alibaba to optimize image pull times.
We observe that, if the original FaaS applications experi-
enced these latencies, they were most likely already used in
a latency-insensitive context (C2). In addition, they report
a peak-to-trough load ratio of more than 500×. This means

Is It Time To Put Cold Starts In The Deep Freeze? SoCC ’24, November 20–22, 2024, Redmond, WA, USA

that, in their effort to mitigate cold starts and not allowing
functions to be delayed, they suffer from high resource over-
provisioning and sandbox churn, known to introduce severe
resource underutilization [16] (C3).
Huawei presented traces from both their public and pri-
vate FaaS offerings [26]. From these traces, we cannot infer
if functions are triggered by interactive or non-interactive
events. However, they study the periodicity of function invo-
cations and conclude that: “A significant number of functions

in both platforms have strong periodicity [. . .]. Periodicity is

especially significant for more highly requested functions” [26].
We claim that if a function is highly periodic, it is likely to be
triggered by non-interactive events such as cron jobs (C1),
and probably latency insensitive (C2). Even if a periodic func-
tion was latency sensitive, its periodicity and predictability
make it likely to be scheduled in advance, effectively hiding
its latency requirements. In terms of resource usage, they
also report a high peak-to-trough ratio (which we also plot
in Fig. 2b). The authors highlight that another big source of
resource underutilization is that functions over-provision
resources, with 60% of allocations using less than an order
of magnitude of their requested CPU resources (C3).
Azure was the first cloud provider to characterize a pub-
lic FaaS offering, Azure Functions, and make traces avail-
able to the community [57]. While this motivated much
serverless research, four years later, we look back at it un-
der a different light. Shahrad et al. report that only 36%
of function invocations come from HTTP requests. This
means that 64% of function invocations are triggered by non-
interactive events (C1). From the original traces, we cannot
infer whether the functions are latency sensitive. However,
if we consider the follow-on work on Durable Functions,
Azure’s offering for serverless workflows, we see that all
examples cited, implemented and evaluated are latency in-
sensitive [11]. Albeit potentially anecdotal, this makes us
believe that a relevant portion of the functions fall under this
category (C2). In terms of resource usage, we see Huawei’s
claims confirmed: high peak-to-trough load ratios and low
intra-function resource usage, which potentially result in
infrastructure-wide resource underutilization (C3).
Other self-reported usage of serverless at scale without pro-
duction traces or peer review also exist. A study on the AWS
marketplace shows that, semantically, only 1% of functions
deployed from the serverless marketplace are latency sen-
sitive [61] (C2). These correspond largely to microservice
HTTP endpoint functions. Similarly, a series of articles on
Netflix’s video processing pipeline shows that they use “mi-

croservices that orchestrate serverless functions” [46] (C1) to
balance latency sensitive tasks (handled by always-on mi-
croservices) with latency insensitive tasks (handled by cheap

on-demand serverless) with latency deadlines in the order
of days [45, 46] (C2).

2.2 Research surveys
Several surveys have studied the use of serverless in practice.
Eismann et al. [19] report that, across all their studied scenar-
ios, 45% of function invocations are non-interactive (C1). The
authors also analyze the relevance of latency for serverless
functions and claim that, for 36% of functions, latency is irrel-
evant. Their distribution of application types suggests that
only 20% of functions are latency sensitive (C2). These results
coincide with our field study (Tab. 1). Hassan et al. [21] also
analyze the types of serverless applications used in exist-
ing literature and reach similar conclusions: most serverless
applications do background tasks such as file processing
or information retrieval and are pervasive in edge or IoT
scenarios (C2). Mampage et al. [44] confirm this.

2.3 Field study
To substantiate our claims, we analyze the serverless func-
tions used in the research literature. For each function or
workflow used in a research paper, we decide if it is seman-
tically latency sensitive or not. We classify a function as
semantically latency insensitive if the task performed can

tolerate delays. File encryption, compression, or batch ana-
lytics are, for example, considered to tolerate delays, whereas
functions serving API requests in a web server are not. For
serverless workflows, we classify workflows where only the
first function is latency sensitive as latency insensitive. This is
a common situation in practice, and could be treated as a spe-
cial case in an otherwise latency insensitive (i.e., delayable)
architecture. Most microservice-like workflows, where the
first function returns an acknowledgment and the rest per-
form a task in the background, fall under this category.
Tab. 1 shows our results: most serverless functions per-

form background, batch-processing, or periodic jobs that can
tolerate delays and are thus latency insensitive. In particular,
from 35 papers, 80% of functions and 71% of workflows are
latency insensitive (C2).

