SwiftAnalytics: Optimizing Object Storage
for Big Data Analytics

Lukas Rupprecht*, Rui Zhangi, Bill Owen!, Peter Pietzuch*, Dean Hildebrand*
*Imperial College London, {IBM Research Almaden, {IBM Tucson
Ir12@imperial.ac.uk, ruiz@us.ibm.com, billowen @us.ibm.com, prp@imperial.ac.uk, dhildeb@us.ibm.com

Abstract—Due to their scalability and low cost, object-based
storage systems are an attractive storage solution and widely
deployed. To gain valuable insight from the data residing in
object storage but avoid expensive copying to a distributed
filesystem (e.g. HDFS), it would be natural to directly use them
as a storage backend for data-parallel analytics frameworks such
as Spark or MapReduce. Unfortunately, executing data-parallel
frameworks on object storage exhibits severe performance prob-
lems, reducing average job completion times by up to 6.5x.

We identify the two most severe performance problems when
running data-parallel frameworks on the OpenStack Swift object
storage system in comparison to the HDFS distributed filesystem:
(i) the fixed mapping of object names to storage nodes prevents
local writes and adds delay when objects are renamed; (ii) the
coarser granularity of objects compared to blocks reduces data
locality during reads. We propose the SwiftAnalytics object
storage system to address them: (i) it uses locality-aware writes to
control an object’s location and eliminate unnecessary 1I/O related
to renames during job completion, speeding up analytics jobs by
up to 5.1x; (ii) it transparently chunks objects into smaller sized
parts to improve data-locality, leading to up to 3.4 x faster reads.

I. INTRODUCTION

Object-based storage systems such as Amazon S3 [1],
OpenStack Swift [2], and Cleversafe [3] have established
themselves as a prominent solution for large-scale storage due
to their almost unlimited scalability and cost-efficiency. With
businesses storing more data in object storage, the insights that
can be extracted from the data have tremendous value.

To avoid copying data into a distributed filesystem (DFS)
for analysis first, new efforts have been made to use popular
data-parallel analytics frameworks such as MapReduce [4] or
Spark [5] directly on top of object storage [6] [7]. This saves
both cost and administration effort as no additional data silo
must be set up and data can be managed in one place.

Object-based storage systems differ fundamentally from the
DFSs conventionally integrated with analytics frameworks.
DFSs such as HDFS [8] were specifically designed to provide
high read and write throughput for data processing applica-
tions; the focus of object storage is on high scalability coupled
with a simple API to ease manageability. Object-based storage
does not organize, locate or replicate data in the same way as
DFSs: it uses a hash function to locate data, while a DFS
relies on (centralized) metadata servers. The lack of metadata
servers in object storage systems is the reason for their superior
scalability and ease of deployment, but it is also the source of
performance limitations for analytics workloads.

In this paper, it is our goal to help users reap the benefits
of running analytics jobs on object storage by considering the
performance challenges of such a setup. We target a colocated
architecture, i.e. storage and compute nodes are deployed on
the same cluster as this avoids the additional delay of remote
data reads/writes and offers the best performance. We find that,
if jobs are executed without changes to the storage layer, they
experience a slow-down of up to 6.5x.

We identify two main problems affecting performance:
(i) write-locality—object storage systems work on the princi-
ple of consistent hashing that allows locating objects across the
cluster in a decentralized way. This creates a fixed mapping
between object names and storage devices, which does not
work well for some operations. For example, renaming an ob-
ject degenerates to re-uploading the same file with a different
name. As data-parallel frameworks require several renames of
the job results, performance decreases significantly; (ii) read
locality—object storage systems, in contrast to DFSs, do not
typically chunk objects across all servers, but rather upload
them in their entirety. This coarser storage granularity gener-
ates imbalances in the I/O load that reduces data locality.

Existing solutions have tried to solve the write-locality
problem in data-parallel analytics jobs by simply avoiding
expensive calls, rename in particular, during a job [9] [10].
However, these solutions assume no control over the object
storage systems and hence operate at the layer between the
data-parallel framework and the storage. This restricts their
possibility for improvement. Instead, we propose to alter the
object storage itself to robustly speed up analytics jobs.