2.4 Summary
In this section, we have presented supporting evidence for
two claims about a relevant portion of serverless functions
in practice: (C1) functions are triggered by non-interactive
events and (C2) functions are latency insensitive. These func-
tions do not, as a consequence, benefit from cold-start op-
timizations which, we claim, (C3) are negatively affecting
serverless infrastructure resource utilization.
It is not possible for us to know if serverless functions

are latency insensitive because existing infrastructure does
not support fast-enough instantiation times [16, 40], or it is

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Carlos Segarra, Ivan Durev, and Peter Pietzuch

Name Used In Latency Sensitive

Functions

Encryption FunctionBench [28], Medes [53], vHive [65], Desiccant [73], Ignite [14], Pronghorn [31], Ensure [63] Yes
Complex Math Cirrus [13], DataFlower [37], Desiccant [73], Ensure [63], FaaSdom [43], Medes [53], MuBenchmark [8], Pagurus [36],

Netherite [11]
No

E-mail Notification Ensure [63], Fusionize [56], ProFaaStinate [54] No
File Compression FunctionBench [28], Pronghorn [31], RainbowCake [68], SeBS [15] No
File Upload Pronghorn [31], RainbowCake [68], SeBS [15], ProFaaStinate [54] No
Filesystem Access Desiccant [73], FaaSdom [43], SEUSS [12] No
Generic Test Boki [23], Catalyzer [18], FUYAO [39], Netherite [11], SEUSS [12], SOCK [47] No
Graph Algorithms Desiccant [73], Ensure [63], Pronghorn [31], RainbowCake [68], SeBS [15] No
Log Serving Golgi [35], Owl [64] Yes
ML Inf/Train Faasm [59] (×2) No
Matmul Desiccant [73], Ensure [63], FaaSdom [43], MuBenchmark [8], Pronghorn [31] No
OCR ProFaaStinate [54], RainbowCake [68] No
PageRank Pronghorn [31], SeBS [15] Yes
Sorting / Scanning Desiccant [73], Ensure [63], Pocket [29], ProFaaStinate [54], MuBenchmark [8], SEUSS [12] No
Web Server Catalyzer [18], Desiccant [73] (×2), FaaSdom [43], SEUSS [12] Yes

Percentage non latency-sensitive: 80%

Workflows

Bank / ChatBot Netherite [11], Orion [42], Pagurus [36] No
Data Analysis Desiccant [73], Ensure [63], Faastlane [33], FINRA [2], Fusionize [56], FUYAO [39], Golgi [35], Owl [64], Pagurus [36],

ProFaaStinate [54], RainbowCake [68], RMMap [41], ServerlessBench [69]
No

DNA Processing RainbowCake [68], SeBS [15] No
HTML Generation Desiccant [73], Faa$T [50], FunctionBench [28], Ignite [14], Medes [53], Pronghorn [31], RainbowCake [68], SeBS [15],

vHive [65]
Yes

Image Processing DataFlower [37], Catalyzer [18], Desiccant [73], Ensure [63], Faastlane [33] (×2), Golgi [35], Medes [53], MXFaaS [62],
Owl [64] (×2), Pronghorn [31], RainbowCake [68] (×2), SeBS [15] (×2), ServerlessBench [69], SOCK [47], vHive [65]
(×2)

No

JSON Operations FunctionBench [28], vHive [65] Yes
Media Streaming Beldi [70], Boki [23], FUYAO [39], Sprocket [3] Yes*
ML Inference Cirrus [13], Ensure [63], Faa$T [50], Faastlane [33], Medes [53], MXFaaS [62], Pagurus [36] , RainbowCake [68],

RMMap [41], vHive [65]
No

ML Training Cirrus [13], Medes [53], MXFaaS [62], Orion [42], RainbowCake [68], RMMap [41], vHive [65] No
Online Compilation Faa$T [50], Pocket [29], RainbowCake [68], ServerlessBench [69] No
Device Control Desiccant [73], Golgi [35], Owl [64], ServerlessBench [69] Yes
Social Network Beldi [70], Boki [23], Catalyzer [18], Pagurus [36] Yes*
Store / Search Catalyzer [18], Desiccant [73] (×2), Fusionize [56], MXFaaS [62], Pagurus [36] Yes*
Travel Reservation Beldi [70], Boki [23], MXFaaS [62] Yes*
A/V Processing DataFlower [37], Medes [53], MXFaaS [62], Owl [64], Pronghorn [31], RainbowCake [68], SeBS [15], Sprocket [3]

(×2), vHive [65], Pocket [29], Orion [42]
No

WordCount DataFlower [37], Desiccant [73], FunctionBench [28], Ignite [14], Medes [53], Netherite [11], Pronghorn [31],
RMMap [41]

No

Percentage non latency-sensitive: 71 %

Table 1: Field study of the type of serverless functions used for serverless research (For workflows, Yes* means that most functions
in the workflow are latency sensitive.)

the genuine demand for serverless. We make the point that,
in any case, non-interactive latency insensitive (i.e., batch)
workloads are indeed a good fit for the serverless execu-
tion model. We believe that an undue emphasis has been
placed on the cold start problem, which has happened to
the detriment of supporting batch workloads. We explore
next how, by ignoring cold starts, we can offer a serverless
environment that is cheaper and more resource efficient.

3 DELAYABLE FAAS
In this section, we describe DFaaS, our vision for a server-
less environment in which functions can be delayed arbitrar-
ily (§3.1). DFaaS aims for high resource usage and function
throughput by using three techniques: function delay (§3.2),
function fusion (§3.3), and semantic scheduling (§3.4).

Is It Time To Put Cold Starts In The Deep Freeze? SoCC ’24, November 20–22, 2024, Redmond, WA, USA

Function
Invocation

Yes

NoDelayable? Traditional
Scheduler

Available
Machine

Trigger

Queue of
Functions

Yes

No

Done? Response

Yes

NoBlocked?

Context
Switch

Shared
Machine

No

Yes

Done?

Asynchronous
Response

Figure 1: Overview of a DFaaS deployment (In a DFaaS de-
ployment, a runtime for non-delayable, i.e., traditional, functions
co-exists with a runtime for delayable ones.)

3.1 Overview
DFaaS bridges the gap between a serverless execution model
and batch workloads by allowing functions to be arbitrarily
delayed. Serverless functions in DFaaS are annotated with a
delay tolerance. In aDFaaS deployment (Fig. 1), the delayable
serverless backend co-exists with a traditional backend to
provide backwards-compatibility with latency sensitive func-
tions. A delay tolerance of 0 indicates that a function is la-
tency sensitive and will be routed to the traditional backend;
otherwise, the function will be routed to the delayable back-
end. A delay tolerance of −1 means that the function can be
arbitrarily delayed as long as it eventually runs.

When a latency sensitive function is invoked, the runtime
will execute it immediately, hopefully on a pre-initialized (warm)
execution environment. Conversely, when a latency insensi-
tive function is invoked, it may wait in a queue of functions.
Latency insensitive functions can be preempted during exe-
cution and returned to the queue and, to optimize resource
usage, may execute on shared machines. Latency insensi-
tive functions are guaranteed the same isolation as latency
sensitive ones.
Adding delay tolerance to a serverless function’s defini-

tion is a simple, yet powerful, abstraction [52, 54]. Next, we
introduce the techniques for high-level function orchestra-
tion enabled by this new abstraction, and we validate their
potential benefits. In §4, we discuss further techniques and
their implementation challenges.

3.2 Function delay
We first consider function delay in DFaaS, which involves
postponing function execution to a later time point. It has
been used in related work to homogenize function invocation
patterns [52, 54]. Meta’s internal FaaS offering, for example,

exhibits strong diurnal periodicity, with many analytics jobs
being triggered at midnight. These batch jobs can instead be
delayed to other times of the day, when demand for comput-
ing resources is lower [52].
Fig. 2 shows the request arrival pattern from the Azure

trace over 14 days [57], and theHuawei trace over 26 days [26].
Both traces show strong diurnal periodicity and high churn.
In the same figure, we show a horizontal line, indicating the
number of sandboxes required to serve the same number of
function invocations with a uniform arrival rate. Flattening
the arrival rate requires perfect knowledge of the function
invocation distribution, but it gives an upper bound on how
much it is possible to reduce sandbox creation churn. In the
case of Azure, the difference between peak and flattened
requests is 20%; in the case of Huawei, it is 72%. Reducing
sandbox creation churn would mitigate orchestration over-
heads, known to be large at scale [16].

3.3 Function fusion
The second technique that we consider is function fusion,
which is a form of resource over-commitment [35, 64]. The
observation behind function fusion is that serverless func-
tions spend much time blocked on I/O requests, waiting for
data from external storage [22, 24, 33, 41]. By fusing func-
tions together, when one function blocks for I/O, DFaaS can
switch context to another function, increasing throughput
and CPU usage. Such a fusion approach allows DFaaS to
embrace a true pay-per-use billing model in which serverless
users are only charged for used CPU time and not for blocked
I/O time. Our experiments with Azure Functions confirm
that users are, indeed, charged for CPU time when func-
tions are blocked on I/O, even when using the recommended
asynchronous API [7].
In addition, function fusion addresses the long-standing

double-billing problem in serverless, which makes nested
chaining a design anti-pattern [5, 9, 55]. Today’s serverless
platforms charge users for the time functions wait for nested
calls [6],1 whereas DFaaS avoids this due to function fusion.
There are two reasons why function fusion has seen lim-

ited adoption: (1) if optimizing for end-to-end execution time,
it is challenging for a serverless scheduler to know when the
overheads of context-switching do not outweigh the benefits
of increased throughput. In DFaaS, given that we do not
optimize for end-to-end execution time, functions may wait
after performing I/O until the scheduler decides to context
switch again; and (2) function fusion assumes that there is al-
ways another function to be context-switched to. In general,
this assumption does not hold in traditional serverless en-
vironments, but it holds in DFaaS, as functions are delayed
and batched together.

1In Azure Functions, orchestrator functions are the only exception to this.

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Carlos Segarra, Ivan Durev, and Peter Pietzuch

1 3 5 7 9 11 13 15
Start of Nth day

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
um

be
ro

fi
nv

oc
at

io
ns

×107

(a) Azure [57]

1 5 9 13 17 21 25
Start of Nth day

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
um

be
ro

fi
nv

oc
at

io
ns

×107

(b)Huawei [26]

Figure 2: Hourly function invocation rates from industry traces (We present consecutive days to show the diurnal periodicity as well
as the peak-to-average difference. The black line shows the number of invocations served per hour with the arrival rate flattened.)

0.0 0.5 1.0 1.5 2.0 2.5
Elapsed Time (s)

Execution

Compute

I/O

Image Upload: 2.5 s

POST Image: 1.238 s

Read: 260 ms Write: 481 ms

(a) Image upload

0.0 0.5 1.0 1.5 2.0 2.5
Elapsed Time (s)

Execution

Compute

I/O

Thumbnail Generation: 2.8 s

Read: 2.09 s

Generation: 254 ms

Write: 83 ms

(b) Thumbnail generation

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Elapsed Time (s)

Execution

Compute

I/O

Image Compression: 3.7 s

Read: 2.045 s

Compress: 1.112 s

Write: 40 ms

(c) Compression

Figure 3: Image processing workflow (The image upload function
chains the thumbnail generation and compression.)