We make the following contributions: We propose Swift-
Analytics, an enhanced object storage system based on Open-
Stack Swift that allows to seamlessly integrate analytics
frameworks and object storage without significant performance
penalties (§III). To address the write-locality problem, Swift-
Analytics uses locality-aware writes, which offer placement
control to the object storage system and support efficient object
renaming (§IV). Locality-aware writes break the dependency
between the object name and its hash-defined location without
introducing a centralized component and hence do not affect
scalability. SwiftAnalytics achieves this by storing the addi-
tional location information in a decentralized way such that it
can be located with negligible overhead. SwiftAnalytics solves
read-locality with a straight-forward chunking scheme which,
similar to HDFS, chunks objects into smaller parts to achieve

Object

Server2

Object Object
Server1 Server3

; GET®) A

Logical — |
i Client
Rin <«
9 GET(A)
c3 HASH(A)

Fig. 1: Swift architecture

a better distribution across the cluster.

We deploy MapReduce and Spark on top of SwiftAnalytics
on a local research testbed and evaluate its effectiveness
using a set of workloads with different characteristics (§V).
With locality-aware writes, we show that result data can be
written up to 8.5 x faster, translating to an overall improvement
of job completion time by 5.1x compared to an optimized
Swift deployment; object-chunking can provide an up to 3.4x
improvement when reading input data. We discuss related
work in §VI and then conclude the paper in §VIIL.

II. DATA-PARALLEL PROCESSING ON OBJECT STORAGE

Next we briefly review the main concepts behind object-
based storage (§II-A) and then discuss how data-parallel
frameworks interact with the storage layer during a job (§II-B).

A. Object Storage Basics

In an object-based storage system, data is stored and ex-
posed to clients at the granularity of BLOBs as compared to
blocks in a traditional filesystem [11] [12]. A BLOB can be
any kind of data such as images or documents and is usually
immutable [13]. Interaction happens via a RESTful API, with
facilities to store (PUT), retrieve (GET) and delete (DELETE)
objects based on their keys. Object storage exposes a flat
namespace in which the key is an arbitrary identifier for
the object, in most cases, its name. An additional layer of
hierarchy to group objects, called containers (Swift) or buckets
(S3), is also provided. Data is replicated for reliability.

With “object storage”, we refer to large-scale enterprise
storage systems such as S3 [1], Walnut [12], or Haystack [14].
These storage systems provide highly scalable storage for
unstructured data, which is of particular interest for large-
scale analytics. We use OpenStack Swift [2] as the underlying
storage layer for the analytics framework but the general
concepts also apply to other enterprise-class object storage.

A major advantage of object storage over distributed filesys-
tems is their scalability. Swift scales due to two properties:
() it uses consistent hashing [15] to locate objects without
a centralized metadata service. In consistent hashing, storage
nodes are randomly assigned positions in a logical ring struc-
ture. The ring is discretized by the output domain of a hash
function and closed at the smallest and largest hash values.
The location of an object is then determined by hashing its
name and assigning it to the node whose position is closest
to the object’s hash on the ring (see Figure 1); (ii) all object

metadata, such as its creation time or checksum, is stored with
an object instead of on a separate metadata server. These two
properties allow object storage systems to keep all metadata
decentralized and hence, no single scalability bottleneck exists.
Figure 1 shows the request processing path in Swift. When
a client submits a request to retrieve an object A, it contacts
a proxy server. While the proxy is a single entry point to
the storage cluster, it is stateless and hence can be scaled
arbitrarily. After receiving the request, the proxy determines
the responsible object server for the object. It then forwards
the request to that object server and returns its response to the
client. Besides the object servers, the cluster has container
servers that store the listings of objects grouped within a
container. Containers are also located via the hash function.

B. Storage Interaction of Analytics Frameworks

Data-parallel frameworks such as Spark and Hadoop Map-
Reduce expose a simple operator-based API. For example
MapReduce consists of two operators, map and reduce, which
are executed in two consecutive phases. Spark offers a wider
set of operators, e.g. join or union. Operators are automatically
parallelized across nodes in the cluster, and each parallel rask
executes the operator function on a partition of the input data.

Input data is usually kept in a distributed filesystem to read
data in parallel. HDFS is the most prominent choice as it was
co-designed with Hadoop MapReduce and is now supported
by all major frameworks. It has a master/slave architecture
with the NameNode as the central entity. In HDFS, a file
is chunked into fixed sized blocks of 128 MB [16] when
uploaded. Blocks are distributed and replicated across the
cluster. The NameNode is responsible for mapping file blocks
to storage servers and keeps all metadata, including block
locations, for the files. Analytics frameworks interact with the
distributed storage at two stages during a job: (i) when reading
the input data and (ii) when writing the results.