0 2 4 6 8 10 12 14
Elapsed Time (s)

U0
U1
U2
T0
C0
T1
C1
T2
C2

(a) Image upload is latency sensitive

0 2 4 6 8 10 12 14
Elapsed Time (s)

U0
U1
U2
T0
C0
T1
C1
T2
C2

(b) Image upload is latency insensitive

Figure 4: Fusion of three workflows (In gray, we show time
blocked on I/O. We focus on single CPU core execution.)

To show the benefits of function fusion, we implement
an image processing workflow [15, 18, 31, 63, 65, 68, 69, 73]
in Azure Functions. Fig. 3 shows the execution time of each
function in the workflow, differentiating between process-
ing time and I/O time. The gaps in-between correspond to
I/O set-up time. The upload function (Fig. 3a) is the first
function in the workflow, and it chains to the other two in
parallel (Fig. 3b and Fig. 3c). This example workflow spends
50% of its execution time blocked on I/O.
In Fig. 4, we present two possible execution plans for

the workflow after applying function fusion, depending on
whether the first function in the workflow is latency sensi-
tive (Fig. 4a) or not (Fig. 4b). By interleaving different steps of
the workflow and assuming perfect context switches, we can

reduce the time blocked on I/O to 15% and 12%, respectively,
concentrating execution on just 1 core CPU instead of 3.
We prototype function fusion in OpenWhisk [48]. We

modify the scheduler, storage server, and Node.js runtime
to support interrupting functions when they make a request
to the storage server. Our prototype does not yet support
function chaining, nor tracing, but, when running a batch of
functions interleaving compute and I/O, we observe a similar
efficiency increase from 54% to 89%.

3.4 Semantic scheduling
Finally, semantic scheduling is a catch-all term for sched-
uling functions to resources according to some high-level
property of the function such as its programming language,
JIT/GC state, or accelerator (e.g., FPGA, GPU, DPU, or ASIC)

Is It Time To Put Cold Starts In The Deep Freeze? SoCC ’24, November 20–22, 2024, Redmond, WA, USA

Python Queue

Java Queue

Load
Balancer

Java Queue

Python Queue

Triggered function

Ja
va

VM GCJIT

Py
th
on

VM GCJIT

Java Queue

Python Queue

Python QueuePython Queue
C
lo
ud

VM CUDAGPU Queue

Python QueuePython QueueFPGA Queue

G
PU

C
lo
ud

VM Shim

FPG
A

Figure 5: Overview of function queue design (Functions are
routed to different queues depending on the required language
runtime or accelerator.)

requirements. Recent work has shown the importance of
maintaining JIT [31, 52] and GC [73] state in serverless exe-
cution, as well as the challenges of transparently supporting
heterogeneous devices [17]. DFaaS builds on top of these
ideas with the additional benefit of being able to delay func-
tion execution to prepare the execution environment.
In Fig. 5, we show a simplified architecture for a queue

of functions from Fig. 1. In this example, DFaaS has per
language-runtime and accelerator queues, and long-running
VMs that maintain the JIT/GC state, as well as the accelera-
tor runtime state. The VMs can be switched on only when
enough functions wait in the queues, amortizing the cost of
longer restores of the stateful JIT and GC components, or the
cost of creating a cloud FPGA [32]. We expect such a design
to yield benefits in terms of resource usage by de-duplicating
memory and storage contents more effectively, as well as
in terms of performance by sharing profiling information
between co-located language runtimes and accelerators. We
defer security considerations about multi-tenant access to
accelerators [17, 72] or sharing JIT/GC state to future work.

4 DISCUSSION
In this section, we discuss open challenges for realizing our
vision (§4.1) and further optimization opportunities (§4.2).

4.1 Challenges to our vision
In our presentation of DFaaS, we only described high level
architecture considerations, together with potential orches-
tration mechanisms and their benefits. We anticipate the
following challenges when implementing a complete DFaaS
environment:

Programming model. DFaaS inherits the programming
model from FaaS. Such a simplified model, however, cannot
extend beyond CPU computation. Molecule [17] explored
how to expose device heterogeneity to programmers, and
we plan to build on that. Tied to the programming model
is the execution abstraction that supports multi-tenant het-
erogeneous execution. How to achieve this, how to let users
specify their workload requirements, and how to bill them
accordingly remain open challenges.
Varying delay tolerances. Our function orchestration tech-
niques, and particularly function delay (§3.2), rely on func-
tions being (infinitely) delayable. In practice, we expect func-
tions to have a finite delay tolerance or an opportunistic
quota similar to XFaaS [52]. Implementing our function or-
chestration techniques subject to different delay tolerances
requires a careful design of the scheduling, load balancing,
and queuing components, and remains an open challenge.
Co-existence with traditional serverless runtime. In our
DFaaS reference architecture (§3.1), we co-locate a delayable
serverless runtime with a traditional, non-delayable server-
less runtime. Having such an architecture could potentially
negateDFaaS’s benefits in term of resource usage. Therefore,
we imagine that, in practice, the delayable and non-delayable
infrastructure must become more integrated. Which com-
ponents to share and how to make them cooperate reamin
open challenges.

4.2 Further opportunities
Cold-starts have influenced the design of many components
in the serverless stack from the cluster manager [16] to the
programming model [34], including storage [29, 50], com-
munication [41], execution environments [59], and image
provisioning [10]. Ignoring cold-starts thus challenges the
previous design choices and opens up the design space for
a class of serverless frameworks. We will explore optimiza-
tions in adjacent areas such as ML inference [20] or RPC
scheduling [30, 49] to leverage their findings in DFaaS.

5 CONCLUSIONS
We have presented DFaaS, our vision for a serverless en-
vironment in which cold starts do not matter. Based on an
analysis of cloud workload traces, academic surveys, and re-
search publications, we observe that a lot of serverless usage
today is, contrary to popular wisdom, for non-interactive,
latency insensitive, batch workloads. We make the case that
batch workloads are a good fit for serverless and conclude
that, instead of focusing on cold-starts, serverless cloud re-
searchers should focus on supporting batch workloads.
Using these insights, we present DFaaS, a first step to-

wards a FaaS platform for batch workloads. DFaaS bridges
the gap between FaaS and batch by allowing functions to

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Carlos Segarra, Ivan Durev, and Peter Pietzuch

be delayed arbitrarily. We describe a DFaaS reference archi-
tecture, as well as function orchestration techniques, and
describe the possible challenges when implementing them.

We believe that focusing on batch workloads such as ML
inference and leaving cold-starts behind opens a novel and
exciting research direction in serverless, and we hope that
researchers in the field will join us in exploring the opportu-
nities ahead.
Acknowledgments. This work has been partially funded
by the European Union through the Horizon Europe projects
CloudStars (101086248) andCloudSkin (101092646).We thank
our shepherd, Prashant Shenoy, the anonymous reviewers,
and Marios Kogias for their helpful feedback.

REFERENCES
[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony

Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.
Firecracker: Lightweight Virtualization for Serverless Applications. In
17th USENIX Symposium on Networked Systems Design and Implemen-

tation (NSDI ’20).
[2] Amazon. 2014. FINRA Case Study. https://aws.amazon.com/solutions/

case-studies/finra/.
[3] Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and George Porter.

2018. Sprocket: A Serverless Video Processing Framework. In ACM

Symposium on Cloud Computing (SoCC ’18).
[4] Lixiang Ao, George Porter, and Geoffrey M. Voelker. 2022. FaaSnap:

FaaS made fast using snapshot-based VMs. In 17th European Conference
on Computer Systems (EuroSys ’22).

[5] AWS. 2014. Functions Calling Functions. https://docs.aws.amazon.
com/lambda/latest/operatorguide/functions-calling-functions.html.

[6] Azure. 2014. Azure Functions Billing. https://learn.microsoft.com/en-
us/azure/azure-functions/durable/durable-functions-billing.

[7] Azure. 2014. Azure Functions Performance Reliability - Use
Async Code. https://learn.microsoft.com/en-us/azure/azure-functions/
performance-reliability.

[8] Timon Back and Vasilios Andrikopoulos. 2018. Using a Microbench-
mark to Compare Function as a Service Solutions. In 7th IFIP WG 2.14

European Conference (ESOCC ’18).
[9] Ioana Baldini, Perry Cheng, Stephen J. Fink, Nick Mitchell, Vinod

Muthusamy, Rodric Rabbah, Philippe Suter, and Olivier Tardieu. 2017.
The serverless trilemma: function composition for serverless comput-
ing. In ACM SIGPLAN International Symposium on New Ideas, New

Paradigms, and Reflections on Programming and Software (Onward!

’17).
[10] Marc Brooker, Mike Danilov, Chris Greenwood, and Phil Piwonka.

2023. On-demand Container Loading in AWS Lambda. In USENIX

Annual Technical Conference (ATC ’23).
[11] Sebastian Burckhardt, Badrish Chandramouli, Chris Gillum, David

Justo, Konstantinos Kallas, Connor McMahon, Christopher S. Meik-
lejohn, and Xiangfeng Zhu. 2022. Netherite: efficient execution of
serverless workflows. Proc. VLDB Endow. (2022).

[12] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger,
and Jonathan Appavoo. 2020. SEUSS: skip redundant paths to make
serverless fast. In 15th European Conference on Computer Systems (Eu-

roSys ’20).
[13] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and

Randy Katz. 2019. Cirrus: a Serverless Framework for End-to-end ML
Workflows. In ACM Symposium on Cloud Computing (SoCC ’19).

[14] Joao Carreira, Sumer Kohli, Rodrigo Bruno, and Pedro Fonseca. 2021.
From warm to hot starts: leveraging runtimes for the serverless era.
In Workshop on Hot Topics in Operating Systems (HotOS ’21).

[15] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Pod-
stawski, and Torsten Hoefler. 2021. SeBS: a serverless benchmark
suite for function-as-a-service computing. In 22nd International Mid-

dleware Conference (Middleware ’21).
[16] Lazar Cvetković, Rodrigo Fonseca, and Ana Klimovic. 2023. Under-

standing the Neglected Cost of Serverless Cluster Management. In 4th

Workshop on Resource Disaggregation and Serverless (WORDS ’23).
[17] Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia, Binyu Zang, and

Haibo Chen. 2022. Serverless computing on heterogeneous comput-
ers. In 27th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS ’22).
[18] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang

Qin, Qixuan Wu, and Haibo Chen. 2020. Catalyzer: Sub-millisecond
Startup for Serverless Computing with Initialization-less Booting. In
25th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS ’20).
[19] Simon Eismann, Joel Scheuner, Erwin Eyk, Maximilian Schwinger,

Johannes Grohmann, Nikolas Herbst, Cristina Abad, and Alexandru
Iosup. 2020. A Review of Serverless Use Cases and their Characteristics.
https://arxiv.org/abs/2008.11110.