When reading input data, a number of input tasks is spawned
to read a partition. In the default case, one input task reads a
single HDFS block. As blocks provide a fine storage granu-
larity, I/O load can be spread evenly to achieve high aggregate
disk throughput. In addition, input tasks can be colocated on
the nodes storing their input data to avoid network I/O and
achieve high data locality.

When a job has finished, the tasks from the last operator
write the results back to the distributed storage. Tasks follow
a two-phase commit protocol to commit their outputs. First,
a reduce task writes its output to a temporary location using
chain-replication. The task then informs the application master,
i.e. the node responsible for managing the job, that it has
finished. If allowed to commit, the node moves the temporary
file to its final location and exits. This protocol is necessary, if
optimizations such as speculative execution, in which multiple
tasks process the same input data, should be supported. It
prevents speculative tasks from overwriting each others results.
After all reduce tasks have finished, the application master
renames the output directory from an internal staging directory
to the output directory specified by the user.

III. SWIFTANALYTICS DESIGN

Next, we present the design of SwiftAnalytics, an enhanced
object storage system that solves the performance problems of
analytics jobs when running on object storage.

A. Performance Issues for Analytics on Swift

We first describe the most severe problems, which guide the
design of SwiftAnalytics (see [17] for more details).

Single proxy server. As described above, Swift uses a proxy
server as an entry point to the cluster. Users interact with the
cluster via the proxy and hence reads and writes of objects
are redirected through the proxy. For an analytics job, during
which multiple tasks read and write in parallel, the proxy
server becomes the limiting factor. However, the proxy server
is stateless and can thus be replicated. As a result, it is
possible to run different proxy servers on each node in the
cluster and have each task read/write through its local instance.
This removes the single proxy bottleneck. We use this simple
optimization as a default in our evaluation.

Read locality. In Swift, objects are not chunked when up-
loaded, which is in contrast to HDFS, which splits files into
smaller blocks. Additionally, an object’s location is determined
through consistent hashing on the ring, i.e. its location is fixed
while HDFS can dynamically select the storage device for a
block. This provides a more fine-grained way for HDFS to
distribute blocks, with the goal of achieving an even read I/O
load across all nodes, compared to Swift, which causes skewed
I/O and generates hotspots. This can slow down the map phase
of a job by up to 4.6x (see §V).
Write locality. As Swift lacks a centralized metadata server
and locates objects via consistent hashing, renaming an ob-
ject becomes an expensive operation. Instead of updating a
metadata entry, the object must be re-uploaded to the location
specified by the hash of the new name. Combined with the
rename-based two-phase commit protocol and the directory
rename that the application master performs at the end of a
job (see §II-B), analytics jobs experience a major performance
decrease. We observe slowdowns of up to 15.8x during the
reduce phase due to the additional copy overhead (see §V).
The design of SwiftAnalytics incorporates two additional
features compared to standard object storage system to tackle
the read- and write-locality problems: (i) transparent object
chunking to increase parallelism during reads and (ii) efficient
object renames by providing placement control to clients.

B. Object Chunking

A chunking mechanism allows clients to transparently split
objects into smaller parts, similar to HDFS blocks, when
uploading data to the object storage. However, contrary to
HDEFS, there is no central instance to keep a block map for
an uploaded object that stores the parts and their locations for
a single object. Hence, a decentralized mechanism is needed
to collect and assemble all chunks of an object. Swift already
offers a way to achieve this. To support arbitrary object sizes,
objects larger than 5 GB are split, and the individual chunks are

Object Object

Server3

Server1

HASH(A)

Fig. 2: SwiftAnalytics design

linked to from a manifest file, stored under the original object
name. While this is typically used to manage large objects
in Swift, it can also be used to transparently support small,
equal-sized chunks for faster analytics.

Figure 2 illustrates this process. On an upload, a client
can specify to chunk the object which will cause the proxy
server to split the incoming data into several parts, e.g. 128 MB
blocks as in HDFS. The different parts will receive internal
names according to which they are placed across the cluster.
Additionally, a manifest object under the original name is
created, which contains an ordered list of the names of all
object parts. Upon a GET, the proxy retrieves the manifest file,
parse it, and return the parts in order to the client.