[20] Yao Fu, Leyang Xue, Yeqi Huang, Andrei-Octavian Brabete, Dmitrii
Ustiugov, Yuvraj Patel, and Luo Mai. 2024. ServerlessLLM: Low-
Latency Serverless Inference for Large Language Models. In 18th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI ’24).
[21] Hassan Hassan, Saman Barakat, and Qusay Sarhan. 2021. Survey on

serverless computing. Journal of Cloud Computing (2021).
[22] Joseph M. Hellerstein, Jose M. Faleiro, Joseph Gonzalez, Johann

Schleier-Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang
Wu. 2018. Serverless Computing: One Step Forward, Two Steps Back.
https://arxiv.org/abs/1812.03651. (2018).

[23] Zhipeng Jia and Emmett Witchel. 2021. Boki: Stateful Serverless Com-
puting with Shared Logs. In 28th Symposium on Operating Systems

Principles (SOSP ’21).
[24] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Ben-

jamin Recht. 2017. Occupy the cloud: distributed computing for the
99%. In ACM Symposium on Cloud Computing (SoCC ’17).

[25] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, et al. 2019. Cloud Programming Simplified: A Berkeley View
on Serverless Computing. https://arxiv.org/abs/1902.03383.

[26] Artjom Joosen, Ahmed Hassan, Martin Asenov, Rajkarn Singh, Luke
Darlow, JianfengWang, andAdamBarker. 2023. HowDoes It Function?
Characterizing Long-Term Trends in Production Serverless Workloads.
In ACM Symposium on Cloud Computing (SoCC ’23).

[27] Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im, Marco Canini,
Dejan Kostić, Youngjin Kwon, Simon Peter, and Emmett Witchel. 2021.
LineFS: Efficient SmartNIC Offload of a Distributed File System with
Pipeline Parallelism. In 28th Symposium on Operating Systems Principles

(SOSP ’21).
[28] Jeongchul Kim and Kyungyong Lee. 2019. Practical Cloud Workloads

for Serverless FaaS. In ACM Symposium on Cloud Computing (SoCC

’19).
[29] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas

Pfefferle, and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Stor-
age for Serverless Analytics. In 13th USENIX Symposium on Operating

Systems Design and Implementation (OSDI ’18).
[30] Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fietz, and Edouard

Bugnion. 2019. R2P2: Making RPCs first-class datacenter citizens. In

https://aws.amazon.com/solutions/case-studies/finra/
https://aws.amazon.com/solutions/case-studies/finra/
https://docs.aws.amazon.com/lambda/latest/operatorguide/functions-calling-functions.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/functions-calling-functions.html
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-billing
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-billing
https://learn.microsoft.com/en-us/azure/azure-functions/performance-reliability
https://learn.microsoft.com/en-us/azure/azure-functions/performance-reliability
https://arxiv.org/abs/2008.11110
https://arxiv.org/abs/1812.03651
https://arxiv.org/abs/1902.03383

Is It Time To Put Cold Starts In The Deep Freeze? SoCC ’24, November 20–22, 2024, Redmond, WA, USA

USENIX Annual Technical Conference (ATC ’19).
[31] Sumer Kohli, Shreyas Kharbanda, Rodrigo Bruno, Joao Carreira, and

Pedro Fonseca. 2024. Pronghorn: Effective Checkpoint Orchestration
for Serverless Hot-Starts. In 19th European Conference on Computer

Systems (EuroSys ’24).
[32] Dario Korolija, Timothy Roscoe, and Gustavo Alonso. 2020. Do OS

abstractions make sense on FPGAs?. In 14th USENIX Symposium on

Operating Systems Design and Implementation (OSDI ’20).
[33] Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and Arkaprava Basu.

2021. Faastlane: Accelerating Function-as-a-Service Workflows. In
USENIX Annual Technical Conference (ATC ’21).

[34] Tom Kuchler, Michael Giardino, Timothy Roscoe, and Ana Klimovic.
2023. Function as a Function. In ACM Symposium on Cloud Computing

(SoCC ’23).
[35] Suyi Li, Wei Wang, Jun Yang, Guangzhen Chen, and Daohe Lu. 2023.

Golgi: Performance-Aware, Resource-Efficient Function Scheduling
for Serverless Computing. In ACM Symposium on Cloud Computing

(SoCC ’23).
[36] Zijun Li, Linsong Guo, Quan Chen, Jiagan Cheng, Chuhao Xu, Deze

Zeng, Zhuo Song, Tao Ma, Yong Yang, Chao Li, and Minyi Guo. 2022.
Help Rather Than Recycle: Alleviating Cold Startup in Serverless
Computing Through Inter-Function Container Sharing. In USENIX

Annual Technical Conference (ATC ’22).
[37] Zijun Li, Chuhao Xu, Quan Chen, Jieru Zhao, Chen Chen, and Minyi

Guo. 2024. DataFlower: Exploiting the Data-flow Paradigm for Server-
less Workflow Orchestration. In 28th ACM International Conference

on Architectural Support for Programming Languages and Operating

Systems, Volume 4 (ASPLOS ’23).
[38] Zhen Lin, Kao-Feng Hsieh, Yu Sun, Seunghee Shin, and Hui Lu. 2021.