C. Placement Control

Besides chunking, SwiftAnalytics provides object place-
ment control to clients for specifying the object server on
which an object should be stored (see Figure 2). This allows
the implementation of efficient renaming. The reason why
renaming is slow in object-based storage systems is that the
object location depends on the name of the object. When an
object receives a new name, its location changes, triggering a
copy to a new object server. With placement control, the new
object server can be specified explicitly to avoid the extra copy.

The main challenge for enabling placement control in object
storage is to not introduce any centralized component which
would limit scalability. Distributed filesystems such as HDFS
have a central metadata service that stores a mapping between
all file names in the system and their corresponding locations.
This allows for fast renames as a rename only requires
updating the name of the target file in that mapping. Given that
a main advantage of object storage is its scalability due to the
decentralized architecture, adding such a centralized service
is undesirable. In the following section, we present locality-
aware writes, a mechanism implemented in SwiftAnalytics to
enable decentralized placement control.

A simple alternative to placement control for fast renames
is a symlink-like solution, which we call link files. As in
symlinks, a link file does not contain the actual contents
but rather a pointer to the original file. When an existing
object should be renamed, a new link file with a pointer to
the original object is uploaded and replicated, leaving the
actual data untouched. When the object is requested, the object
storage system follows the link to return the original content.
We compare SwiftAnalytics to link files in §V.

PUT(A) PUT(swift.host4/A)

A/

Ring

swift.host4/3

Fig. 3: Locality-aware writes scheme

IV. LOCALITY-AWARE WRITES

Next we present locality-aware writes (§IV-A), how they can
be used to provide fast renames (§1V-B), and their implications
on object storage systems (§IV-C).

A. Overview

Locality-aware writes use a two-namespace approach to
allow clients to specify the target location of an object. This
is similar to the idea used in SkipNet [18]. However, we
make significant adjustments to suit the needs of analytics
on object storage. In its basic operation, a consistent-hashing
based object storage system uses the numerical hash value of
an object to determine its location, i.e. the hash IDs form a
numeric namespace. This namespace is agnostic to any locality
constraints in the cluster as it is only a logical overlay. In
order to support locality, locality-aware writes use a second
lexicographic namespace that explicitly captures the locations,
i.e. the URIs of devices in the cluster. (see Figure 3).

On a PUT, a client can now set an additional request
attribute, the location ID (LID), to specify on which node the
object should be placed. If set, the LID has higher precedence
than the numeric ID and bypass the hash placement. Figure 3
shows the two possible ways of uploading an object. To
keep the object storage decentralized, the LID is stored as a
metadata attribute with the object itself and its replicas. Hence,
no centralized service to store LIDs is required.

Since locality-aware writes break the hash placement, object
retrieval can now fail if an object has been stored using an LID.
To be able to still locate an object, three techniques are used:

1) The LID is only used to determine the location of the
primary replica. All additional replicas are normally placed
according to the hash (see Figure 3). By accessing one of
these additional replicas and reading the LID from their
metadata, the primary replica can be located.

2) To avoid losing the object in case all additional replicas fail,
the LID is added to the metadata of the object’s container.
Containers are replicated in the same way as objects so the
LID is replicated another N times.

3) On deletion, a DELETE is sent out to all replicas simultane-
ously and, if a replica detects that an LID has been set on
its metadata, it can forward the request to the corresponding
location on which the primary replica is stored.

B. Local Rename and Upload Operations

Using locality-aware writes, SwiftAnalytics implements an
efficient local rename strategy that works as follows: Swift
internally uses the hash of an object’s name to not only locate

the responsible object server but also to find the object locally
on disk by using the hash as the folder name in which the
object is stored. In case of a rename operation, the object
server will locally move the source file to its destination folder,
given by the new hash value, using the Unix mv command. This
is only a metadata operation and does not cause 1/O.
SwiftAnalytics also provides fast uploads using the above
approach. If a client runs co-located with an object server and
has a locally stored object, it can simply move this object to
the correct folder in Swift instead of copying it to a remote
destination. As no I/O is generated during such a local upload,
it is efficient. This is useful in case the storage system does not
support streamed uploads, i.e. output tasks first need to write
their job results to the local disk and then copy it to the object
storage. While Swift does support streamed uploads, other
systems such as S3 do not natively provide that functionality.

C. Implications on Object Storage Systems

Locality-aware writes come with two key implications for
object storage regarding object replication and object retrieval.

Replication. While the local move saves one copy of the
existing data, all additional N — 1 replicas still need to
be copied. Swift’s reliability model requires a quorum of
objects persisted on disk before it reports success. In a 3-
way replicated case, at least one additional copy has to be
written successfully before the rename can return. However,
we found that in the case of an analytics job, these additional
copies are wasteful as renames are executed shortly after each
other. We identify three possible replication schemes that trade
off reliability for performance:

1) Only the primary replica will be moved locally before the
rename returns (1 replica).

2) The primary replica will be moved locally and an additional
replica will be copied to its new destination. This scheme
fulfills Swift’s reliability requirements as on return, 2/3 of
the replicas have been successfully written (2 replicas).

3) The primary replica will be moved locally and two addi-
tional replicas will be copied to their new destinations. This
scheme provides additional reliability (3 replicas).

Eventually, all three schemes will have all replicas persisted
on disk as Swift uses an asynchronous replicator process
on each node to correctly handle replication failures. This
process periodically scans the filesystem and makes sure
objects are replicated correctly. This happens within a specified
consistency window, which is 30 s by default. We evaluate the
different strategies in the following section.

Object retrieval. When using locality-aware writes, GET re-
quests for the primary replica of an object can fail and an
additional request is needed to look up the LID. The number of
additional requests depends on how load is distributed across
replicas. In Swift, the proxy server randomly selects one of the
replicas to be retrieved, i.e. on average 1/3 of initial requests
will fail. We show in §V that the overhead of this additional
request is small compared to the reduced completion time for
analytics jobs.

— 1400

= HDFS
g 1200 SwiftAnalytics 0.8 7
£ 1000 Swift Link File: w06 [HDFS

800 i
8 600 |- © 04 ;l SwiftAnalytics ----- 1
° 02 Swift Link Files
s 400 o L Swift

q

8 200 N § 0 100 200 300 400 500

completion time (s)

Fig. 5: Renaming strategies
(Facebook workloads)

TL Tea l
Fig. 4: Renaming strategies
(MapReduce workloads)

TABLE I: Base workload properties

Wordcount PCA Terasort ETL
Data read 100GB 32GB 32GB 60 GB
Data written 2.1GB 1.3MB 32GB 7.9GB
Map tasks 64 64 64 64
Reduce tasks 64 1 64 64

V. EVALUATION

We evaluate SwiftAnalytics and compare its performance to
vanilla Swift, Swift with link files, and HDFS. We study five
aspects: the effectiveness of local renames, the effectiveness
of object chunking, the different replication schemes, the
effectiveness of local uploads, and the overhead.

Experimental Setup. We deploy Swift 2.2.1 and Hadoop 2.6.0
on a cluster with 16 nodes. Each node has 4 cores at 3.1 GHz,
16 GB of memory, and a 500GB hard disk, interconnected
via 1 Gbps Ethernet. Each node runs a Hadoop DataNode, a
Hadoop NodeManager, and a Swift object server and container
server. We provision an additional node to run Hadoop’s
master services. The replication factor is set to 3. To run Map-
Reduce on Swift, we use a recently developed connector [19].
The local filesystems are XFS.

We use four base workloads, as summarized in Table I.
The first two workloads, Wordcount and Terasort, are stan-
dard benchmarks, taken from the HiBench suite [20], and
include input data; the third workload is principal component
analysis (PCA). We use the MapReduce PCA implementation
from the HIPI project [21], and a 32 GB subset of the 2010
ImageNet dataset [22]; as a fourth workload, we use an ETL
transformation from the TPC-DI benchmark [23]. We imple-
ment a variation of the CustomerDim transformation, which
scans an XML file for New actions and extracts the required
fields in CSV format for loading into a data warehouse.
Additionally, we use the SWIM workload injector tool [24] to
replay a Facebook MapReduce trace of 500 jobs and deploy
Spark as another example for a data-parallel framework.