FlashCube: Fast Provisioning of Serverless Functions with Streamlined
Container Runtimes. In 11th Workshop on Programming Languages and

Operating Systems (PLOS ’21).
[39] Guowei Liu, Laiping Zhao, Yiming Li, Zhaolin Duan, Sheng Chen, Yitao

Hu, Zhiyuan Su, and Wenyu Qu. 2024. FUYAO: DPU-enabled Direct
Data Transfer for Serverless Computing. In 29th ACM International

Conference on Architectural Support for Programming Languages and

Operating Systems, Volume 3 (ASPLOS ’24).
[40] Qingyuan Liu, Dong Du, Yubin Xia, Ping Zhang, and Haibo Chen.

2023. The Gap Between Serverless Research and Real-world Systems.
In ACM Symposium on Cloud Computing (SoCC ’23).

[41] Fangming Lu, Xingda Wei, Zhuobin Huang, Rong Chen, Minyu Wu,
and Haibo Chen. 2024. Serialization/Deserialization-free State Transfer
in Serverless Workflows. In 19th European Conference on Computer

Systems (EuroSys ’24).
[42] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Sameh El-

nikety, Somali Chaterji, and Saurabh Bagchi. 2022. ORION: Optimized
Execution Latency for Serverless DAGs. In 16th USENIX Symposium

on Operating Systems Design and Implementation (OSDI ’22).
[43] Pascal Maissen, Pascal Felber, Peter Kropf, and Valerio Schiavoni. 2020.

FaaSdom: a benchmark suite for serverless computing. In 14th ACM

International Conference on Distributed and Event-Based Systems (DEBS

’20).
[44] Anupama Mampage, Shanika Karunasekera, and Rajkumar Buyya.

2022. A Holistic View on Resource Management in Serverless Comput-
ing Environments: Taxonomy and Future Directions. ACM Comput.

Surv. (2022).
[45] Netflix. 2021. The Making of VES: the Cosmos Microservice for Netflix

Video Encoding. https://netflixtechblog.com/the-making-of-ves-the-
cosmos-microservice-for-netflix-video-encoding-946b9b3cd300.

[46] Netflix. 2021. The Netflix Cosmos Platform. https://netflixtechblog.
com/the-netflix-cosmos-platform-35c14d9351ad.

[47] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,
Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. SOCK:
Rapid Task Provisioning with Serverless-Optimized Containers. In
USENIX Annual Technical Conference (ATC ’18).

[48] Apache OpenWhisk. 2024. Open Source Serverless Cloud Platform.
https://openwhisk.apache.org/.

[49] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS:
Achieving Low Tail Latency for Microsecond-scale Networked Tasks.
In 26th Symposium on Operating Systems Principles (SOSP ’17).

[50] Francisco Romero, Gohar Irfan Chaudhry, Íñigo Goiri, Pragna
Gopa, Paul Batum, Neeraja J. Yadwadkar, Rodrigo Fonseca, Chris-
tos Kozyrakis, and Ricardo Bianchini. 2021. Faa$T: A Transparent
Auto-Scaling Cache for Serverless Applications. In ACM Symposium

on Cloud Computing (SoCC ’21).
[51] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. 2022. IceBreaker:

warming serverless functions better with heterogeneity. In 27th ACM

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS ’22).
[52] Alireza Sahraei, Soteris Demetriou, Amirali Sobhgol, Haoran Zhang,

Abhigna Nagaraja, Neeraj Pathak, Girish Joshi, Carla Souza, Bo Huang,
Wyatt Cook, et al. 2023. XFaaS: Hyperscale and Low Cost Serverless
Functions at Meta. In 29th Symposium on Operating Systems Principles

(SOSP ’23).
[53] Divyanshu Saxena, Tao Ji, Arjun Singhvi, Junaid Khalid, and Aditya

Akella. 2022. Memory deduplication for serverless computing with
Medes. In 17th European Conference on Computer Systems (EuroSys

’22).
[54] Trever Schirmer, Valentin Carl, Tobias Pfandzelter, and David

Bermbach. 2023. ProFaaStinate: Delaying Serverless Function Calls
to Optimize Platform Performance. In 9th International Workshop on

Serverless Computing (WoSC ’23).
[55] Trever Schirmer, Joel Scheuner, Tobias Pfandzelter, and David

Bermbach. 2022. Fusionize: Improving Serverless Application Perfor-
mance through Feedback-Driven Function Fusion. In IEEE International
Conference on Cloud Engineering (IC2E ’22).

[56] Trever Schirmer, Joel Scheuner, Tobias Pfandzelter, and David
Bermbach. 2023. Fusionize++: Improving Serverless Application Perfor-
mance Using Dynamic Task Inlining and Infrastructure Optimization.
https://arxiv.org/abs/2311.04875.

[57] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. 2020. Serverless in the Wild:
Characterizing and Optimizing the Serverless Workload at a Large
Cloud Provider. In USENIX Annual Technical Conference (ATC ’20).