Effectiveness of Local Renames. We start by analyzing the
effectiveness of local renames. Note that for this experiment,
we use the 1 replica strategy, i.e. do not actively replicate after
the local move. We will discuss this choice below in detail.
For the four base workloads, SwiftAnalytics offers the most
benefit for ETL and Terasort (see Figure 4) as these write the
most result data. It matches the performance of HDFS and
considerably outperforms the baseline Swift. While Swift with
link files also matches HDFS’s performance for ETL, Terasort
incurs the heaviest I/O load during renaming in which case

1400

250

= HDFS e HDFS
.ag: 1383 g fgg SwiftAnalytics —&— /i
S 800 5
2 600 3 100 D——
g 40 £ o
S 8 0
8 200 N § 128 256 512 1024 2048 4096
Qs Qa3 (filter) Swift chunk size (MB)
Fig. 6: Renaming strategies Fig. 7: Varying object sizes
(Spark workloads)

SwiftAnalytics outperforms link files by a factor of 2.4x due
to its local renames. For Wordcount and PCA, SwiftAnalytics
and link files perform similar to HDFS because for these jobs,
the output data is small and not affected by the renames. The
main reason for the difference between link files and Swift-
Analytics is that link files still replicate data on upload, which
gives them better reliability guarantees but lower performance.
Figure 5 shows the CDF of job completion times for the
Facebook MapReduce traces. For 60% of jobs, all four setups
perform equally. After that, the results start to diverge, and
we observe a similar trend as for the above base workloads.
Around the 90™ percentile, SwiftAnalytics offers an improve-
ment of 1.8 x over Swift and 1.5 over link files, showing that
it can provide significant benefit for a production workload.

As SwiftAnalytics is a generic solution that optimizes the
storage layer, we expect its benefits to also apply to other
frameworks. To verify that, we deploy Spark and run Terasort
and query 3 from the TPC-H benchmark (Q3) with and without
the selection filters to vary the size of the query result. Figure 6
confirms our hypothesis. For Terasort and Q3 without filter,
SwiftAnalytics outperforms both vanilla Swift and link files
and reaches performance close to HDFS. When the output size
is small (Q3 filter), renaming does not affect performance and
all setups perform nearly the same.

Effectiveness of Object Chunking. Next, we evaluate the
effectiveness of object chunking. To vary the object-to-node
ratio, we use a smaller scale Wordcount job on 8 GB of
input data and vary the object chunk size. A large chunk size
produces a low number of objects and hence, a low object-to-
node ratio. Figure 7 shows the map times for the job.

For a large chunk size of 4096 MB the input data is only
stored in 2 objects in Swift, which leads to highly skewed
access. In that case, SwiftAnalytics experiences a 4.6x slow-
down compared to HDFS. As the chunk size decreases, more
objects are available, and the performance of SwiftAnalytics
converges to that of HDFS. This confirms that chunking is
necessary for an even distribution of data across the cluster.

Replication Strategies. We now discuss our choice for the
replication strategy. Figure 8 shows the completion times for
the base MapReduce workloads for each of the replication
methods, as presented in §IV-C. We can see that job comple-
tion time increases linearly with each additional replica.

This shows that there is a trade-off between performance
and reliability. We argue that, for analytics jobs, less reliability
is tolerable. First, as we know that there is one existing copy of
the data and within the next consistency window, all replicas

1000

)

>
=}
S

SwiftAnalytics —=— |

@
) 1 replica © WiftA t
2 1200 2 replicas £ 800 Swift Link Files
£ 3 replicas < 600
& 800 $ 400
s S 200 (e S
E— 400 s o
8 8 16 32 64

0
Wordcount PCA Number of Reducers

Fig. 8: Replication strategies
(MapReduce workloads)

ETL Terasort

Fig. 9: Comparison under 1-
way replication

are generated. Second, if results are lost during this window,
it is easy to regenerate them. Figure 8 shows that it is faster
to run a Terasort job twice with only a single replica than
running it once with an additional replica. For these reasons,
we use local renames with no replication as the default.

Effectiveness of Local Uploads. The main reason why Swift-
Analytics outperforms link files is that link files leverage 3-
way replication in Swift. To compare the two approaches
under equal conditions, we deploy Swift with link files with a
replication factor of 1 and run the Terasort job with a varying
number of reducers. Figure 9 shows the results.

We see that SwiftAnalytics still performs better than Swift
with link files. While 1-way replication improves job com-
pletion time with link files by a factor of 2, it is still 45%
slower compared to SwiftAnalytics with 64 reducers. This
discrepancy increases for smaller numbers of reducers and
reaches 129% for 8 reducers. SwiftAnalytics produces stable
completion times in spite of fewer reducers, whereas the
variance for link files increases heavily. The reason is that
when using Swift with link files, objects still are written lo-
cally and then uploaded, creating an additional copy, whereas
SwiftAnalytics can leverage its local upload mechanism to
avoid that copy. The effect of the additional I/Os generated
by link files are exacerbated when fewer reducers are used,
because a single reducer has to perform more I/Os.

Overhead. Finally, we assess the overhead of locality-aware
writes by comparing the latency of GET requests in Swift and
SwiftAnalytics. We create objects of different sizes and then
upload these both with and without an LID. A client sends
continuous GET requests to the objects, and we measure the
latency. The CDFs are shown in Figure 10. While incurring
some overhead, local renames only require an additional
lookup in 1/3 of all cases, as Swift already performs random
load balancing. Additionally, the overhead is in the range of
milliseconds and becomes negligible for larger objects.

VI. RELATED WORK

Object Storage Systems. Many object storage architectures
have been proposed in the literature such as Dynamo [25],
Rados [26], Haystack [14], or F4 [13]. While different in their
purpose, they do not provide efficient analytics. Walnut [12]
differs from the above as it proposes to unify different storage
backends, including HDFS. This supports the motivation of
this paper, however, Walnut’s main focus is on the unification
of different architectures and not primarily on the performance
of analytics applications.

10B —— 7
0.8 F10KB ----- Ve 7
M -l /
w06 i /
o 04 A /
02 h
4)
5 10 15 20 25 30 35 40

Latency (ms)

Fig. 10: Request latencies for different object sizes

Analytics on Different Storage. Existing research investigates
analytics on various storage architectures other than HDFS
such as PVFS [27] and IBM Spectrum Scale [28]. Neither
system performs well out-of-the-box and similar to Swift,
optimizations are needed to match HDFS. In MixApart [29],
the authors use a disk cache and a transfer scheduler to serve
an analytics framework directly out of an enterprise storage
backend. Although object storage systems can be one possible
backend, it has not been explicitly considered.

Placement Control. The approach of two separate names-
paces is shared with SkipNet [18] and its extension [30]. Skip-
Net uses two namespaces to control placement in a distributed
hash table (DHT) and enables content and path locality.
However, SkipNet does not provide fast rename and upload
operations and is targeted at DHTs and not object storage.
The CRUSH algorithm [31] in Ceph [32] uses hierarchies of
buckets and placement rules to identify replica locations in
a cluster. While the rules enable coarse placement control,
CRUSH does not allow to pick the actual storage device.

Avoiding Renames. The Hadoop/Spark community tries to
solve the performance problems by avoiding renames. The
DirectOutputCommitter [9] directly writes results to the
object storage without a two-phase commit. However, this can
lead to data loss when speculative execution is used [33]. The
Stocator project [10] is an optimized object storage connector.
It supports writing results directly and prevents race conditions
by appending a unique suffix to the output of each output task.
While this avoids renames, it changes the output file name,
making it more difficult to retrieve the results of a job.

VII. CONCLUSION

We have presented SwiftAnalytics, an object storage system
that serves as an efficient storage layer for data-parallel analyt-
ics frameworks such as Spark and MapReduce. SwiftAnalytics
provides mechanisms to improve read and write performance
by transparently chunking objects and providing placement
control respectively. We showed that by using locality-aware
writes, placement control, can be introduced efficiently without
breaking the decentralized architecture of object storage sys-
tems. The two techniques help queries on SwiftAnalytics to
achieve completion times close to their performance on HDFS.

VIII. ACKNOWLEDGMENTS

The authors wish to thank the anonymous reviewers whose
feedback and advice has helped improve this work. This work
was in part supported by grant EP/K032968 (“NaaS: Network-
as-a-Service in the Cloud”) from the UK Engineering and
Physical Sciences Research Council (EPSRC).

[1]
[2]
[3]
[4]

[5]

[7]
[8]
[9]
(10]
(11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

“Amazon S3,” https://aws.amazon.com/s3/.

“OpenStack Swift,” http://swift.openstack.org/.

“Cleversafe Object Storage,” https://www.cleversafe.com/.

J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in OSDI, 2004.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient Distributed Datasets: A
Fault-tolerant Abstraction for In-memory Cluster Computing,” in NSDI,
2012.