[58] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong,
Matthai Philipose, Arvind Krishnamurthy, and Ravi Sundaram. 2019.
Nexus: a GPU cluster engine for accelerating DNN-based video anal-
ysis. In 27th ACM Symposium on Operating Systems Principles (SOSP

’19).
[59] Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight Isola-

tion for Efficient Stateful Serverless Computing. In USENIX Annual

Technical Conference (ATC ’20).
[60] Paulo Silva, Daniel Fireman, and Thiago Emmanuel Pereira. 2020.

Prebaking Functions to Warm the Serverless Cold Start. In 21st Inter-

national Middleware Conference (Middleware ’20).
[61] Josef Spillner. 2019. Quantitative Analysis of Cloud Function Evo-

lution in the AWS Serverless Application Repository. https://api.
semanticscholar.org/CorpusID:152282338.

[62] Jovan Stojkovic, Tianyin Xu, Hubertus Franke, and Josep Torrellas.
2023. MXFaaS: Resource Sharing in Serverless Environments for Par-
allelism and Efficiency. In 50th Annual International Symposium on

Computer Architecture (ISCA ’23).

https://netflixtechblog.com/the-making-of-ves-the-cosmos-microservice-for-netflix-video-encoding-946b9b3cd300
https://netflixtechblog.com/the-making-of-ves-the-cosmos-microservice-for-netflix-video-encoding-946b9b3cd300
https://netflixtechblog.com/the-netflix-cosmos-platform-35c14d9351ad
https://netflixtechblog.com/the-netflix-cosmos-platform-35c14d9351ad
https://openwhisk.apache.org/
https://arxiv.org/abs/2311.04875
https://api.semanticscholar.org/CorpusID:152282338
https://api.semanticscholar.org/CorpusID:152282338

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Carlos Segarra, Ivan Durev, and Peter Pietzuch

[63] Amoghavarsha Suresh, Gagan Somashekar, Anandh Varadarajan,
Veerendra Ramesh Kakarla, Hima Upadhyay, and Anshul Gandhi. 2020.
ENSURE: Efficient Scheduling and Autonomous Resource Manage-
ment in Serverless Environments. In IEEE International Conference on

Autonomic Computing and Self-Organizing Systems (ACSOS ’20).
[64] Huangshi Tian, Suyi Li, Ao Wang, Wei Wang, Tianlong Wu, and Hao-

ran Yang. 2022. Owl: performance-aware scheduling for resource-
efficient function-as-a-service cloud. In ACM Symposium on Cloud

Computing (SoCC ’22).
[65] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion,

and Boris Grot. 2021. Benchmarking, analysis, and optimization of
serverless function snapshots. In 26th ACM International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS ’21).
[66] Ao Wang, Shuai Chang, Huangshi Tian, Hongqi Wang, Haoran Yang,

Huiba Li, Rui Du, and Yue Cheng. 2021. FaaSNet: Scalable and Fast
Provisioning of Custom Serverless Container Runtimes at Alibaba
Cloud Function Compute. In USENIX Annual Technical Conference

(ATC ’21).
[67] YawenWang, Kapil Arya,Marios Kogias,Manohar Vanga, Aditya Bhan-

dari, Neeraja J. Yadwadkar, Siddhartha Sen, Sameh Elnikety, Christos
Kozyrakis, and Ricardo Bianchini. 2021. SmartHarvest: harvesting idle
CPUs safely and efficiently in the cloud. In 16th European Conference

on Computer Systems (EuroSys ’21).

[68] Hanfei Yu, Rohan Basu Roy, Christian Fontenot, Devesh Tiwari, Jian
Li, Hong Zhang, Hao Wang, and Seung-Jong Park. 2024. Rainbow-
Cake: Mitigating Cold-starts in Serverless with Layer-wise Container
Caching and Sharing. In 29th ACM International Conference on Archi-

tectural Support for Programming Languages and Operating Systems

(ASPLOS ’24).
[69] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu,

Pingchao Yang, Chenggang Qin, and Haibo Chen. 2020. Characterizing
serverless platforms with serverlessbench. In ACM Symposium on

Cloud Computing (SoCC ’20).
[70] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel, and

Vincent Liu. 2020. Fault-tolerant and transactional stateful serverless
workflows. In 14th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’21).
[71] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca,

Sameh Elnikety, Christina Delimitrou, and Ricardo Bianchini. 2021.
Faster and Cheaper Serverless Computing on Harvested Resources. In
28th Symposium on Operating Systems Principles (SOSP ’21).

[72] Mark Zhao, Mingyu Gao, and Christos Kozyrakis. 2022. ShEF: Shielded
Enclaves for Cloud FPGAs. In 27th ACM International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems

(ASPLOS ’22).
[73] Ziming Zhao, Mingyu Wu, Haibo Chen, and Binyu Zang. 2024. Char-

acterization and Reclamation of Frozen Garbage in Managed FaaS
Workloads. In 19th European Conference on Computer Systems (EuroSys

’24).

	Abstract
	1 Introduction
	2 Why Cold Starts Do Not Matter
	2.1 Industry traces and reports
	2.2 Research surveys
	2.3 Field study
	2.4 Summary

	3 Delayable FaaS
	3.1 Overview
	3.2 Function delay
	3.3 Function fusion
	3.4 Semantic scheduling

	4 Discussion
	4.1 Challenges to our vision
	4.2 Further opportunities

	5 Conclusions
	References