GCP Blog, “Easier, faster and lower cost Big Data processing with the
Google Cloud Storage Connector for Hadoop,” bit.ly/IRHQsY3, 2014.
Netflix Tech Blog, “Hadoop Platform as a Service in the Cloud ,” http:
/Itechblog.netflix.com/2013/01/hadoop- platform-as-service-in-cloud.
html, 2013.

“Apache Hadoop HDFS,” bit.ly/1SeZUfS.

Arnon Rotem-Gal-Oz, “The Bleeding Edge: Spark, Parquet and S3,”
http://bit.ly/2c09Gd4, 2015.

Gil Vernik, “Stocator — Fast Lane for Connecting Object Stores to
Spark,” http://bit.ly/1TNIUKY, 2016.

M. Factor, K. Meth, D. Naor, O. Rodeh, and J. Satran, “Object Storage:
The Future Building Block for Storage Systems,” in LGDI, 2005.

J. Chen, C. Douglas, M. Mutsuzaki, P. Quaid, R. Ramakrishnan, S. Rao,
and R. Sears, “Walnut: A Unified Cloud Object Store,” in SIGMOD,
2012.

S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan,
S. Shankar, V. Sivakumar, L. Tang et al., “f4: Facebook’s Warm BLOB
Storage System,” in OSDI, 2014.

D. Beaver, S. Kumar, H. C. Li, J. Sobel, P. Vajgel et al, “Finding a
needle in haystack: Facebook’s photo storage.” in OSDI, 2010.

D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent Hashing and Random Trees: Distributed Caching
Protocols for Relieving Hot Spots on the World Wide Web,” in STOC,
1997.

“HDFS Default Configuration,” https://hadoop.apache.org/docs/r2.6.0/
hadoop- project-dist/hadoop-hdfs/hdfs-default.xml.

L. Rupprecht, R. Zhang, and D. Hildebrand, “Big Data Analytics on
Object Stores: A Performance Study,” in SC, 2014.

(18]

[19]
[20]

[21]
(22]
(23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

N. J. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman,
“Skipnet: A Scalable Overlay Network with Practical Locality Proper-
ties,” in USITS, 2003.

“Hadoop OpenStack Support: Swift Object Store,” bit.ly/IRHDNOF.
S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The HiBench Bench-
mark Suite: Characterization of the MapReduce-based Data Analysis,”
in ICDEW, 2010.

“HIPI: Hadoop Image Processing Interface,” http://hipi.cs.virginia.edu/.
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in CVPR, 2009.

M. Poess, T. Rabl, H.-A. Jacobsen, and B. Caufield, “TPC-DI: The First
Industry Benchmark for Data Integration,” PVLDB, vol. 7, no. 13, 2014.
“Statistical Workload Injector for MapReduce (SWIM),” https://github.
com/SWIMProjectUCB/SWIM.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” in SOSP, 2007.

S. A. Weil, A. W. Leung, S. A. Brandt, and C. Maltzahn, “Rados: A
Scalable, Reliable Storage Service for Petabyte-scale Storage Clusters,”
in PDSW, 2007.

W. Tantisiriroj, S. W. Son, S. Patil, S. J. Lang, G. Gibson, and R. B. Ross,
“On the Duality of Data-intensive File System Design: Reconciling
HDFS and PVFES,” in SC, 2011.

R. Ananthanarayanan, K. Gupta, P. Pandey, H. Pucha, P. Sarkar,
M. Shah, and R. Tewari, “Cloud Analytics: Do We Really Need to
Reinvent the Storage Stack?” in HotCloud, 2009.

M. Mihailescu, G. Soundararajan, and C. Amza, “MixApart: Decoupled
Analytics for Shared Storage Systems,” in FAST, 2013.

S. Zhou, G. R. Ganger, and P. A. Steenkiste, “Location-based node ids:
Enabling explicit locality in dhts,” Carnegie Mellon University, Tech.
Rep., 2003.

S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn, “CRUSH:
Controlled, Scalable, Decentralized Placement of Replicated Data,” in
SC, 2006.

S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A Scalable, High-performance Distributed File System,” in
SOSP, 2006.

SPARK-10063 JIRA, “Remove DirectParquetOutputCommitter,” https:
/lissues.apache.org/jira/browse/SPARK-10063, 2016.

